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Abstract. A graph is said to be cordial if it has a 0-1 labeling that
satisfies certain properties. The purpose of this paper is to generalize some
known theorems and results of cordial graphs. Specifically, we show that
certain combinations of paths, cycles, stars and null graph are cordials.
Finally, we prove that the tours grids are cordial if and only if its size is
not congruent to 2 (mod4).
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1 Introduction

It is well known that graph theory has applications in many other fields
of study, including physics, chemistry, biology, communication, psychol-
ogy, sociology, economics, engineering, operations research, and especially
computer science.

One area of graph theory of considerable recent research is that of graph
labeling. In a labeling of a particular type, the vertices are assigned values
from a given set, the edges have a prescribed induced labeling, and the
labelings must satisfy certain properties. An excellent reference on this
subject is the survey by Gallian [5].

Two of the most important types of labelings are called graceful and
harmonious. Graceful labelings were introduced independently by Rosa
[8] in 1966 and Golomb (6] in 1972, while harmonious labelings were first
studied by Graham and Sloane [7] in 1980. A third important type of
labeling, which contains aspects of both of the other two, is called cordial
and was introduced by Cahit [1] in 1990. Whereas the label of an edge vw
for graceful and harmonious labeling is given respectively by |f(v) — f(w)|
and f(v) + f(w) (modulo the number of edges), cordial labelings use only
labels 0 and 1 and the induced label (f(v) + f(w)) (mod2), which of course
equals |f(v) — f(w)|. Because arithmetic modulo2 is an integral part of
computer science, cordial labelings have close connections with that field.

More precisely, cordial graphs are defined as follows.

Let G = (V, E) be a graph, let f: V — {0,1} be a labeling of its vertices,
and let f* : E — {0, 1} is the extension of f to the edges of G by the formula
F*(vw) = f(v) + f(w) (mod 2). (Thus, for any edge e, f*(e) = 0 if its two
vertices have the same label and f*(e) = 1 if they have different labels).
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Let vg and v; be the numbers of vertices labeled 0 and 1 respectively, and
let e and e; be the corresponding numbers of edge. Such a labeling is
called cordial if both |vp —v;| < 1 and |eg — ;| < 1. A graph is called
cordial if it has a cordial labeling.

Seoud, Diab and Elsakhawi [9], determined that the join of the cycle
C,, and the star K} ,, is cordial for all n and odd m except n = 3 (mod 4)
and (n,m) = (3,1). In section 3, we extend this result to show that the
join of the cycle Cy, and the star K, is cordial for all n > 3 and all m
except n = 3 (mod 4), if n = 3 (mod 4) and n > 3, then the join of the
cycle Cp, and the star K, n, is cordial for all even m, where m > 2, and if
n = 3 (mode 4) and odd m, then the join of the cycle C, and the star K} .,
is not cordial. also, we show that the union of the cycle C,, and the star
K1 m is cordial for all n and all m. In section 4, we generalize the result
due to Seoud, Diab and Elsakhawi [9], which state that the join of the cycle
C, and the null graph N, is cordial when n is odd and when n is even
and m is odd to the join of the cycle C,, and the null graph N, is cordial
for all m and n except m = 3 (mod 4) and n odd and m = 2 (mod 4) and
n even. Also, we show that the union of the cycle C;,, and the null graph
N, is cordial for all n and m if and only if n is not congruent to 2(mod
4). In section 5, we show that the join and the union of the graph P, and
the null graph Ny, are cordial for all n and all m. Finally, in section 6, we
prove that the Tours grid C,, x C, is cordial for all n > 3 and m > 3 if and
only if 2nm is not congruent to 2(mod 4).

2 Terminology and notations

We introduce some notation and terminology for a graph with 4r vertices
[2, 3, 4], we let L4 denote the labeling 00110011...0011, M, denote the
labeling 0101...01 (zero-one repeated r-times) if 7 is even and 0101...010
(zero-one repeated r-times) if r is odd, O, denotes the labelling 0000...0000 (
zero repeated r- times) and I, denotes the labelling 111...1111 (one repeated
7- times). In most cases, we then modify this by adding symbols at one end
or the other (or both). Thus 01L4, denotes the labeling 0100110011...0011
of either Cyrq2 Or Pyry2. For specific labeling L and M of GU H, where
G and H are paths or cycles or stars or null graphs, we let [L; M] denote
the joint labeling.

