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Abstract

High stopping-distance low-density parity-check (LDPC) prod-
uct codes with finite geometry LDPC and Hamming codes as the
constituent codes are constructed. These codes have high stopping
distance compared to some well-known LDPC codes. As examples,
linear [511, 180, 30], (945, 407, 27], [2263, 1170, 30] and [4095, 2101, 54]
LDPC codes are designed with stopping distances 30, 27, 30 and
54, respectively. Due to their good stopping redundancy, they can
be considered as low-complexity codes with very good performance
when iterative decoding algorithms are used.

Keywords: product code, LDPC code, stopping distance, stop-
ping redundancy, finite geometry.

1 Introduction

The powerful class of product codes, introduced by Elias [1] in 1954, is a
subclass of concatenated codes. In this paper we consider only binary linear
block codes. By an [n,k,d] code C we mean a binary length n code with
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dimension k£ and minimum distance d. Given binary codes A and B with
parameters [n, k,d] and [0/, k', d'], respectively, the [nn’, kk’, dd'] product
code P = A® B consists of all binary n’ x n matrices whose rows and
columns are in A and B, respectively. .4 and B are referred to as the row
and column codes, respectively.

Let C be a binary length n linear code represented by a parity-check
matrix H = (hi;). The columns of H are indexed by 1,2,---,n, and 7(H)
denotes the number of rows of H. Let S be a subset of {1,2,---,n} and
Hs denote the 7(H) x |S| submatrix of H consisting of columns indexed
by S. S is called a stopping set for H if Hs has no row of weight one.
It is known that the performance of C under iterative decoding (belief
propagation decoding), over a binary erasure channel (BEC) is determined
by the set of stopping sets of H [2]. The size of the smallest stopping set
in H, called the stopping distance of H and denoted by s(H), has a role on
the performance of C under iterative decoding that is very similar to the
role of minimum distance of C under maximum-likelihood decoding over
the BEC [3]-[9].

It is easily verified that the stopping distance of a parity-check matrix
H is upper bounded by the minimum distance d of the corresponding code
C. Adding dependent rows to H may increase the stopping distance of
the resulting parity-check matrix to the minimum distance of C. Though
this process improves the performance of C under iterative decoding, it
increases the computational complexity. Therefore, the minimum number
of rows of a parity-check matrix H for C satisfying s(H) = d, referred to as
the stopping redundancy of C and denoted by p(C) [4], provides a trade-off
between the decoding complexity and the performance of C [4]-[9].

There are only a few classes of codes, such as finite geometry (FG) codes
and non-LDPC Reed-Muller codes R(r,m) [4], that can be represented
by parity-check matrices with known stopping distance (using a recursive
construction [4], parity-check matrices with known stopping distance for
RM (r,m) can be constructed, but these matrices do not have low-density;
for instance the parity-check matrix for the RM(6, 11) code has length 2048
and column weight 330). Some probabilistic algorithms for computing the
stopping distance of LDPC codes were introduced in [10}, and it was shown
in [11] that the problem of determining the stopping distance of a parity-
check matrix is an NP-hard problem. Thus, from both the theoretical and
practical perspectives, construction of classes of good codes, in particular
LDPC codes, represented by parity-check matrices with known stopping
distance are of significant interest.

FG codes have relatively large minimum distance and have excellent
performance when iterative decoding is employed. Hamming codes are
useful for the BEC [12, 13]. These codes have high rate but low minimum
distance. Therefore, we use Hamming and FG codes, specifically Type-
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I Euclidean geometry (EG) and Type-I projective geometry (PG) LDPC
codes [6], as the constituent codes to construct LDPC product codes with
good minimum distance and rate. The stopping distance of the resulting
parity-check matrices is determined. Among the codes obtained in this
paper are [511,180,30], [945,407,27], [2263,1170,30] and [4095,2101, 54]
LDPC codes with stopping distances 30, 27, 30 and 54, respectively, and
so are competitive with the best LDPC codes with known stopping dis-
tance. It is also shown that the codes presented here have low-complexity
and iterative decoding performance close to that with maximum-likelihood
decoding. Thus the main contribution of this paper is employing FG and
Hamming codes to construct a class of low-complexity product codes having
good performance, known stopping distance and a good stopping redun-
dancy bound.

