Magic graphs with pendant edges

A.A.G. Ngurah 1,2, E.T. Baskoro^{2,4}, I. Tomescu^{3,4}

²Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Science, Institut Teknologi Bandung Jalan Ganesa 10 Bandung, Indonesia.

Email: {s304agung, ebaskoro}@dns.math.itb.ac.id

³Faculty of Mathematics and Computer Science, University of Bucharest Str. Academiei, 14, 010014 Bucharest, Romania. Email: ioan@fmi.unibuc.ro

> ⁴School of Mathematical Sciences, GC University 68-B, New Muslim Town, Lahore, Pakistan.

Abstract

A graph G is edge-magic if there exists a bijection f from $V(G) \cup$ E(G) to $\{1,2,3,\cdots,|V(G)|+|E(G)|\}$ such that for any edge uv of G, f(u) + f(uv) + f(v) is constant. Moreover, G is super edge-magic if V(G) receives |V(G)| smallest labels. In this paper, we propose methods for constructing new (super) edge-magic graphs from some old ones by adding some new pendant edges.

Introduction 1

In this paper we consider only finite and simple graphs. The vertex and edge sets of a graph G are denoted by V(G) and E(G), respectively.

Let G be a graph with p vertices and q edges. A bijective function f: $V(G) \cup E(G) \rightarrow \{1, 2, 3, \dots, p+q\}$ is called an edge-magic total labeling of G if there exists an integer k such that f(x) + f(xy) + f(y) = k, independent of the choice of any edge xy of G. If such a labeling exists, then the

¹Permanent address: Department of Civil Engineering, Universitas Merdeka Malang, Jalan Taman Agung 1 Malang, Indonesia

constant k is called the *magic constant* of f, and G is said to be *edge-magic graph*. An edge-magic total labeling f is called *super edge-magic* if $f(V(G)) = \{1, 2, 3, \dots, p\}$. Thus, a *super edge-magic graph* is a graph that admits a super edge-magic total labeling.

The edge-magic concept was first introduced and studied by Kotzig and Rosa [11, 12], although under a different name, i.e., the magic valuation. The super edge-magic notion was first introduced by Enomoto, Lladó, Nakamigawa and Ringel [2]. The (super) edge-magic graphs have been studied in several papers, see for instance [3, 4, 8, 10, 13], and more complete results on (super) edge-magic graphs can be seen in the survey paper by Gallian [9]. However, the long-standing conjectures that "every tree is edge-magic" and "every tree is super edge-magic", proposed in [11] and [2], respectively, still remain open.

The following lemma presented in [3] gives a necessary and sufficient condition for a graph to be super edge-magic.

Lemma 1 A graph G with p vertices and q edges is super edge-magic if and only if there exists a bijective function $f:V(G)\to\{1,2,\cdots,p\}$ such that the set $S=\{f(x)+f(y)|xy\in E(G)\}$ consists of q consecutive integers. In such a case, f extends to a super edge-magic total labeling of G with magic constant k=p+q+s, where $s=\min(S)$ and

$$S = \{f(x) + f(y) | xy \in E(G)\}\$$

= \{k - (p+1), k - (p+2), \cdots, k - (p+q)\}.

In [11], Kotzig and Rosa introduced the concept of edge-magic deficiency of a graph. They defined the edge-magic deficiency, $\mu(G)$, of a graph G as a minimum nonnegative integer n such that $G \cup nK_1$ is an edge-magic graph. Kotzig and Rosa [11] gave an upper bound of the edge-magic deficiency of a graph G with p vertices, that is $\mu(G) \leq F_{p+2} - 2 - p - \frac{1}{2}p(p-1)$, where F_p is the p-th Fibonacci number.

Furthermore, Figueroa-Centeno et al.[6] defined the concept of the super edge-magic deficiency of a graph similarly. The super edge-magic deficiency, $\mu_s(G)$, of a graph G is a minimum nonnegative integer n such that $G \cup nK_1$ has a super edge-magic total labeling or $+\infty$ if there exists no such n. Clearly, for every graph G, $\mu(G) \leq \mu_s(G)$.