Additional notation that we use is the following.
For a given labeling of the join G + H, we let v; and e; (for i = 0,1)
be the numbers of labels that are i as before, we let z; and a; be the
corresponding quantities for G, and we let y; and b; be those for H. It
follows that vg = zo + yYo,v1 = =1 + ¥1,€0 = ao + bo + Toyo + T171 and
e1 = aj + by + xoy1 + 130, thus, vo — v1 = (Zo — Z1) + (¥o — 1) and
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eo —e; = (ap — a1) + (bo — b1) + (To — Z1)(¥o — y1). When it comes to
the proof, we only need to show that, for each specified combination of
labeling, Jvp —v1| <1 and |eg —g;| < 1.

3 Joins of Unions of Cycles and Stars

Seoud, Diab and Elsakhawi [9] have proved that the join of the cycle
C and the star K} s, is cordial for all cdd m and n except n = 3 (mod 4)
and (n,m) = (3,1). In this section, we generalize this results as follows:

1- The join of the cycle C, and the star K ,, is cordial for all n > 3
and all m except n = 3 (mod 4),

2- If n = 3 (mod 4) and n > 3, then the join of the cycle C,, and the
star K ,, is cordial for all even m, where m > 2,

3- If n = 3 (mod 4) and odd m, then the join of the cycle C,, and the
star K m is not cordial.

Moreover, we prove that the union of the cycle C,, and the star K ,, is
cordial for all n and all m.

Theorem 3.1.The join of the cycle C,, and the star K} ,, is cordial for all
m and n > 3 except n = 3 (mod 4).

Proof. The labelings that we use are given in Table 3.1, along with the
corresponding values of z; and a; or y; and b; (for ¢ = 0,1). We let m =
2s+j (for j = 0,1) and n = 4r + 4 (for ¢ = 0,1,2). For given values
of i and j with 0 < ¢ < 2 and 0 < j < 1, we use the labeling A;, A or
A{ for cycle Cr, and Bj, B; or By for the star K, as given in Table 3.1.
Using Table 3.1 and the fact that vo — v1 = (zo — 1) + (yo — %1) and
eo — €1 = (ag — a1) + (bo — b1) + (o — Z1)(¥o — ¥1), we can compute the
values shown in the last two columns of Table 3.2. Since these are all 0,1,
or -1, the theorem follows.
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n = 4r + 1, | Labeling of

i=0,1,2 Cn To T1 ao a

i=0 Ao = Ly, 2r 2r 2r 2r

i=1 Ay =1Ly, 2r 2r+11]2r+1 2r

Al =L40 | 2r+1 2r 2r+1 2r

1=2 Ay =0L40 | 2r+2 2r 2r +2 2r
5=01L4 | 2r+1 | 2r+1 2r 2r+2

#=0Lyl |2r+1|2r+1]|2r4+2] 2r

j=2s+73, Labeling of
j=01 Kim Yo Y1 bo by
j=0 By = 1M, s |[s+1]| s s
B = 0M,, s+1 8 ] s

Bf = 011M3,_, s s+1|s—-1|s+1
ji=1 B, =11M,, s s+2]s+1 s

B; = 01My, s+1]s+1 s s+1

Table 3.1. Labelings of Cycles and Stars.

n=4r+1i, | m=4s+j,
i=0,1,2 [7j=0,1,23|Cp | Kijm |vo—v1 | 0—¢€;
0 0 Ao | Bo -1 0
1 0 A B} 0 0
) 0 AT By | 1 0
0 1 Ao 1 0 -1
1 1 Ay 1 -1 0
2 1 Aj 1 0 1

Table 3.2. Combinations of labelings.

We note in the Table 3.1, the labelings of stars that the first lable with
respect to the center of the star and others labelings respect to vertices of
K m, for example By = 1M3, means that we label the center of K; ,, by
1 and others vertices by Ma,.

Theorem 3.2. If n = 3 (mod 4) and n > 3, then C, + K} , is cordial for
all even m, where m > 2.

