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Abstract

The basis number of a graph G is defined to be the least positive integer d such that G has a
d—fold basis for the cycle space of G.

In this paper we prove that the basis number of the Cartesian product of different ladders is
exactly 4. However, if we apply Theorem 4.1 of Ali and Marougi [4], which is stated in the
introduction down as Theorem 1.1, we find that the basis number of the circular and Mobius
ladders with circular ladders and Mobius ladders is less than or equal to 5, and the basis
number of Jadders with circular ladders and circular ladders with circular ladders is at most
4.

1 INTRODUCTION

The graphs considered in this paper are simple and connected and for the undefined
terms we recommend the reader to see {13} or [11]. Also, we believe that [12] is a readable
and comprehensive reference. It is well known that any graph G is associated with a
g-dimensional vector space over the finite field Z,, say (Z2)?, where q is the order of the
edge-set, E (G), of the graph G. If E (G) = {e1, €2, ,€,}, then every subset S C E (G)
corresponds to a vector v € (Z)? such that the i-th component is 1 if e; € S and 0 if
e; ¢ S. Since the edges are used to define the vector space, some authors call this space the
edge space. The subspace of the edge space consisting of all the cycles and the edge-disjoint
union of cycles is called the cycle space of G and it is denoted by C (G). The cycle space
has dimension given by dimC (G) = g — p+ 1, where p is the order of the vertex-set of G. A
basis B of C (G) in which every edge of G occurs in at most k cycles of B is called a k-fold
basis. The minimum positive integer, b(G), such that C (G) has a b(G)-fold basis is called
the basis number of G. In 1937 S. MacLane [19] proved that a graph G is planar if and only
ifb(G) < 2. After that, the subject of basis number was left aside until the end of 1979 when
E. F. Schemeichel [21] found the bases numbers of the complete graphs K, and the complete
Bipartite graphs K, m. Also he proved the existence of graphs of arbitrary basis numbers.
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Then, J. Banks and E. Schemeichel [10] proved a conjecture of E. Schemeichel that the basis
number of the n-cube is 4. Since 1979, many papers appeared that focus on finding the
basis number of special classes of graphs that obtained from different kinds of operations
on graphs (like deletion or addition of a set of edges or vertices), or products on graphs
(like the cartesian product, the strong product, the semi-strong product, the Lexicographic
(or the composition) product, or the semi-composition product ), see the references [1 — 9],
[14 - 18], [20], and [21].

Definition 1.2, The Cartesian product of the graphs Gy = (V4, E;) and G2 = (Vo, E»)
is the graph G = Gy x G with vertex set V(G) = V} x V, and edge set

E (G) = {(u1,v1) (u2,v2) : vy = ug and vz € B orvy = vz and wyus € B }.

The following is Theorem 4.1 of Ali and Marougi [4] in which he finds an upper bound of
the basis number of the cartesian product of two disjoint connected graphs.

Theorem 1.1.[4] If G and H are connected disjoint graphs, then

b(G x H) < max{b(G) + A (Tx), b(H) + A(Tg)}
where Ty and Tg are spanning trees of H and G, respectively, such that the maximum
degrees A (Ty) and A (Tg) are minimum with respect to all spanning trees of H and G.
Also, in [4] cited that they have proved the following result in [20].

Theorem.1.2.[20) G x H is nonplanar if G and H are any graphs with A (G) > 2 and
A(H) 2 3.

The main purpose of this paper is to prove that the basis number of the Cartesian product
of different ladders is exactly 4. However, if we apply Theorem 1.1 we find that the basis
number of the circular and Mobius ladders with circular ladders and Mobius ladders is less
than or equal to 5, and the basis number of circular ladders with ladders and circular ladders

is at most 4.

2 MAIN RESULTS

In this section, we investigate the basis number of the cartesian product of different
kinds of ladders. We denote by L, the graph of a ladder with the sets of vertices
and edges given respictively by V (Ln) = {ay,a2,"** ,an,b1,b2,--- ,b,}, E(L,) =
{@i@is1, bibit1 : 1 < i <n—1} U {aid; : 1 <i < n}. Also, we denote by MLy, the
Mobius ladder graph with the set of vertices V (ML) = {t1,%2, -+ ,Um,¥1,%2,*** ,Um},
and the setof edges E (M L) = {uittig1 , vivip1 : 1 i <m— 1JU{uw;: 1 < i < mlu
{umv1, Ymu1 }. In the following proof, we are interested in simplifying our notations for
the ladder L,, and the Mobius ladder M L, by introducing the change of notations for the
verticies as follows: @p4; = bp—it+1, a0d Ui = Un—i41; Where i =1,2,.-.  n. Following
this notation we define the paths Pé:) = @102 G2n, and Pz(:z = ujUg - - Uz It is clear
that P{*) is a subgraph of L,, and P5®) is a subgraph of M Ly,

One can easily verify that the cartesian product of the ladder L,, and the Mobius ladder
ML,, , denoted by L, x MLy,, has 4mn vertices and 12mn — 4m edges, thus the
dimension of the cycle space of L, X ML, is dimC (Lp X ML) = 8mn —4m + 1.