Figueroa-Centeno et al. in two separate papers [6, 7] provided the exact values of (super) edge-magic deficiency of several classes of graphs, such as cycles, complete graphs, some classes of forests, 2-regular graphs, and complete bipartite graphs $K_{2,m}$. They [7] also proposed the conjecture "if F is a forest with two components, then $\mu_s(F) \leq 1$ ".

In this paper, we propose some methods for constructing new (super) edge-magic graphs from the old ones. From this construction we can obtain new classes of (super) edge-magic graphs. Some of the resulting graphs give support to the correctness of the conjectures "every tree is (super) edge-magic", and "if F is a forest with two components, then $\mu_s(F) \leq 1$ ".

2 The Results

Throughout this section, we will present a construction of new (super) edge-magic graphs by adding pendant edges to some (not all) vertices of a (super) edge-magic graph G having a specific property. This construction can be viewed as a weaker version of a corona product of a graph G and nK_1 .

The corona product $G \odot H$ of two given graphs G and H is defined as a graph obtained by taking one copy of a p-vertex graph G and p copies H_1, H_2, \ldots, H_p of H, and then joining the i-th vertex of G to every vertex in H_i . If $H \cong nK_1$, $G \odot H$ is equal to the graph produced by adding n pendant edges to every vertex of G. The corona product of graphs has been studied in several papers, see for instance [1], [5] and [14].

In the next two theorems, we construct (super) edge-magic graphs by adding n pendant edges to every vertex of particular type of edge-magic graph except some vertices with the largest labels.

Theorem 1 Let G be a graph of even order $p \ge 2$ and size of either q = p or p-1 for which there exists an edge-magic total labeling f with the property that all vertices of G receive odd labels such that

$$\{f(x)+f(y)|xy\in E(G)\}=\{3p-2q,3p-2q+2,\cdots,3p-4,3p-2\}. (1)$$

Then, the graph H formed by adding n pendant edges to each vertex of G except the vertex with the largest label is edge-magic for every positive integer n.

Proof Suppose $V(G) = \{x_i | 1 \le i \le p\}$. Let f be an edge-magic total labeling of G satisfying the conditions of Theorem 1. Then, the magic constant of f is k = 3p. Since all vertices receive odd labels, we may assume that $f(x_i) = 2i - 1$ for every integer $1 \le i \le p$. Let H be a graph defined as follows.

$$V(H) = V(G) \cup \{y_i^j | 1 \le i \le p-1 \text{ and } 1 \le j \le n\},\$$

and

$$E(H) = E(G) \cup \{x_i y_i^j | 1 \le i \le p-1 \text{ and } 1 \le j \le n\}.$$

Now, define a total labeling

$$g: V(H) \cup E(H) \rightarrow \{1, 2, 3, \cdots, 2n(p-1) + p + q\}$$

such that g(x) = f(x) for every $x \in V(G)$ and

$$g(y_i^j) = \left\{ \begin{array}{ll} (2j+1)p + 2(i-j) - 1, & \text{for } 1 \leq i \leq \frac{p}{2} \text{ and } 1 \leq j \leq n, \\ (2j-1)p + 2(i-j) + 1, & \text{for } \frac{p+2}{2} \leq i \leq p-1 \text{ and } 1 \leq j \leq n. \end{array} \right.$$

It can be verified that all odd labels are assigned to the vertices of H.

Let $S_i^j = \{g(x_i) + g(y_i^j)\}$ for $1 \le i \le p-1, 1 \le j \le n$. It can be verified that $m_j = \min_{1 \le j \le n} \{S_i^j\} = (2j+1)(p-1)+3$ and $M_j = \max_{1 \le j \le n} \{S_i^j\} = (2j+2)(p-1)+p$. Observe that $m_1 = 3p, M_n = (2n+2)(p-1)+p$ and $m_{j+1} = M_j + 2$ for $1 \le j \le n-1$. Also, $\bigcup_{i,j} S_i^j = \{3p, 3p+2, \cdots, (2n+2)(p-1)+p-2, (2n+2)(p-1)+p\}$. Thus, the set $\{g(x)+g(y)|xy \in E(H)\}$ forms an arithmetic sequence starting from 3p-2q with common difference 2. If we take

$$q(xy) = (2n+3)p - 2n - g(x) - g(y)$$
, for every $xy \in E(H)$

then, g is an edge-magic total labeling of H with the magic constant (2n+2)(p-1)+p+2=2n(p-1)+k.