Proof. Let n = 4r + 3 and r > 1, then we label the vertices of C, as
Az = L4,100, ie., o = 2r + 2,2y = 2r + 1,09 = 2r + 3 and a; = 2r. For
labelings the vertices of K ., where m > 2 is an even number, we have
two cases;

Case 1. m =0 (mod 4). i.e., m = 4s. We label the center of K, ,, by 0

and the others vertices by 111 L,;_40, i.e., yo = 28,y1 =2s+1,bp =25 —1

164



band b; = 2s+1. Hence from the fact that vo—v, = (zo—z1)+(yo—11) =0
and eg —e; = (ao - a1) + (bo - bl) + (l‘o - a:l)(yo - yl) =0,

Case 2. m =2 (mod 4). i.e., m = 4s+2. We label the center of K ,, by 0
and the others vertices by 1111 L4,-400, i.e., yo = 2s+1,y;1 = 28+2,bo = 2s
and b; = 2s+2. Hence from the fact that vo—v; = (zo— 1)+ (yo—11) =0
and ey —e; = (a0 — a1) + (bo — b1) + (o — 1) (yo — ¥1) = 0. Therefore, we
obtain from last cases that vg — v; = 0 and ep — e; = 0. This means that
Cp + K1 m is cordial for all even m > 4.

In case of m = 2, we label the vertices of K 5 as 011, i.e., yo = 1,51 =
2,bp = 0 and by = 2. Hence vp — v1 =0 and ep — e; = 0. This completes
the proof of this theorem.

Example 3.1. If n =3 (mod 4) and n > 3, then C,, + P, is not cordial.
Solution. The solution follows directly from the following theorem [5],
which state that: “If G is a graph with n vertices and m edges and every
vertex has odd degree, thenG is not cordial when n + m = 2 (mod 4)”.
We note that, if n = 3, then C3 + P, = K} is not cordial.

Lemma 3.1. If n = 3 (mod 4) and odd m, the C,, + K\, is not cordial.
Proof. The labelings that we use are given in Table 3.3, along with the
corresponding values of z; and a; or y; and b; (fori = 0,1). Welet n = dr+i
(for i = 0,1,2,3) and m = 25+ j (for j = 0,1). For given values of 7 and j
with 0 < i < 3 and 0 < j < 1, we use the labeling A;, A} or A/ for the cycle
Cr, and Bj, B} for the star K} ,, as given in Table 3.3. Using Table 3.3 and
the fact that vg—vy = (.120—1:1)+(yo-y1) andeg—e; = (ao—a1)+(bo—b1),
we can compute the values shown in the last two columns of Table 3.4. Since
these are all 0.1, or -1, the theorem follows.

n =4r +1, | Labeling of

1=0,1,2,3 Cn Zo T ap a;
i=0 Ag = Ly 2r 2r 2r 2r
i= Ay =1Ly, 2r 2r+1|2r+1 2r
1=2 Ay =L410 [ 20 4+1 | 20 41| 29 +2 2r
i=3 A3 =L4001 [ 2r4+2 [ 2r41 | 2r41 | 2+ 2

m=28+7, Labeling of
i=0,1 Kim Yo Y1 bo by
7=0 Bo = 1M, 8 s+1 s s
B} =0M;, s+1 ] s s
Bf = 011M5,_» s s+1|s—-1|s+1
ji=1 B, =11M,, s s+2|s+1 s
Bi =01M,, s+1]|s+1 s s+1

Table 3.3. Labelings of Cycles and Stars.
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n=4r+1i, | m=2s+j,
i=0,1,2,3 i=0,1 Cn | Kiym |v0o—v1|e0—€
0 0 Ao | Bo -1 0
1 0 A | By 0 1
2 0 Az H -1 0
3 0 As | Bo 0 -1
0 1 Ao 1 0 -1
1 1 A | By -1 0
2 1 Ag 1 0 1
3 1 As | By -1 0

Table 3.4. Combinations of labelings.

4 Joins Unions of Cycles and Null Graphs

Seoud, Diab and Elsakhawi [9], proved that the join of the cycle C,
and the null graph Ny, is cordial when n is odd and when = is even and m
is odd. In this section, we extend the above result to the following result
C, + Ny, is cordial if and only if for all n and all m except when n = 3
(mod 4) and odd m or when n = 2 (mod 4) and even m. Moreover, we
prove that the union of the cycle C,, and the null graph N,, is cordial for
all n and all m if and only if n is not congruent to 2(mod 4).

Theorem 4.1. If n is not congruent to 2(mod 4), then C,, + N, is cordial
for all n and all m except when n = 3 (mod 4) and odd m.