In the following theorem we prove that b(L,, x M L,,) = 4. However, applying Theorem
4.1 of Ali and Marougi [4], one can see that b(L, x MLy,) < 5.

Theorem 2.1. For every integers n,m > 3, we haveb(Ln, x ML,,) = 4.
Proof. Let n,m > 4 be two integer numbers. To prove that b(L, X M L,,,) < 4, we
have to find a 4-fold basis for the cycle space C (L X M Ly,). The graph P{2) x P‘“’ isa

planar subgraph of the graph L, x ML,,. The set B (P(“) ,‘;;3 ), that contains all the

cycles obtained from the boundanes of the finite faces of the graph P(“) X P("), is a 2-fold

basis for the cycle subspace C ( x P(“))

For each u; € V (MLy,), the graph Ln % {u3} = Ln; is a copy of the ladder L, so
it is planar subgraph of L,, x M L,, and the set of all the boundaries of the finite faces of

2m
Ly, say By, ;, is a basis of the cycle subspace C (L ;). Thus, B* = ’U B,; is a linearly

=1
independent set of cycles being each B, ; is linearly independent andtB,,,.- N By ; = ¢ for
alli # j; 1 < ,j < 2m. Moreover, every cycle in B* contains one or two edges of the
form (ak, ;) (be,ui); k = 1,2,--- ,n — 1 that make it linearly independent with all the

cycles of B (P(") (")) because it cannot occur as a linear combination of cycles from
B (P(") x P(") ) Thus, every cycle in B* is linearly independent with all the other cycles
inB*uUB ( P{® x P(")) Therefore, B* U B (P(“) x P(“)) is a linearly idependent set of
cycles in C (L, x M L,,). Note that (B*) N <B ( P x P(“) )> = (0,); where 0, is the

zero vector in C (L, x MLy,).

Now, for each ax € V (L,), the graph {ax} x MLy, = M Ly, & is a copy of the nonlanar
graph of M L, that appears as a subgraph of L, X ML,,. Foreachk = 1,2,-.. ,2n, we
consider the following basis for the cycle subspace C (M L, & ):

Bmyx = {(ak,wi)(ak vis1) (ak, vit1) (ax,v:) (ak,u:) 16 =1,2,--- ,m — 1}
U {(ak,u1) (ak, vn) (ak, un) (ax, v1) (ak, u1)}
U {(ak, %1) (@K, ¥n) (@K, Un-1) - - - (@&, v1) (ak, u1)} .

It is clear that By, x is linearly independent for each k = 1,2,-..,2n. And
since By, j N Bm,r = ¢ for each j # r where 1 < j,r < 2n, we conclude that

2n
B** = |J Bk is linearly independent. Moreover, every cycle in B** contains

k=1
one or two edges of the form (ak, u1) (@, Un), (Gk;Un) (ak, v1) oF (ar, us) (ax, ;)
where k = 1,2,---,2n, and each of such edges cannot occur in any cycle of the set

B*uUB (P(“) X P(") ) so any cycle in 3** cannot be obtained as a linear combination of
cycles from B* U B ( P{® x P(“)) Thus every cycle in B** is linearly independent with
B*uB ( P x p{® ) Therefore, B** UB* U B (Pz(:) X P(")) is linearly indrependent.
Now, define B (L, x ML) = B**UB*U B( P x (")) Then,
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18|+ 18" + |B (P§) x P |
2n-1)2m-1)+2m(n-1)+2n(m+1)
dnm-2n-2m+ 1+ 2nm -2m + 2nm + 2n

= 8nm—4m+1=dimC(L, x ML,,).
Hence, B(Ln X ML,y,) is a basis for C (L, X ML) being it is linearly independent and

|B(Lp X ML) =dimC (Lp X MLy,).
We define now tha following sets of edges:

|B(Ln X ML)

By = {(a1,%) (a2n,ui) : 1 <4 < 2m} U {(aj, um) (aj, u2m) : 1 £ j < 2n}
Eq = {(ai,uj) (@i, uj41) :2<i<2n -1, m<j < 2m — 1}