It can be shown that each of the following classes of graphs has an edge-magic total labeling f satisfying the conditions of Theorem 1.

- Paths of an even number of vertices P_{2k} for $k \geq 1$.
- Caterpillars formed by adding $m \ge 1$ pendant edges to every vertex of P_{2k} , $k \ge 1$ (We denote such caterpillars by $P_{2k,m}^1$).
- Caterpillars formed by adding one pendant edge to every vertex of P_{2k+1} , $k \ge 1$ (denoted by $P_{2k+1,1}^2$).
- Caterpillars formed by adding one pendant edge to one vertex of degree one and $m \ge 1$ pendants to other vertices of P_{2k+1} , $k \ge 1$ (denoted by $P_{2k+1,m}^3$).
- Path-like-trees P_T with an even number of vertices.

Additionally, a cycle of odd length with one pendant attached to a vertex also admits the labeling satisfying the conditions of Theorem 1.

Figure 1: The graph $P_{5,1}^2$ and the new graph resulting by applying Theorem 1.

As an example of Theorem 1, Figure 1 (a) shows the graph $P_{5,1}^2$ and its vertex labeling, and Figure 1 (b) shows the new graph resulting by applying Theorem 1 to $P_{5,1}^2$.

For simplicity, we denote by P_T^* a tree formed by applying the Theorem 1 to P_T . Similarly, we denote by $L^1_{2k,m}$, $L^2_{2k+1,1}$ and $L^3_{2k+1,m}$ the graphs formed by applying the Theorem 1 to $P^1_{2k,m}$, $P^2_{2k+1,1}$ and $P^3_{2k+1,m}$, respectively. These three graphs are all lobsters.

Therefore, by Theorem 1 we have the following corollary.

Corollary 1 The tree P_T^* and the lobsters $L^1_{2k,m}$, $L^2_{2k+1,1}$ and $L^3_{2k+1,m}$ are edge-magic graphs. \Box

Now, we refer the readers to the following result.

Theorem 2 [3] Let T be an edge-magic tree of order p with an edge-magic total labeling f whose magic constant is k such that f(v) is odd for any vertex v of V(T). Then, the bijective function $g:V(T)\cup E(T)\to \{1,2,3,\cdots,2p-1\}$ defined as

$$g(x) = \begin{cases} \frac{f(x)+1}{2}, & \text{if } x \in V(T), \\ \frac{f(x)}{2} + p, & \text{if } x \in E(T), \end{cases}$$

is a super edge-magic labeling. Furthermore, given a super edge-magic labeling of a tree, a labeling can be obtained with all vertices receiving an odd label by reversing the above process.

Note that Theorem 2 can be extended to graphs for which p = q.

By Theorem 2, all graphs satisfying the conditions of Theorem 1 are also super edge-magic. Especially, we have the following corollary.

Corollary 2 The tree P_T^* and the lobsters $L_{2k,m}^1$, $L_{2k+1,1}^2$ and $L_{2k+1,m}^3$ are super edge-magic graphs. \square

These results provides supporting examples of the conjectures proposed by Kotzig and Rosa [11] and by Enomoto, Llado, Nakamigawa and Ringel [2].

If the condition "all vertices of G receive odd labels" in Theorem 1 is removed, then the conclusion is not true. For example, consider graph G in Figure 2(a). If G has an edge-magic total labeling satisfying the condition of Theorem 1, then all vertices of G must receive even labels (since the set in (1) consists of only even numbers and G is connected). Then, there are only two such labelings possible (see Figure 2(b) and 2(c)). Let H be a graph formed by adding n pendant edges to every vertex of G except to the vertex of label 12 (the largest vertex label). Then H is not edge-magic for any integer n. In fact, if H is edge-magic then the magic constant is $10n + 19 - \frac{12}{5n+6}$. Therefore, this is not possible for all positive integers n. Consequently, the condition that all vertices of G receive odd labels in Theorem 1 is crucial.

Figure 2: The graph G and its vertex labeling.