Proof. The labelings that we use are given in Table 4.1, along with the
corresponding values of z; and a; or y; and b; (for i = 0,1). We let m = 4s+j
(for j = 0,1,2,3) and n = 4r + i (for i = 0,1,3). For given values of i
and j with 0 < ¢ € 3,7 # 2 and 0 < j < 3, we use the labeling A;
for the cycle C, and B; for the null graph Ny, as given in Table 4.1.
Using Table 4.1 and the fact that vg — v1 = (o — 1) + (yo — 1) and
eo — e1 = (ap — a;) + (bo — b1) + (o — =1)(¥o — ¥1), we can compute the
values shown in the last two columns of Table 4.2. Since these are all 0,1,
or -1, the theorem follows.
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n=4r +14, | Labeling of

1=0,1,3 XCyp o 1 agp a
i=0 Ao = Ly, 2r 2r 2r 2r
i=1 Ay = 1Ly 2r 2r+1{2r+1 2r
i=3 A3 =L4011 | 2r+1 | 2r+2 | 2r4+1 | 2r +2
m=4s+j, | Labeling of »

j = 0’ 172’ 3 Nm Yo 1 bO bl
i=0 By =Ly, 2s 2s 0|0
i=1 By =0L4, 2s+1 2s 0|0
ji=2 By=0L41 | 2s+1(2s+1[ 0] 0
ji=3 B3 =001L4 | 254+2 | 2s+1[ 0] 0

Table 4.1. Labelings of Paths and Null graphs.

n=4r4+1i, | m=4s+j,

i=0,1,3 j=0,1,2,3 Cn Nm Vo— V1 | € — €1
0 0 Ao | Bo 0 0
0 1 Ao | By 1 0
0 2 Ao | Bs 0 0
0 3 Ao | Bs 1 0
1 0 A | Bo -1 1
1 1 A | By 0 0
1 2 Ay | By -1 1
1 3 Ay | Bs 0 0
3 0 Az | By -1 -1
3 2 Az | Bs -1 -1

Table 4.2. Combinations of labelings.

Theorem 4.2. If n =2 (mod 4), then Cp, + Ny, is cordial for all odd m.

Proof. Let n = 4r+2 and r > 1, then we label the vertices of C,, as 45 =
0L40,ie., 2o =2r+2,21 =2r,a0 =2r+2and a; =2r. Let m = 2s+1,
then we label the vertices of Ny, as 1,410;, ie,yo = 8,91 =8+ 1,0y =0
and by = 0. Hence vo —v; = (2o —Z1) + (o — 1) =2—-1 =1 and
eo —e1 = (ao —a1) + (bo — b1) + (zo — z1)(yo — y1) = 2 — 2 = 0. Therefore
Cp + K is cordial for all n = 2 (mod 4) and odd m, the theorem follows.
Example 4.1. C3 + N, is cordial for all even m.

Proof. The following labeling suffice: C3+ Ny, : [001 : Ly,), if m = 0 (mod
4) and C3 + Ny, : [001 : OL4,1), if m = 2 (mod 4).

Lemma 4.1. If n =2 (mod 4) and even m, then C, + N, is not cordial.
Proof. It is easy to verify that the graph C, + N, is an Eulerian graph,
which its size of congruent to 2 (mod 4) and from Cahit’s theorem (which
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is mentioned in the proof of lemma 3.1), we obtain that C, + Npis not
cordial.

Lemma 4.2. If n = 3 (mod 4) and odd m, then C, + Ny, is not cordial.
Proof. It is easy to verify that the degree of all vertices of the graph
Crn+ Ny, when n = 3 (mod 4) and odd m are odd and |V'|+|E| is congruent
to 2(mod 4), where |V| is the order of C,, + Ny, and |E| is a size of Cr, + Ny
(which is mentioned in example 3.1). Hence C,, + Ny, is not cordial.
Theorem 4.3. The join of the cycle Cp, and the null graph N,, is cordial
for all n and all m if and only if n is not congruent to 3(mod 4) and odd
m, or when 7 is not congruent to 2(mod 4) and even m.

Proof. The proof follows directly from theorem 4.1, example 4.1 and last
lemmas.

Theorem 4.4. The union of the cycle Cy, and the null graph N,,, is cordial
for all n and all m except n = 2 (mod 4).