The necessary background on FG and product codes is given in Section
2. The construction of product codes using constituent Hamming and
FG-LDPC codes is given in Section 3. The stopping distance of these
codes is determined in Subsection 3.1 followed by their stopping redundancy
analysis in Subsection 3.2.

2 Stopping distance and stopping redundancy
of FG and product codes

2.1 Euclidean and projective geometry LDPC Codes

FG-LDPC codes [14] are an important class of structured LDPC codes con-
structed from the lines and points of finite Euclidean or projective geome-
tries over finite fields. An FG code, G, has the following basic properties:
1) every line consists of p points; 2) any two points are connected by exactly
one line; 3) every point is contained by v lines; 4) any two lines are either
parallel or intersect on just one point. A parity-check matrix Hg of a linear
FG code G is formed as follows: the rows and columns corresponding to
the lines and points of G, respectively, and the entries of Hg are considered
according to the incidence structure of G.

Set g := 2° for some positive integer s, and let EG(2, ¢) be the Euclidean
plane over the g-clement field Fy (see e.g. (14, 15]), with ¢ — 1 nonorigin
points and g2 — 1 lines that do not pass through the origin. Each point lies
on g lines and each line contains g points. Consider the Euclidean plane
EG(2,q) and the related code Cpg(2,q) With parity-check matrix Hgg(a,q)-.
It was shown in [14] that Hgg(2,q) is @ (g% - 1) x (g% = 1) circulant matrix.
Thus Cpg(2,q) is a cyclic code. These codes are called Type-I EG-LDPC
codes. It is known that Cpg(z,q) has length npc = ¢ — 1, dimension
kec = ngc — 3° + 1, and minimum distance dgg = ¢+ 1, and H EG(2.9)
has row-weight p = ¢ and column-weight v = ¢ [14].
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For g = 2%, let PG(2,q) be the projective plane over F, (see e.g. [14,
15)), with g2+ g+ 1 points and ¢g?+¢+1 lines. Each point lies on g+1 lines
and each line contains g+ 1 points. Similarly, the code Cpg(2,q) With parity-
check matrix Hpg(z,q), called a Type-I PG-LDPC code, is constructed from
the projective plane PG(2,q). Hpg(z,q) is a (P+qg+1)x(®?+qg+1)
circulant matrix [14). Cpg(a,q) has length npe = ¢ + ¢ + 1, dimension
kpg = npg — 3° — 1, minimum distance dpg = g+ 2, and the parity-check
matrix Hpg(2,q) has row-weight p = g + 1 and column-weight v = ¢ + 1.

2.2 Stopping redundancy of finite geometry codes

It is shown in [3] that the stopping distance of parity-check matrices Hgg(2,q)
and Hpg(2,q) satisfy s(Hga(2,q)) 2 g+1and s(Hpg(2,q)) 2 g+2. Therefore,

we have
s(Hgc@e,q) =9+ 1=dzc,

s(Hpg(2,q)) = 9 +2=dpc, 1)
p(EG(2,9)) € ¢ -1 =nga@,q)»
p(PG(2,9)) £ ¢* +9+1=npg@q)-
A better upper bound on the stopping redundancy of EG(2, q) and PG(2, q)
is given in [6]:

{ p(EG(2,9)) £ ¢ —qg=ngg@eq —(@-1), @
p(PG(2,q)) < ¢ +1=1npg(2,9) — ¢
2.3 Product codes

Let H4 and Hp be parity-check matrices representing binary linear codes
A and B with parameters [n, k,d] and [/, k', d’], respectively. It is known
that the product code A @ B has the following parity-check matrix [16]

_ H I,
HP - ( In ® HB ) (3)
where ® denotes the Kronecker product. Note that the rows of Hp may

be linearly dependent.

Theorem 1 [9] Let p(A) and p(B) be the stopping redundancy of codes
A and B with parameters [n,k,d] and [n’,k’,d’], respectively. With the
matrices Hp, H4 and Hpg, described above, we have s(Hp) = s(H 4)s(Hp)
and p(A® B) < n'p(A) + np(B).

Let [Oxx(n—k)|Zx] be the k x n binary matrix where 7 denotes the
k x k identity matrix and Ogx(n—&) is the k x (n - k) all-zero matrix. The
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following matrix Hp,, introduced in [17], is a parity-check matrix for A®B,
assuming that the first n — k columns of H 4 are linearly independent.