Theorem 3 Let G be a graph with odd order $p \ (\geq 3)$ for which there exists a super edge-magic total labeling g with the property that

$$\max\{g(x) + g(y) | xy \in E(G)\} = \frac{1}{2}(3p - 1).$$

Then, the graph H formed by adding n pendant edges to every vertex of G except the vertices u and v with g(u) = p - 1 and g(v) = p is super edge-magic for every positive integer n.

Proof Let G be a graph of odd order p satisfying the conditions of Theorem 3, and g be a super edge-magic total labeling of G with the magic constant k. Assume $g(x_i) = i$ for every $1 \le i \le p$, where $V(G) = \{x_i | 1 \le i \le p\}$.

Now, define H as a graph with the vertex and edge sets

$$V(H) = V(G) \cup \{y_i^j : 1 \le i \le p - 2, 1 \le j \le n\}$$

and

$$E(H) = E(G) \cup \{xy_i^j : 1 \le i \le p - 2, 1 \le j \le n\},\$$

respectively.

Next, consider the vertex labeling $h: V(H) \to \{1, 2, 3, \cdots, (n+1)p-2n\}$ defined as follows.

$$h(x) = g(x)$$
, for every $x \in V(G)$,

and

$$h(y_i^j) = \left\{ \begin{array}{ll} (j+1)p - 2(j+i-1), & \text{for } 1 \leq i \leq \frac{p-1}{2} \text{ and } 1 \leq j \leq n, \\ (j+2)p - 2(j+i), & \text{for } \frac{p+1}{2} \leq i \leq p-2 \text{ and } 1 \leq j \leq n. \end{array} \right.$$

To show that h can be extended to a super edge-magic total labeling of H, let $S_i^j = \{h(x_i) + h(y_i^j)\}$ for $1 \le i \le p-2$, $1 \le j \le n$. It can be verified that $m_j = \min_{1 \le j \le n} \{S_i^j\} = j(p-2) + \frac{1}{2}(p+5)$ and $M_j = \max_{1 \le j \le n} \{S_i^j\} = j(p-2) + \frac{1}{2}(3p-1)$. Note that $m_1 = \frac{1}{2}(3p+1)$, $M_n = n(p-2) + \frac{1}{2}(3p-1)$ and $m_{j+1} = M_j + 1$ for $1 \le j \le n-1$. Also, $\bigcup_{i,j} S_i^j$ is a set of consecutive integers. By Lemma 1, h extends to a super edge-magic total labeling of H with the magic constant $\frac{1}{2}(5p+1) + 2n(p-2) = k + 2n(p-2)$.

There are some classes of super edge-magic graphs satisfying the conditions of Theorem 3, such as $P_m \cup K_{1,1}$ for $4 \le m \equiv 1,3 \pmod 4$ [4] (see Theorem 10), $P_2 \cup K_{1,n}$ for $n \equiv 0 \pmod 2$ [4] (see Theorem 5), $P_m \cup K_{1,2}$ for $4 \le m \equiv 2 \pmod 4$ [4] (see Theorem 10), and $C_n \cup K_1$ for $n \equiv 0 \pmod 4$ [6] (see Theorem 9). It can be verified that a path of odd number of vertices also admits such a labeling required in Theorem 3.

By applying Theorem 3 to $P_m \cup K_{1,1}$, $P_2 \cup K_{1,n}$, and $P_m \cup K_{1,2}$, respectively, we obtain new classes of forests with two components which are super edge-magic. For short, we denote them by F_1 , F_2 , and F_3 , respectively.

Corollary 3
$$\mu_s(F_1) = \mu_s(F_2) = \mu_s(F_3) = 0.$$

This result gives support to the correctness of the conjecture proposed in [7].

In the next theorems we present a construction of new super edge-magic graphs by adding n pendant edges to every vertex of a specific super edge-magic graph with the exception of some vertices receiving the smallest labels.

Theorem 4 Let G be a graph of even order p > 2, for which there exists a super edge-magic total labeling f with the property that

$$max\{f(x) + f(y)|xy \in E(G)\} = \frac{1}{2}(3p+2).$$

Then, the graph H formed by adding n pendant edges to every vertex of G except the vertex u with f(u) = 1 is super edge-magic for every positive integer n.

