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In this paper we consider only finite and simple graphs. The vertex and
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Abstract

A graph G is edge-magic if there exists a bijection f from V(G)u
E(G) to {1,2,3,---,|V(G)| + |E(G)}} such that for any edge uv of
G, f(u) + f(uv) + f(v) is constant. Moreover, G is super edge-magic
if V(G) receives |V (G)| smallest labels. In this paper, we propose
methods for constructing new (super) edge-magic graphs from some
old ones by adding some new pendant edges.

Introduction

edge sets of a graph G are denoted by V(G) and E(G), respectively.

Let G be a graph with p vertices and ¢ edges. A bijective function f :
V(G)UE(G) — {1,2,3,--- ,p+q} is called an edge-magic total labeling of G
if there exists an integer k such that f(z) + f(zy) + f(y) = k, independent
of the choice of any edge zy of G. If such a labeling exists, then the
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constant k is called the magic constant of f, and G is said to be edge-
magic graph. An edge-magic total labeling f is called super edge-magic if
F(V(G)) ={1,2,83,--- ,p}. Thus, a super edge-magic graph is a graph that
admits a super edge-magic total labeling.

The edge-magic concept was first introduced and studied by Kotzig
and Rosa [11, 12], although under a different name, i.e., the magic val-
uation. The super edge-magic notion was first introduced by Enomoto,
Lladé, Nakamigawa and Ringel [2]. The (super) edge-magic graphs have
been studied in several papers, see for instance {3, 4, 8, 10, 13], and more
complete results on (super) edge-magic graphs can be seen in the survey
paper by Gallian [9]. However, the long-standing conjectures that “every
tree is edge-magic” and “every tree is super edge-magic”, proposed in [11]
and [2], respectively, still remain open.

The following lemma presented in [3] gives a necessary and sufficient
condition for a graph to be super edge-magic.

Lemma 1 A graph G with p vertices and g edges is super edge-magic if and
only if there exists a bijective function f : V(G) — {1,2,--- ,p} such that
the set S = {f(z) + f(y)|zy € E(G)} consists of g consecutive integers. In
such a case, f extends to a super edge-magic total labeling of G with magic
constant k = p + q + s, where s = min(S) and

S ={f(z) + f)ley € E(G)}
={k—(p+1),k—(p+2),--- k- (p+9)}.

In [11], Kotzig and Rosa introduced the concept of edge-magic deficiency
of a graph. They defined the edge-magic deficiency, u(G), of a graph G as a
minimum nonnegative integer n such that GUn K] is an edge-magic graph.
Kotzig and Rosa [11] gave an upper bound of the edge-magic deficiency of
a graph G with p vertices, that is u(G) < Fpp2 —2—p — 3p(p — 1), where
F, is the p-th Fibonacci number.

Furthermore, Figueroa-Centeno et al.[6] defined the concept of the super
edge-magic deficiency of a graph similarly. The super edge-magic deficiency,
us(G), of a graph G is a minimum nonnegative integer n such that GUnK;
has a super edge-magic total labeling or +oo if there exists no such n.

Clearly, for every graph G, u(G) < ps(G).

Figueroa-Centeno et al. in two separate papers (6, 7] provided the exact
values of (super) edge-magic deficiency of several classes of graphs, such
as cycles, complete graphs, some classes of forests, 2-regular graphs, and
complete bipartite graphs K2 ,,. They [7] also proposed the conjecture “if
F is a forest with two components, then u,(F) < 1”.
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In this paper, we propose some methods for constructing new (super)
edge-magic graphs from the old ones. From this construction we can obtain
new classes of (super) edge-magic graphs. Some of the resulting graphs give
support to the correctness of the conjectures “every tree is (super) edge-
magic”, and “if F is a forest with two components, then pu,(F) < 1.

2 The Results

Throughout this section, we will present a construction of new (super)
edge-magic graphs by adding pendant edges to some (not all) vertices of a
(super) edge-magic graph G having a specific property. This construction
can be viewed as a weaker version of a corona product of a graph G and
nKk 1.

The corona product G © H of two given graphs G and H is defined as
a graph obtained by taking one copy of a p-vertex graph G and p copies
Hy,H,,...,H, of H, and then joining the i-th vertex of G to every vertex
in H;. If H = nkK,, G® H is equal to the graph produced by adding n
pendant edges to every vertex of G. The corona product of graphs- has
been studied in several papers, see for instance (1], [5] and [14].

In the next two theorems, we construct (super) edge-magic graphs by
adding n pendant edges to every vertex of particular type of edge-magic
graph except some vertices with the largest labels.