Proof. Bu using the label of the cycle C,, and the null graph N, is Table
4.1 of theorem 4.1 and the fact that vp —v; = (zo — 1) + (yo — ¥1) and
eo—ey = (ap—ay)+ (bo—b1) = ap—a1, we can compute the values shown in
the last two columns of Table 4.3. Since these are all 0,1 or -1, the theorem
follows

n=4r+1, | m=4s+7j,
i=0,1,3 j=0,1,2,3 Cn Nm Vp—V1 | e—e
0 0 Ao | Bo 0 0
0 1 Ay | By 1 0
0 2 Ay | By 0 0
0 3 Ao | Bs 1 0
1 0 A, | Bo -1 1
1 1 A | By 0 1
1 2 A | By -1 1
1 3 Ay | B 0 1
3 0 As | By -1 -1
3 1 As | By 0 -1
3 2 As | B2 -1 -1
3 3 Az | Bs 0 -1

Table 4.3. Combinations of Labelings.

Lemma 4.4. If n = 2 (mod 4), then C, U Ny, is not cordial for all m.

Proof. It is easy to verify that the graph C, U Ny,, is an Eulerian graph,
which has a size of congruent to 2(mod 4) and from Cahit’s theorem (which
is mentioned in the proof of lemma 4.1), we obtain that C, U Ny, is not

168



cordial.

Theorem 4.5. The union of the cycle C,, and the null graph Ny, is cordial
for all n and all m if and only if n is not to congruent to 2(mod 4).
Proof. The proof follows directly from theorem 6.4 and lemma 6.4.

5 Joins and Union of Paths and Null Graphs

In this section, we prove the join of the path P, and the null graph N,,

is cordial for all n and all m, and the union of the path P, the null graph
Ny, is cordial for all n and all m
Theorem 5.1. The join of the P, and the null graph Ny, is cordial for all
n and all m.
Proof. The labelings that we use are given in Table 5.1, along with the
corresponding values of z; and a; or y; and b; (fori = 0,1). Welet n = 4r4i
(for i =0,1,2,3) and m = 2s+ j (for j = 0,1). For given values of 7 and j
with 0 < i <3 and 0 < j < 1, we use the labelings B; for the null graph N,,
and A; for the path P, as given in Table 5.1. Using Table 5.1 and the fact
that vo—v; = (Zo—21)+(¥0—¥1) and eo—e; = (ao—a1)+(zo—1)(yo—¥1),
we can compute the values shown in the last two columns of Table 5.2. Since
are all 0,1, or -1, the theorem follows.

m=2s+ j, | Labeling of
j=0,1 N, Yo |[y|b|h
j=0 By = 0,1, ] s|0foO
j=1 Bl=08+1I, s+1 8 0 0
n=4r+1, | Labeling of
j =07 112’3 Pﬂ. Zo T ag ai
i=0 Ao = L4,- 2r 2r 2r 2r-1
i=1 Ay =1L, 2r 2r+1 2r 2r
i=2 Ay =1L040 [ 2r+1 ]| 2r+1 2r 2r+1
i=3 A3 =L4011 | 2r+1 [ 2r 42 [ 27 4+1 | 2r +1

Table 5.1. Labelings of Paths and Null graphs.
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n=4r+1, | m=2s+j
i=0,1,2,3 j=0,1 Pn Nm Vo—vV1 | €—¢€
0 0 Ao | Bo 0 1
1 0 A | By -1 0
2 0 Aa | Bo 0 -1
3 0 Az | By -1 0
0 1 A | By 1 1
1 1 A | By 0 -1
2 1 A | By 1 -1
3 1 As | By 0 -1

Table 5.2. Combinations of Labelings.

Theorem 5.2. The union P, U Ny, of the path P, and the null graph Ny,
is cordial for all n and all m.

Proof. Using the last labels of the path P, and the null graph N,, in the
Table 5.1 in the last theorem and the fact that vo—v; = (zo—2z1)+(yo—v1)
and ep — e; = (ap — a1), we can compute the values shown in the last two
columns of Table 5.3. Since these are all 0,1, or -1, the theorem follows

n=4r +1i, { m=2s+]j
i=0,1,2,3 j=0,1 Pn Nm Vo—V1 | €0 —€1
0 0 Ao | Bo 0 1
1 0 A | Bo -1 0
2 0 A | Bo 0 -1
3 0 Az | Bo -1 0
0 1 Ao | By 1 1
1 1 A | By 0 0
2 1 A | By 1 -1
3 1 As | By 0 0

Table 5.3. Combinations of Labelings.