Proof Let G be a super edge-magic graph with the magic constant k, and let $V(G) = \{x_i : 1 \le i \le p\}$. We may assume that $f(x_i) = i$ for every $i, 1 \le i \le p$.

Next, let

$$V(H) = V(G) \cup \{y_i^j : 2 \le i \le p, 1 \le j \le n\}$$

and

$$E(H) = E(G) \cup \{x_i y_i^j : 2 \le i \le p, 1 \le j \le n\}.$$

Now, define a vertex labeling $g:V(H) \to \{1,2,3,\cdots,p+(p-1)n\}$ such that

$$g(x) = f(x)$$
 for every vertex $x \in V(G)$,

and

$$h(y_i^j) = \left\{ \begin{array}{ll} \frac{1}{2}(2i+2-p) + j(p-1), & \text{for } \frac{p}{2}+1 \leq i \leq p \text{ and } 1 \leq j \leq n, \\ \frac{1}{2}(2i+p) + j(p-1), & \text{for } 2 \leq i \leq \frac{p}{2} \text{ and } 1 \leq j \leq n. \end{array} \right.$$

We can see that the labels of pendant vertices are consecutive and greater than p. By a similar argument used in the proof of Theorem 3, it can be shown that h extends to a super edge-magic total labeling of H with the magic constant k + 2n(p-1).

As an illustration of Theorem 4, see Figure 3.

Theorem 5 Let G be a graph of order p = (c+1)(m+1) + 1, where $m \ge 2$, $c \ge 1$ for which there exists a super edge-magic total labeling f with the property that

$$\max\{f(x) + f(y) | xy \in E(G)\} = (2m+1)(c+1) + 1.$$

Then, the graph H formed by adding n pendant edges to every vertex of G except the vertices with labels $1, 2, 3, \dots, m(c+1)-c-3$ is super edge-magic for every positive integer n.

Proof Let G be a graph satisfying the conditions of Theorem 5 with $V(G) = \{x_i : 1 \le i \le p\}$. Take a super edge-magic total labeling g with the magic constant k such that $g(x_i) = i$ for $1 \le i \le p$. Now, define the graph H as follows:

$$V(H) = V(G) \cup \{y_i^j : m(c+1) - c - 2 \le i \le p, 1 \le j \le n\}$$

and

$$E(H) = E(G) \cup \{x_i y_i^j : m(c+1) - c - 2 \le i \le p, 1 \le j \le n\}.$$

It is easy to verify that the vertex labeling $h:V(H)\to\{1,2,3,\cdots,p+(2c+5)n\}$ defined by

$$h(x) = g(x)$$
, for every $x \in V(G)$,

and

$$h(y_i^j) = \left\{ \begin{array}{l} a+i+c+3, & \text{for } b-c-2 \leq i \leq b-1 \text{ and } 1 \leq j \leq n, \\ a+i-c-2, & \text{for } b \leq i \leq p \text{ and } 1 \leq j \leq n, \end{array} \right.$$

where a = j(2c + 5) and b = m(c + 1), extends to a super edge-magic total labeling of H with the magic constant k + 2n(2c + 5).

Graphs $P_m \cup K_{1,3}$ for $m \equiv 0 \mod 4$, and $K_m \cup K_n$ for n is a multiple of m+1 satisfy the conditions required in Theorem 4 and Theorem 5, respectively, see [6]. Hence, by applying the algorithm in the proof of Theorems 4 and 5, respectively, we have new classes of forests with two components, denoted by F_4 and F_5 , respectively, which are super edgemagic. Consequently, we have the following results.

Corollary 4
$$\mu_s(F_4) = \mu_s(F_5) = 0$$
.

Again, this result gives more examples of the correctness of the conjecture proposed in [7].

Figure 3: The super edge-magic $P_8 \cup K_{1,3}$ and the new graph resulting by applying Theorem 4.

In the next theorem, we consider a particular type of forest with two components, namely the forest $H \cong K_{1,m} \cup P_n^m$, where P_n^m is a caterpillar with vertex and edge sets

$$V(P_n^m) = \{u_i : 1 \le i \le n\} \cup \{v_i^j : 1 \le i \le n, 1 \le j \le m\}$$

and

$$E(P_n^m) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i^j : 1 \le i \le n, 1 \le j \le m\},$$
 respectively.