Theorem 1 Let G be a graph of even order p > 2 and size of either q =
p or p — 1 for which there ezxists an edge-magic total labeling f with the
property that all vertices of G receive odd labels such that

{f(z)+ f(¥)lzy € E(G)} = {8p—2¢,3p - 29+ 2,--- ,3p—4,3p—2}. (1)

Then, the graph H formed by adding n pendant edges to each vertez of
G except the vertez with the largest label is edge-magic for every positive
inleger n.

Proof Suppose V(G) = {z;|]1 < i < p}. Let f be an edge-magic total
labeling of G satisfying the conditions of Theorem 1. Then, the magic
constant of f is k = 3p. Since all vertices receive odd labels, we may
assume that f(z;) = 2i — 1 for every integer 1 < ¢ < p. Let H be a graph
defined as follows.

VH)=V(G)U{yl|l<i<p-1 and 1<j<n}
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and
EH)=EG)U{zii]1<i<p-1 and 1<j<n}.

Now, define a total labeling
g:V(H)UE(H) - {1,2,3,---,2n(p—-1) +p +q}
such that g(z) = f(z) for every z € V(G) and

() = (2i+1)p+2(i-4)—1, for 1<i<§ and 1<j<n,
IWI =\ (25 -1)p+26—-4)+1, for +2<z<p—1 and 1<j<n.

It can be verified that all odd labels are assigned to the vertices of H.

Let §7 = {g(z:) +g(y])} for 1 <i <p—1,1 < j < n. It can be verified
that m; = minig;<a{S]} = (2 + 1)(1"'1)"‘3 and M; = maz1<j<a{S{} =
(27 + 2)(p — 1) + p. Observe that m; =3p, M, = (2n+2)(p—1) +p and
mjp1 = Mj+2for1 <j<n—1 Ao, U, SJ = {3p,3p + 2,--
(2n+2)(p 1)+p-2,(2n+2)(p—1)+p}. Thus, the set {g(z)+g(y)|xy e
E(H)} forms an arithmetic sequence starting from 3p — 2¢ with common
difference 2. If we take

g(zy) = (2n+ 3)p — 2n — g(z) — g(y), for every zy € E(H)

then, g is an edge-magic total labeling of H with the magic constant
2n+2)(p-1)+p+2=2n(p-1)+k. a

It can be shown that each of the following classes of graphs has an
edge-magic total labeling f satisfying the conditions of Theorem 1.
e Paths of an even number of vertices Poy for k > 1.

e Caterpillars formed by adding m > 1 pendant edges to every vertex
of Py, k > 1 (We denote such caterpillars by lek,m)_

o Caterpillars formed by adding one pendant edge to every vertex of
Paiy1, k > 1 (denoted by P§ ., ,)-

e Caterpillars formed by adding one pendant edge to one vertex of
degree one and m > 1 pendants to other vertices of Pogyy, k > 1
(denoted by Pg ) )

o Path-like-trees Pr with an even number of vertices.

Additionally, a cycle of odd length with one pendant attached to a vertex
also admits the labeling satisfying the conditions of Theorem 1.
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Figure 1: The graph P52' , and the new graph resulting by applying Theorem
1.

As an example of Theorem 1, Figure 1 (a) shows the graph P52, 1 and its
vertex labeling, and Figure 1 (b) shows the new graph resulting by applying
Theorem 1 to PZ,.

For simplicity, we denote by P a tree formed by applying the The-
orem 1 to Pp. Similarly, we denote by L3, .., L3, ., , and L3, ,, the
graphs formed by applying the Theorem 1 to P}, ., P, and P§,, .,
respectively. These three graphs are all lobsters.

Therefore, by Theorem 1 we have the following corollary.

Corollary 1 The tree P} and the lobsters Ly, ., L3, | and L3, ,, . are
edge-magic graphs. O

Now, we refer the readers to the following result.

Theorem 2 [3] Let T be an edge-magic tree of order p with an edge-
magic total labeling f whose magic constant is k such that f(v) is odd
for any vertez v of V(T). Then, the bijective function g : V(T) U E(T) —
{1,2,3,--- ,2p — 1} defined as

~ @+ ra e v(T),
g(.’l:)—{ !ﬁz}‘j.{.p, if.'z € E(T),

is a super edge-magic labeling. Furthermore, given a super edge-magic la-

beling of a tree, a labeling can be obtained with all vertices receiving an odd
label by reversing the above process.
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Note that Theorem 2 can be extended to graphs for which p = g.