6 The Cordiality of Tours Grids

Tours grids are graphs of the form Cp, X Crr(n > 3, 2> 3), which has nm
vertices and 2nm edges. We use the following notation

Ty
vy

T z
T Yy

z I
z Yy

. , where z and y are zero or ones.
Yy
z

|« -

nxm
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Example 6.1. C3 x Cj is not cordial.

Solution. It is easy to see, that the graph C; x Cj is an Eulerian graph of
size 18, which is congruent to 2 (mod 4) and from Cahit’s theorem (which
is mentioned in last sections), we obtain that C3 x Cj3 is not cordial.

The following theorem generalize the last example as.

Theorem 6.1. The graph C, x Cy, is not cordial if 2nm is congruent to
2(mode 4).

Proof. The proof follows directly from Cahit’s theorem and the fact that
the degree of all vertices of C,, x Cy,, are even and its size 2nm.

The following corollaries are the special cases of the last theorem.
Corollary 6.1. If n = 1 (mod 4) and m odd (or vice versa), the graph
Cy X Cpiis not cordial.

Corollary 6.2. If n = 3 (mod 4) and m odd (or vice versa), the graph
Cr % Cp.is not cordial.

Theorem 6.2. If n = 1 (mod 4) and m even (or vice versa), then the
graph C,, x Cp, is cordial.

Proof. Let n = 4r +1 and m = 2s, where » > 1 and s > 1, then the order
of the graphs C, x Cy, is nm = 6rs and its size is 2nm = 12rs +4s. Hence
we label the vertices of the graph C, x C,, as

11. .11

00. .00

.. . . |. It easy to verity that v9 = v; = 3rs + s and
11 . .11

00. .00

€0 = e, = 6rs + 2s for all r and all s. Hence vp —v; = 0 and eg — e; = 0.
This means that C,, x C,, is cordial, the theorem follows.

Theorem 6.3. If n = 3 (mod 4) and m even (or vice versa), then graph
Cr % Cr, is cordial.

Proof. Let n = 4r 4+ 3 and m = 2s, where 7 > 1 and s > 1, then the order
of Cp X Cp is nm = 8rs + 6s and its size is 2nm = 167s + 12s. Hence we
label the vertices of the graph C, x Cp, as

11 . .11
00. .00
e e . It easy to verity that v = v; = 4rs + 3s and
11 . .11
00. .00

eo =e; = 8rs+ 6s for all 7 and all s. Hence vg — vy = 0 and ey — ¢; = 0.
This means that C,, x Cy, is cordial, the theorem follows.

Theorem 6.4. If n = 0 (mod 4), then the graph C,, x C,, is cordial for
all m.

Proof. Let n = 4r, where 7 > 1. Hence we have two cases:

Case (1). m is even, i.e., m = 2s.

We label the vertices of the graph C, x Cp,, as
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11 . .11

00. .00

e e . It easy to verity that vp = v; = 4rs and ¢ =
11 . .11
00. .00

e; = 8rs for all r and all s.

Case (2). mis odd, ie.,, m =2s +1.

We label the vertices of the graph Cp, X C, as

11 . .11
00. .00
e e . It easy to verity that vop = v; = 4rs + 2r and
00. .00
01 01

eo = e; = 8rs+ 4r for all » and all s. Hence from the last cases, we obtain
that vp — v; =0 and ep — e; = 0. This means that C, x C,, is cordial, the
theorem follows.

Theorem 6.5. If n = 2 (mod 4), then the graph C,, x C,;, is cordial for
all m.

Proof. Let n = 4r + 2, where r > 1. Hence we have two cases:

Case (1). m is even, i.e., m = 2s.

We label vertices of the graph C, x Cp, as

11 . .11
00. .00
e e e . It easy to verity that vp = v; = 4rs + 2r and
11 . .11
00. .00

ep = e; = 8rs +4s for all 7 and all s.
Case (2). m isodd, i.e., m =2s+ 1.
We label the vertices of the graph Cp, x Cr, as

11 . .11
00. .00
e e . It easy to verity that vp = vy =4rs+2r+2s+1
00. .00
01 01

and eg = e; = 8rs + 4r + 4s + 2 for all 7 and all s. Hence from the last
cases, we obtain that vg—v; = 0 and eo—e; = 0. This means that C, x Cy,,
is cordial, the theorem follows.

From the last facts,-we can establish the following theorem.
Theorem 6.6. The tours grids C,, x C,, is cordial for alln > 3 and m > 3
if and only if 2nm is not vongruent to 2(mod 4).
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