‘— H.A ®Inr
Her = ( [Okx(n—1)|Zk] ® Hp ) 4)

Obviously, Hp; is a submatrix of Hp. It has been shown in [9) that
s(Hp1) = s(Ha)s(Hp) ()

if and only if the first n — k columns of H 4, which are assumed to be a set
of linearly independent vectors, do not contain a stopping set of size less
than s(H4)s(Hp).

Theorem 2 [9] Let Hy be a p(A) x n parity-check matrix for A with
s(H 4) = d. Suppose the first n—k columns of H 4 are linearly independent
and do not contain a stopping set of size less than dd’. Then, using matrix

Hp,, we obtain
P(A® B) < n'p(A) + kp(B). (6)

3 Product codes with constituent Hamming
and FG codes

For ¢’ =2, let H(s') be the binary [¢’~1,¢’' s’ — 1, 3] Hamming code with
full-rank parity-check matrix H(s’) whose columns are all distinct nonzero
binary vectors of length s’. The Hamming codes are useful for the BEC
(12, 13]. Product codes with constituent Hamming codes have high rate but
low minimum distance. FG-LDPC codes are attractive as their minimum
distances are relatively large and have excellent performance under iterative
decoding. Accordingly, we use the Hamming and FG codes as constituent
codes to construct LDPC product codes with good minimum distance, rate

and stopping distance.

3.1 Code construction

Suppose H(s') and HEgg(2,q) are parity-check matrices for the Hamming
code H(s') and EG code Cpg(2,q), respectively. Using the parity-check ma-
trix Hp in (3), we obtain the following parity-check matrix Hp, (o'~ EOE.)

for the product code H(s') ® Ceg(2,q):

H — H(S,) ®I7IEG
Pyiary-62.) = I(q’-l) ® HEG(2,q) .
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The stopping distance of the full-rank matrix H(s’) is three. Hence,
using (1) and Theorem 1, we obtain s(Hp,,.,_c@.q) = 3(¢+1). Therefore,
for any integers s’ > 3 and s > 2, the code H(s')®Cgg(2,q) has parameters:

Length: (¢ —1)(¢* - 1);
Dimension: (¢ — 8" —1)(g% - 3%);
Minimum distance: 3(g+ 1);
$(Hpy ) _papq):  3g+1).

In a similar way, one can obtain the following parity-check matrix
for the product code H(s') ® Cpg(2,q)-

H — H(s')®Inpe
Pysry-pGiag) = Tg-1)® Hpg(2,9)

Using equality s(H (s)) = 3, (1) and Theorem 1 we obtain s(Hp, ., _po@.)
3(q + 2). Thus, for any integers s’ > 3 and s > 2, the product code
H(s') ® Cpg(2,q) has parameters:

Length: (¢ —1)(g* +g+1);
Dimension: (¢ —s —1)(g®+q—3°%;
Minimum distance: 3(g + 2);
$(HpPy - pa@a) 3(g+2).

Table 1 provides a list of product codes H(s') ® Ceg(2,q)- In this table
integers s and s’ refer to the parameters of the constituent codes and ¢ = 2°.
In addition, several product codes H(s') ® Cpg(2,q) are given in Table 2.

Determining the stopping distance of LDPC codes has been addressed in
[10]. Using some probabilistic algorithms, it is shown in [10] that MacKay’s
[504, 252] and [1008, 504] codes, the (504, 252] progressive edge-growth
code and the Ramanujan-Margulis (17, 5) code of length 4896 and di-
mension 2474 have stopping distances 16, 28, 19, 24, respectively. These
codes are comparable with the codes given in Tables 1 and 2, for example,
the [511, 180, 30], [945, 407,27], [2263, 1170, 30] and (4095, 2101, 54] LDPC
codes with stopping distances 30, 27, 30 and 54, respectively. Note that
the [4095, 2101, 54] code presented here has stopping distance 54 while the
Ramanujan-Margulis [4896,2474] code has stopping distance 24. In addi-
tion, the [504, 252] progressive edge-growth code has rate 0.5 and stopping
distance 19 versus the [511,180, 30] product code with rate 0.35 and stop-
ping distance 30.