By Theorem 2, all graphs satisfying the conditions of Theorem 1 are
also super edge-magic. Especially, we have the following corollary.

Corollary 2 The tree P} and the lobsters L}, ., L3, ., | and L3, ., . are
super edge-magic graphs. a

These results provides supporting examples of the conjectures proposed
by Kotzig and Rosa [11] and by Enomoto, Llado, Nakamigawa and Ringel
(2.

If the condition “all vertices of G receive odd labels” in Theorem 1 is
removed, then the conclusion is not true. For example, consider graph G in
Figure 2(a). If G has an edge-magic total labeling satisfying the condition
of Theorem 1, then all vertices of G must receive even labels (since the set
in (1) consists of only even numbers and G is connected). Then, there are
only two such labelings possible (see Figure 2(b) and 2(c)). Let H be a
graph formed by adding n pendant edges to every vertex of G except to
the vertex of label 12 (the largest vertex label). Then H is not edge-magic
for any integer n. In fact, if H is edge-magic then the magic constant is
10n + 19 — ﬁli—e- Therefore, this is not possible for all positive integers
n. Consequently, the condition that all vertices of G receive odd labels in
Theorem 1 is crucial.

12 10

8 10 12

(a) {b) (c)

Figure 2: The graph G and its vertex labeling.
Theorem 3 Let G be a graph with odd order p (> 3) for which there exists
a super edge-magic total labeling g with the property that
1
maz{g(z) + g(y)ley € E(G)} = 5(3p ~ 1).

Then, the graph H formed by adding n pendant edges to every vertex of
G ezcept the vertices u and v with g(u) = p — 1 and g(v) = p is super
edge-magic for every positive integer n.
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Proof Let G be a graph of odd order p satisfying the conditions of
Theorem 3, and g be a super edge-magic total labeling of G with the magic
constant k. Assume g(z;) = i for every 1 < ¢ < p, where V(G) = {z;]1 <
i <p}

Now, define H as a graph with the vertex and edge sets

VH)=V(G)U{yl:1<i<p-2,1<j<n}

and .
EH)=EG)U{zy] :1<i<p-2,1<j<n}

respectively.

Next, consider the vertex labeling h : V(H) — {1,2,3,--- , (n+1)p—2n}
defined as follows.

h(z) = g(z), for every z € V(G),

and

h(y?) = (G+1p—2(G+i-1), for 1<i< 2L and 1<j<n,
YT G+ 29p -2 +19), for E——<1.<p 2 and 1<j<n.

To show that h can be extended to a super edge-magic total labeling of
H,let S7 = {h( :1:,)+h(yJ }for1<i<p-—-2,1<j<n. It can be verified
that m; = mm1<3<n{S }=ilp-2)+ 12(p+5) and M; = maz1<J<n{SJ} =
i(p—2)+3(3p—1). Note that m; = 3(3p+1), Mr, =n(p—2)+3(3p—1)
and m;41 = Mj+1for1 <j<n-1 Also, |J; S'J is a set of consecutive
integers. By Lemma 1, h extends to a super ed’ge-ma.glc total labeling of
H with the magic constant 1(5p + 1) + 2n(p — 2) = k + 2n(p — 2). O

There are some classes of super edge-magic graphs satisfying the con-
ditions of Theorem 3, such as P, U Kj,1 for 4 < m = 1,3 (mod 4) [4]
(see Theorem 10), P, U K}, for n = 0 (mod 2) [4] (see Theorem 5),
P,UKp for 4 < m =2 (mod 4) [4] (see Theorem 10), and C, U K; for
n = 0 (mod 4) [6] (see Theorem 9). It can be verified that a path of odd
number of vertices also admits such a labeling required in Theorem 3.

By applying Theorem 3 to P, UK1,1, UK} », and P, UK 2, respec-
tively, we obtain new classes of forests with two components which are super
edge-magic. For short, we denote them by Fy, F5, and F3, respectively.

Corollary 3 p,(F1) = ps(F2) = ps(F3) = 0. o
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This result gives support to the correctness of the conjecture proposed
in [7].
In the next theorems we present a construction of new super edge-magic

graphs by adding n pendant edges to every vertex of a specific super edge-
magic graph with the exception of some vertices receiving the smallest

labels.

Theorem 4 Let G be a graph of even order p > 2, for which there exists
a super edge-magic total labeling f with the property that

maz{f(z) + f¥)loy € E(G)} = 5(3p+2).

Then, the graph H formed by adding n pendant edges to every vertez of
G except the vertex u with f(u) = 1 is super edge-magic for every positive
integer n.