Theorem 6 For every positive integers m and n where $n \geq 2$ is even, the forest $H \cong K_{1,m} \cup P_n^m$ is super edge-magic.

Proof We can consider that H is a forest with

$$V(H) = V(P_n^m) \cup \{c, w_j : 1 \le j \le m\}$$

and

$$E(H) = E(P_n^m) \cup \{cw_j : 1 \le j \le m\}.$$

Let the vertex labeling $g:V(H)\to\{1,2,3,\cdots,|V(H)|\}$ defined as follows.

$$g(y) = \begin{cases} 1, & \text{if } y = c, \\ j(n+1) + \frac{1}{2}(n+4), & \text{if } y = w_j, \text{ for } 1 \le j \le m, \\ \frac{1}{2}(i+2), & \text{if } y = u_i \text{ for even } i, \\ \frac{1}{2}(n+i+3), & \text{if } y = u_i \text{ for odd } i, \\ \frac{1}{2}(2j(n+1)+i+3), & \text{if } y = v_i^j \text{ for odd } i \text{ and } 1 \le j \le m, \\ \frac{1}{2}(2j(n+1)+n+i+4), & \text{if } y = v_i^j \text{ for even } i \ne n \text{ and } 1 \le j \le m, \\ j(n+1)+1, & \text{if } y = v_i^j \text{ for } i = n \text{ and } 1 \le j \le m. \end{cases}$$

It is not difficult to verify that $\{g(x) + g(y) : xy \in E(H)\}$ is a set of consecutive integers starting from $\frac{1}{2}(n+8)$. By Lemma 1, g extends to a super edge-magic total labeling of F_2 with the magic constant $k = \frac{1}{2}(4nm+5n+4m+8)$.

The last theorem gives support to the correctness of the conjecture "if F is a forest with two components, then $\mu_s(F) \leq 1$ ".

3 Acknowledgement

The first author wishes to thank Prof. A. D. R. Choudary for the support and hospitality during his stay at the School of Mathematical Sciences, G.C. University, Lahore, Pakistan.

References

- [1] E.T. Baskoro, I.W. Sudarsana and Y.M. Cholily, How to construct new super edge-magic graphs from some old ones, *J. Indones. Math. Soc.* (MIHMI), Vol. 11, No. 2 (2005), 155 162.
- [2] H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge magic graphs, SUT J. Math., 34 (1998), 105 - 109.
- [3] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, *Discrete Math.*, 231 (2001), 153 - 168.
- [4] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, On edge-magic labelings of certain disjoint union graphs, Australas. J. Combin., 32 (2005), 225 - 242.

- [5] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, Magical coronations of graphs, Australas. J. Combin., 26 (2002), 199 208.
- [6] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, On the super edge-magic deficiency of graphs, *Electron. Notes Discrete Math.*, 11, Elsevier, Amsterdam, 2002.
- [7] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, Some new results on the super edge-magic deficiency of graphs, J. Combin. Math. Combin. Comput., 55, (2005), 17 - 31.
- [8] Y. Fukuchi, Edge-magic labeling of generalized Petersen graphs P(n, 2), Ars Combin., **59** (2001), 253 257.
- [9] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, (2005).
- [10] J. Ivančo and I. Lučkaničová, On edge-magic disconnected graphs, SUT Journal of Math., Vol. 38, No. 2, (2002), 175 184.
- [11] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., Vol. 13 (4), 1970, 451 - 461.
- [12] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Publications du Centre de Recherches mathematiques Université de Montreal, 175 (1972).
- [13] A.A. G. Ngurah, E.T. Baskoro, On magic and antimagic total labeling of generalized Petersen graph, *Util. Math.*, **63** (2003), 97 107.
- [14] A.A. G. Ngurah, E.T. Baskoro, On the new families of (super) edgemagic graphs, *Util. Math.*, to appear.
- [15] Slamin, M. Baca, Y. Lin, M. Miller and R. Simanjuntak, Edge magic total labeling of wheels, fans and friendship graphs, Bull. Inst. Combin. Appl., 35 (2002), 89 - 98.