Another interesting property of the codes constructed here is related to
their rate. Since the rate of a product code is the product of the rates of its
constituent codes, and the rate of the Hamming and FG-LDPC codes tends
to 1 as the length increases, the rate of H(s')®CEgc(2,q) and H(s')®Cpg(2,q)
tends to 1 as ¢ and s’ increase.

H Pyety-PG(3,9)
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3.2 Stopping redundancy analysis

In this section, we use Theorem 4 to obtain an upper bound on the stopping
redundancy of the product LDPC codes constructed in this paper. This
shows that the associated parity-check matrices represent a class of low-

complexity codes with good performance.
The redundancy of a length-n code C is 7(C) := n — dim(C). Theorem
4 in [4] states that

p(C) < (T(lc)) + (r(f)) +ot (;(_cg) ™

With En,q(t) := Yoo} (?)(1 — )¢, the following improved bound for p(C)
(5] is obtained

p(C) < min{t € N : €nat) < 1} + (+(C) — d+1) )

Theorem 3 The stopping redundancies of H(s') ® Cgg(2,q) and H(s') ®
Cpc(2,q) satisty:

p(H(s") ® Ceer,q) < (¢ +5' —1)(¢* - 1), 9)

p(H(s) ®Cpgag) S (¢' +5 = 1)(g® + g +1). (10)

Proof. The stopping distance of H(s') is equal to the minimum distance of

the Hamming code. Hence, p(H(s')) = ¢’. Thus, using (1) and Theorem 1,
we obtain

p(H(s') ® Cra(a,q)) < nEG X P(H(5")) + (¢ — 1) X p(Cri(2,q))
<(@-1)8+(¢ -1)g*-1)
= (¢ +¢ - 1)¢*-1).
Equation (10) can be deduced using a similar argument. m

Example 1 Let Cpg(z,2) be the [7, 3, 4] code with parity-check matrix
Hpg(2,2) [14]:

1 1.0 1 0 0 O
0 1 1 0 1 0 0
0o 0 1 1 0 1 0
Hroan=| 2 g 8440
01 0 0 0 1 1
1 01 06 0 0 1

The product code H(3)®Cpg(2,2) is a [49, 12, 12] code. The matrix Hp, ®)-PG@.2)
is a parity-check matrix for the product code H(3) ® Cpg(2,2):

H33)®1I,
Hpy s ro@as = ( I:®Hpgpg )
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The stopping distance of Hpy,_pg(.) i 12. According to (7) and (8) we
have p(A® B) < 5.2 x 10® and p(A ® B) < 4501, respectively. However,
the upper bound given by (10) implies p(H(3) ® Cpg(2,2)) < 70.

A motivation for introducing a better upper bound on the stopping re-
dundancy of a code C is the fact that removing dependent rows decreases
the complexity of iterative decoding. The codes EG(2, ¢) and PG(2, q) have
been represented in [6] by the parity-check matrices H ;'JG(2 y and H j,G(z .
respectively, which have fewer rows than Hpg(z,q) and I’f PG(2,q)1 respec-
tively. Thus, using matrices Hpg o ) 80d Hpg(p o) for Hp in (4), we obtain
the following parity-check matrices Hp,, . . . an H,

#')-EG(2.9) H(s')-PG(2,9)

H(s') ® CEc(2,q) and H(s') ® Cpg(2,q), Tespectively.

H — H(s') @ Inge
Ply,y-EG@2.9) [O(qf_sl_l)x(sl)II(qI_sl_])] ® HIEG(2'q) )

HI — H(sl) ® IﬂPG
Plysty-Pa(2,9) [O(ql_sl_l)x(al)lI(qI_sf_l)] ® HlPG(2,q) .

These matrices improve the upper bounds given in (9) and (10).

Theorem 4 (a) The matrices H};lm.,)_w(z_q) and H},lm.')_ma.q) have
stopping distance 3(g + 1) and 3(g + 2), respectively; (b) The stopping
redundancies of H(s') ® Cgg(2,q) and H(s') ® Cpg(2,q) satisfy the following
constraints.

{ p(H(s') ® Cega,q) S (@ —1)(¢®-1)— (¢ —s'—1)(g-1), (11)

p(H(s') ® Cpc(ag)) S (¢ —1)(* +q+1)— (¢ =" — 1)q.