Proof Let G be a super edge-magic graph with the magic constant k,
and let V(G) = {z; : 1 < i < p}. We may assume that f(z;) =i for every
i, 1<i<p

Next, let

VH)=V(G)U{yl :2<i<p1<j<n}

and .
E(Hy=E(G)U{zyy! :2<i<p,1<j<n}

Now, define a vertex labeling g : V(H) — {1,2,3, - ,p+(p—1)n} such
that
g(z) = f(z) for every vertex z € V(G),

and
hyd) = %(2i+2—p)+j(?-1), forE+1<i<pandl1<j<n,
= $@i+p) +ip-1), for 2<i<2 and 1<j<n.

We can see that the labels of pendant vertices are consecutive and greater
than p. By a similar argument used in the proof of Theorem 3, it can be
shown that h extends to a super edge-magic total labeling of H with the
magic constant k + 2n(p — 1). O

As an illustration of Theorem 4, see Figure 3.
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Theorem 5 Let G be a graph of order p = (¢ + 1)(m + 1) + 1, where
m > 2, ¢ 2> 1 for which there ezists a super edge-magic total labeling f with
the property that

maz{f(z) + f(y)lzy € E(G)} = (2m + 1)(c+1) + 1.

Then, the graph H formed by adding n pendant edges to every verter of G
except the vertices with labels 1,2,3,--- ,m(c+1)—c—3 is super edge-magic
for every positive integer n.

Proof Let G be a graph satisfying the conditions of Theorem 5 with
V(G) = {z: : 1 £ i < p}. Take a super edge-magic total labeling g with
the magic constant & such that g(z;) = ¢ for 1 < i < p. Now, define the
graph H as follows:

VH)=V(@)U{yl im(c+1)—c-2<i<p1<j<n}
and
EH)=EG)U{ziy! :m(c+1)-c-2<i<p,1<j<n}

It is easy to verify that the vertex labeling  : V(H) — {1,2,3,--- ,p +
(2¢ + 5)n} defined by

h(z) = g(z), for every z € V(G),

and

hyj)_ a+i+c+3, forb—-c—-2<i<b-landl1<j<n,
()= a+i—c—2, for b<i<p and 1<j<m,

where a = j(2¢ + 5) and b = m(c+ 1), extends to a super edge-magic total
labeling of H with the magic constant k + 2n(2¢c + 5). O

Graphs P, U K 3 for m = 0 mod 4, and K, U K, for n is a multiple
of m + 1 satisfy the conditions required in Theorem 4 and Theorem 5,
respectively, see [6]. Hence, by applying the algorithm in the proof of
Theorems 4 and 5, respectively, we have new classes of forests with two
components, denoted by Fy and Fs, respectively, which are super edge-
magic. Consequently, we have the following results.

Corollary 4 ps(Fy) = ps(F5) =0. a

Again, this result gives more examples of the correctness of the conjec-
ture proposed in [7].
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Figure 3: The super edge-magic Ps U K 3 and the new graph resulting by
applying Theorem 4.

In the next theorem, we consider a particular type of forest with two
components, namely the forest H = K; ,, U P, where PJ* is a caterpillar
with vertex and edge sets

V(PM) ={u;:1<i<n}u{vf:1<i<n1<j<m}
and
E(P™) = {wuip1 :1Si<n—1}U{ur] : 1<i<n,1 <5 <m},

respectively.

Theorem 6 For every positive integers m and n where n > 2 is even, the
forest H = K ,, U P is super edge-magic.

Proof We can consider that H is a forest with
V(H)=V(P")U{cqw;:1<j<m}

and
EH)=EPM)U{cw;:1<j<m}.

Let the vertex labeling g : V(H) — {1,2,3,---,|V(H)|} defined as
follows.
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(1, ify=c,
jn+1) + 3(n+4), ify=wj, for 1<j<m,
LG +2), if y = u; for even 1,
a(y) = { %(n+z’+3), if y = u; for odd 1,
3(2i(n+1) +i+3), ify=1v] foroddiand 1 < j <m,
32in+1)+n+i+4), fy=v]forevenitnand1<j<m,
l j(n+1)+1, ify=v/fori=nand1<j<m.

It is not difficult to verify that {g(z) + g(y) : zy € E(H)} is a set
of consecutive integers starting from ;}(n + 8). By Lemma 1, g extends
to a super edge-magic total labeling of F» with the magic constant k& =
2(4nm + 5n + 4m + 8). ]

The last theorem gives support to the correctness of the conjecture “if
F is a forest with two components, then p,(F) < 1”.
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