E; = f{(a1,u5)(a1,uj41) :m < j < 2m — 1} U {(a1, u2m) (@1, 1)} U
{(azn, ;) (@1, uj4+1) : m < § < 2m — 1} U {(a2n, u2m) (@20, u1)} U
{(ai,uj) (@i, uj41) :2<i<2n-1,1<7<m—1}U
{(aiyu;) (@ig1,45):1<i<2n—1,2<7<2m - 1}

Ey = E(Ln X MLm)\(E] UE3UE4)

From counting the fold of every edge e € Ly, X M Ly, we notice that fp(r, xm1,,) (€) =
i,ife € E;. Thus, B(Lp, x M Ly,) is a 4-fold basis for C (Ln, X M Ly,).

On the other hand, since L, X M L, is nonplanar, then by MacLane’s Theorem we have
b(L, X ML) 2 3. So, to prove that b(L,, X M Ly,) > 4, we eleminate any possibility for
C(Lsn X MLy,) to have a 3-fold basis. Suppose that B is a 3-/old basis of C (L, x M Ly,)
and note that L, X M L, is a graph of girth 4. Since the number of 4-cycles in L, x ML,
is 8nm — 4m — 2n + 1, which is less than |B|, then B cannot contains only 4-cycles. Also,
B cannot contain only cycles of length greater than or equal to 5 because if B contains only
cycles of length greater than or equal to 5 then we have

5dimC (Ln, x ML) < 3|E(Ln X MLy)|

and this implies that 4m (n — 2) + 5 < 0, which cannot hold for all n > 3 and m > 1. This
shows that 3 must contain a mixture of cycles of length 4 and cycles of length greater than 4.
Since B is a 3-fold basis, its cycles cannot contain any edge of Ly, X M L, more than three
times. Thus, 3 must contain as much as possible of linearly independent 4-cycles. In fact,
all the 4-cycles are linearly independent and we have used them in building B (L, x M L,)
above. Without loss of generality, we assume that B contains all the 4-cycles. Then every
edge in the set of edges E* has fold 3, where E* is defined as follows:

E* = {(aiu;)(aiuj41):2<i<2m-1,1<j<2m -1}

U{(ai,uj) (@i1,47): 1£i<2n~1,2< 5 < 2m -1},
But, to add any cycle to the set of 4-cycles we must use edges from E* which implies to a
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contradiction being B is a 3-fold basis. Hence, B cannot exist. Therefore, b(L, x MLy,)
2 4. This completes the proof.

We consider the graph of CL,, as a graph obtained from the graph of L,, by adding
the set of edges {ana1,b,b1} and L, will be considered as it is defined above. It is
easy to verify that [V (CL, x MLy,)| = 4mn, |E(CL, x MLy,)| = 12mn and
dimC(CL, X ML,,) = 8mn + 1. Also, we notice that the graph of CL, x ML,, is
obtained from the grapg of L,, x M L, by adding the set of edges

E** = {(an,u;) (a1,45), (bn,u5) (b1, 1) : 1 £ 5 < 2m}.
Applying Theorem 4.1 of Ali and Marougi [4], we get b(CL, x ML,,) < 5. However,
we prove in the following theorem that b(CL,, X ML,,) = 4.

Theorem 2.2. For every ineger n > 3andm 2> 3, we have b(CL, x ML,,) = 4.

Proof. To prove that b(CL, x ML,;,) < 4 we exhibit a 4-fold basis for
C(CLn x MLy,). Define B(CLn x ML) = B(Ln X MLy) U By, where
B(Ln x ML,,) is the 4-fold basis of the subspace C (L,, x M L,,) that constructed in
Theorem?2.1 and B, p = B, U By where

s = {(a1,%;) (a2,u4;) - (an,u;) (a1, u;): 1 < j < 2m}

By = {(b1,u5) (b2,u5) -+ (bnyu;) (b1,u;) 1 1 < j < 2m}.
Then every cycle in BB, 5 contains an edge either of the form (an, u;) (a1, u;) or of thre
form (bs, u;) (b1,%;) where 1 < j < 2m and this edge doesnot occur in any other
cycle of B(CLyn x MLy,). Thus, every cycle in B, is linearly independent with all
the other cycles in B(CL,, X MLy). Hence, B(CLy, x MLy,) is linearly independent.
Furthermore, B(CLy X M Ly,) is abasis of C (CL, x ML,,) being |B(CL, x MLy,)| =
dimC (CL,, x ML,,). The fold of every edge from E** is one. Ife € E***, then its fold in
B(Ln x MLy,) is at most 3 and its fold in B, is 1, then its fold in B (CL,, x ML,,) is at
most 4. The fold of any other edge of CLp X M Ly, in B(CLy,, X MLy,) is the same as it is
in B(Ln x MLy). Thus B(CLy, X MLy,) is a 4-fold basis for C (CL, X MLy,).