Proof. (a) All the length s’ weight-one vectors are among the columns
of H(s'"). There is no stopping set for the associated s’ column subma-
trix of H(s'). Hence the conditions in (5) hold. It is shown in [6] that
s(Hgg(a,q)) = 9+1and $(Hpg(z,q) = 9+ 2. Therefore, using this and (5),
we obtain S(H;,IH(a')-EG(Zq)) =3(¢+1) and S(anm,,,_m(z'q)) =3(g+2).
For statement (b), the stopping redundancy of H(s') is s’. Since the con-
ditions in (5) hold, using (2) in (6), we obtain

p(H(s') ® Ceaa,q) < nec % p(H(s")) + (¢ — &' — 1) x p(Cec(2,q)))
<(?-1s'+(d -5 -1)g*—9q)
=(®-1)8+@ -5 -1)((*-1)—(g-1))
=(¢ -1 -1)-(d -5 -1(g-1).

Equation (11) is proved in & similar way. m
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Example 2 Consider the [49,12,12} code H(3) ® Cpg(2,2) introduced in
Example 1. Applying column permutation o, = (12)(34)(67) and row
permutation o, = (36)(47) on matrix Hpg(s2) we obtain the following
matrix.

1 1 1 0 0 0 O
1 0 0 11 0 0
1 0 0 0 0 1 1
01 0 1 0 1 0
0 1.0 0 1 0 1
0 0 1 1 0 0 1
o0 1 0 1 1 0

Using the process introduced in [6], we remove the second and third rows of
this matrix followed by the column permutation o, to obtain the following
matrix H.;’G(2,2)'

110100 0

) 101000 1
=10 0 o0

Hpg(2,2) 501101 4

000 11 0 1

The following matrix Hp, , @)—pea.y 1S & parity-check matrix for H(3) ®
Cpc(2,2)-
HI _ H(3) ® I’?
Pu@-roa2 — \ [04x3|Z4] ® HI’DG(2,2)

Theorem 4 implies that s(Hp, P caa) = 12. According to the upper
bound given by (11) we have p(H(2,3) ® Cpg(2,2)) < 41.

Table 3 illustrates the stopping redundancy bounds given by (7), (8),
Theorem 3 and Theorem 4 applied to some of the medium-length LDPC
product codes given here. As shown in the table, the first two bounds
for these codes are very large and hence useless. Compared to these two
bounds, the other two bounds, in particular the fourth one, are much better.
Denoting the fourth bound by b4 and the codes considered in Table 3, top to
bottom, by C;, 1 < i < 5, we have by(C1) = 1.4477(Cy), ba(C2) = 1.613r(C),
by4(C3) = 1.787r(Cs), ba(C4) = 1.887(Ca), b4(Cs) = 2.077r(Cs). To see the
growth rate of this relation, consider the {66591, 46341, 102] code given in
Table 2. For this code we have b4(C) = 3.1987(C).

The parity-check matrices given in Theorem 4 satisfy s(H) = d, and
hence the iterative decoding performance of the associated codes is close
to that with ML decoding [4]. Therefore, considering the fact that the
number of redundant rows of these matrices, compared to the redundancy,
is not large, these matrices provide low-complexity codes with very good
performance under iterative decoding.
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Table 1: Parameters for product codes H(s') ® Cgg(2,q)-

|

s s length  dimension min dist. S(HPy ..\ como)
3 2 105 28 15 15
4 2 225 77 15 15
5 2 465 182 15 15
3 3 441 148 27 27
4 3 945 407 27 27
5 3 1953 962 27 27
3 4 1785 700 51 51
4 4 3825 1925 51 51
5 4 7905 4550 51 51
6 4 16065 9975 51 51
3 5 7161 3124 99 99
4 5 15345 8591 99 99
5 5 31713 20306 99 99
6 5 64449 44517 99 99
3 6 28665 13468 195 195
4 6 61425 37037 195 195

Table 2: Parameters for product codes H(s') ® Cpg(2,q)-

~|

8 P length  dimension min dist. s(H Py(s) - PG(2.0) )
3 2 147 44 18 18
4 2 315 121 18 18
5 2 651 286 18 18
3 3 511 180 30 30
4 3 1095 495 30 30
5 3 2263 1170 30 30
3 4 1911 764 54 54
4 4 4095 2101 54 54
5 4 8463 4966 54 54
6 4 17199 10887 54 54
3 5 7399 3252 102 102
4 5 15855 8943 102 102
5 5 32767 21138 102 102
6 5 66591 46341 102 102
3 6 20127 13724 198 198
4 6 62415 37741 198 198

Table 3: Upper bounds on the stopping redundancy of some LDPC product
codes.

code Bound (7 Bound (8) Theorem 3  Theorem 4
(511, 180, 30) 4.00 x 10 2.01 x 10° 730 479
(945, 407, 27) 7.15 x 1042 3.00 x 10° 1197 868
(1953, 962, 27 3.89 x 10%° 3.50 x 10° 2268 1771

(2263, 1170, 30) 2.87 x 10%° 2.83 x 10° 2628 2055
(4095, 2101, 54] 2.51 x 10103 4.76 x 1018 5037 4143

106



References

[1]
2l

8l

4]

(5]
(6]

7l

(8]

(9]

[10]

(11]

[12)

(13]

(14]

[15)
[16)
[17)

P. Elias, “Error-free coding,” IRE Trans. Inform. Theory, vol. 9, pp. 29-37,

Jan. 1954.
C. Dj, D. Proietti, L.E. Telatar, T.J. Richardson, and R.L. Urbanke, “Finite-

length analysis of low-density parity-check codes on the binary erasure chan-
nel,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1570-1579, June 2002.
S. -T. Xia and F. -W. Fu, “On the stopping distance of finite geometry
LDPC codes,” IEEE Commun. Letters, vol. 10, no. 5, pp. 381-383, May
2006.

M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codes,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 922-
932, March 2006.

J. Han and P.H. Siegel, “ Improved upper bounds on stopping redundancy,”
IEEE Trans. Inform. Theory, vol. 53, no. 1, pp. 90-104, Jan. 2007.

H.-y. Liu, X.-y. Lin, L.-r. Ma and J. Chen, “On the stopping distance and
stopping redundancy of finite geometry LDPC codes,” IEICE Trans. Fun-
damentals, vol. E91A, no. 8, pp. 2159-2166, Aug. 2008.

M. Esmaeili and V. Ravanmehr, “Stopping sets of binary parity-check matri-
ces with constant weight columns and stopping redundancy of the associated
codes,” Utilitas Mathematica, vol. 76, pp. 265-276, July 2008.

M. Esmaeili and M.J. Amoshahi, “On the Stopping distance of Array Code
Parity-check Matrices,” IEEE Trans. Inform. Theory, Vol. 55, No. 8, pp.
3488-3493, AUGUST 2009.

M. Hivadi and M. Esmaeili, “On the stopping distance and stopping redun-
dancy of product codes,” IEICE Trans. Fundamentals, vol. ES1A, no. 8, pp.
2167-2173, Aug. 2008.

M. Hirotomo, Y. Konishi and M. Morii, “A probabilistic algorithm for find-
ing the minimum-size stopping sets of LDPC codes,” Proc. IEEE Inform.
Theory Workshop, pp. 66-70, May 2008.

K.M. Krishnan and P. Shankar, “ Computing the stopping distance of a
Tanner graph is NP-hard,” IEEE Trans. Inform. Theory, vol. 53, no. 6, pp.
22782280, June 2007.

R.J. McEliece,“Are there turbo-codes on Mars?,” Shannon Lec-
ture, IEEE Int. Symp. Inform. Theory, June - July, 2004.

http://www.systems.caltech.edu/EE/Faculty/rjm/.
J.H. Weber and K.A. Abdel-Ghaffar,” Stopping set analysis for Hamming

codes,” Proc. IEEE Inform. Theory Workshop, pp. 244-247, Aug.-Sept.

2005.
Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on

finite geometries: A rediscovery and more,” IEEE Trans. Inform. Theory,

vol. 47, no. 7, pp. 2711-2736, Nov. 2001.
S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and

Applications, 2nd Ed., Prentice-Hall, Upper Saddle River, NJ, 2004.
R.M. Roth, Introduction to Coding Theory, Cambridge University Press,

2006.
M. Esmaeili,“On full-rank parity-check matrices of product codes,” Utilitas

Mathematica, vol. 76, pp. 3-10, July 2008.

107