On the other hand, we want to prove that C (CL, X M L,;) cannot have a 3-fold basis.
Suppose the contrary, that is B is a 3-fold basis for C (CL, x MLy,). If n = 3, the girth of
CLn x MLy, is 3 and number of 3-cycles is 4m, and so the number of cycles of length 3
or4dinCL, X ML,, is8mn —2n + 1. If n > 4, the girth of CL,, x ML,, is 4 and the
number of 4-cycles is 8mn — 2n + 1. In both cases number of cycles of length less than or
equal to 4 is not enough to form a basis for C (CL, x M L,,) because |B| = 8mn + 1. Thus
B cannot contain only cycles of length less than or equal to 4. Also, B cannot consists only
of cycles of length greater than or equal to 5, if so then we have 5 (8mn + 1) < 3(12mn),
or 4mn + 5 < 0, which is impossible for all n, m > 3. Since B is a 3-fold basis it is not
allowed to any edge of CL, x M L, to appear in more than 3 cycles of B. And so, B must
contain as much as possible of independent cycles of minimum length. Since all the cycles
of length less than or equal to 4 are linearly independent, being we used them in building
B(CL, x MLy,) that constructed above, 8 must contain 2n more cycles. Now, the fold of
every edge in E* is 3 and choosing new 2n cycles forces us to pass throuhg these edges
which will icrease the fold of them and this ensures that such 3-fold basis B3 cannot exist.
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This completes the proof.

For the following result, we consider the graph M L,, as a graph obtained from the
graph CL,, by deleting the set of edges {ana1, bnb1 } and replacing it by the set of edges
{anb1,bna1}. Thus, ML, x ML, is obtained from CL, X ML, by deleting the set of
edges £** and repacing it by the following set

E** = {(an, u5) (@1, 45) , (b, uj) (b1, u5) 1 1 £ j < 2m}.
Clearly, |V (CLn X MLy)| = 4mn, |E(CLn X MLy)| = 12mn and
dimC (CL, x MLy,) =8mn + 1.

One can easily verify that applying Theorem 4.1 of Ali and Marougi [4], implie
b(ML, x MLp) < 5. However, we prove in the following theorem that b(C L, x ML,,)
=4,

Theorem 2.3. For every ineger n > 3andm > 3, we have (ML, x ML,,) = 4.

Proof. To prove b(ML, X ML) < 4, we define B(ML, x ML) =
B(L, x MLy,) U B®® where B(Ln x MLy,) is the same 4-fold basis obtained in
Theorem2.1 and B%% = B° U B where B% and B® are sets of cycles defined as follows:

B = {(a1,%;) (bn, u;) (ba-1,%;) -~ (b1,45) (a1,u5) : 1 < j < 2m},

Bb = {(blxuj) (anruj) (an—l)uj) Tt (a'liu]') (bl)uj) 11€35 < 2m} .

Since B (Lp X M L,,) is linearly independent and every cycle in B%® contains an edge
from E*** that doesnot occur in any other cycle of B(ML,, x ML,,) then each of these cy-
cles is linearly independent with all the cycles in B (M L, X MLy,), thus B(ML,, x ML)
is linearly independent. Moreover, |B (M Ly, x M Ly,)| =dimC (ML, x ML,,). Hence,
B(MLy, x MLy,) is a basis of C (M Ly X MLy,). It is an easy matter to verify that
B(ML, x MLy,) is a 4-fold basis for C (M Ly x MLp,).

On the other hand, to prove that b(M L, x ML) > 4, we can use almost the same
arguments to those used in the proof of Theorem 2.2 to guarantee that the cycle space
C(ML, x MLy,,) cannot have a 3-fold basis. This completes the proof.

Following Theorem 4.1 of Ali and Marougi [4], we can verify that the basis number of
the graphs L, X CL, and CLy, X CLy, is less than or equal to 4. Also, we can use similar
techniques to those used in the proof of Theorems 2.1 and 2.2 to prove that the basis number
of these graphs is greater than or equal to 4. Thus, we have the following two results.

Theorem 2.4. For every integers n > 3andm > 3, we have b(Lp, x CL,,) = 4.

Theorem 2.5. For every integers n > 3and m > 3, we have b(CL, x CL,;) = 4.
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