On Potentially (K5 — Cy)-graphic
Sequences *

Lili Hu , Chunhui Lai
Department of Mathematics, Zhangzhou Teachers College,
Zhangzhou, Fujian 363000, P. R. of CHINA.
jackey2591924@163.com ( Lili Hu)
zjlaichu@public.zzptt.fj.cn(Chunhui Lai, Corresponding author)

Abstract

In this paper, we characterize the potentially (K5 — Cy4)-graphic se-
quences where Ky — Cy is the graph obtained from K by removing
four edges of a 4 cycle C4. This characterization implies a theorem
due to Lai [6).
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1 Introduction

An n-term nonincreasing nonnegative integer sequence 7 = (dy,da, - -+, dp)
is said to be graphic if it is the degree sequence of a simple graph G of order
n; such a graph G is referred to as a realization of 7. We denote by o()
the sum of all the terms of 7. K, is the complete graph on n vertices. C,, is
the cycle of length n. K, — Cy is the graph obtained from K, by removing
4 edges of a 4 cycle C,. Let H be a simple graph. A graphic sequence 7 is
said to be potentially H-graphic if it has a realization G containing H as a
subgraph.

Given a graph H, what is the maximum number of edges of a graph
with n vertices not containing H as a subgraph? This number is denoted
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ex(n,H), and is known as the Turdn number. This problem was pro-
posed for H = C4 by Erdés [1] in 1938 and generalized by Turén [16]. In
terms of graphic sequences, the number 2ez(n, H) + 2 is the minimum even
integer ! such that every n-term graphical sequence 7 with o(7) > I is
forcibly H-graphical. In [3], Gould, Jacobson and Lehel considered the fol-
lowing variation of the classical Turdn-type extremal problems: determine
the smallest even integer o(H,n) such that every n-term positive graphic
sequence 7 = (dy,dy, - - - ,d,) with o(7) > o(H,n) has a realization G con-
taining H as a subgraph. They proved that o(pK2,n) = (p—1)(2n—p)+2
for p > 2; 0(Cy,n) = 2{3872] for n > 4. In [5,6}, Lai determined the values
o(K4 — e,n) for n > 4 and o(Ks — C4,n) for n > 5. Yin, Li, and Mao [14]
determined the values o(K,+; —e,n) forr >3 and r+1 < n < 2r and
o(Ks—e,n) forn > 5. Recently, Yin and Li [15] determined o (K1 —e, n).
Erdos, Jacobson and Lehel [2] showed that o(Kk,n) > (k—2)(2n—k+1)+2
and conjectured that the equality holds. They proved the conjecture is true
for k = 3 and n > 6, i.e., o(K3,n) = 2n for n > 6. The conjecture was
confirmed in {3], (7}, 8], [9] and {10].

Motivated by the above problems, we consider the following problem:
given a graph H, characterize the potentially H-graphic sequences without
zero terms. In [11], Luo characterized the potentially Cj-graphic sequences
for each k = 3,4,5. Recently, Luo and Warner [12] characterized the po-
tentially K,-graphic sequences. In [13], Eschen and Niu characterized the
potentially (K3 — e)-graphic sequences.

In this paper, we characterize the potentially (K5 — Cj4)-graphic se-
quences without zero terms. This characterization implies a theorem due
to Lai [6].

2 Preparations

Let m = (d;,dz,- - -, dy) be a nonincreasing positive integer sequence. Then
7= (dy—1,d2—1,---,dg, — 1,da,+1,"**,dn-1) is the residual sequence
obtained by laying off d,, from 7. We denote the nonincreasing sequence
«' by (d},ds,--+,d,_;). From here on, denote 7’ the residual sequence
obtained by laying off d, from 7 and all the graphic sequences have no zero
terms. In order to prove our main result, we need the following results.

Theorem 2.1 [3] If # = (dy,dp,**-,dn) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization G’
of w containing H as a subgraph so that the vertices of H have the largest
degrees of .

The following corollary is obvious.

Corollary 2.2 Let H be a simple graph. If 7’ is potentially H-graphic,
then 7 is potentially H-graphic.
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We will use Corollary 2.2 repeatedly in the proofs of our main results.
Lemma 2.3 (Kleitman and Wang [4]) 7 is graphic if and only if 7’ is

graphic.

3 Potentially (K5 — C,)-graphic sequences

Our main result is as follows:

Theorem 3.1 Let 7 = (dy,ds, - -, dn) be a graphic sequence with n >
5. Then w is potentially (Ks — Cy)-graphic if and only if the following
conditions hold:

(1) dy > 4.

(2) ds > 2.

(3) ® # ((n — 2)2,2""2) for n > 6, where the symbol z¥ stands for y
consecutive terms z.

(4)  # (n — k,k +4,2¢,1""""2) where i = 3,4,---,n —2k and k =
1,2, (2] - 1.

(5) If n = 6, then 7 # (4,2°).

(6) If n = 7, then = # (4,25).

Proof: First we assume that 7 is potentially (K5 — C4)-graphic. In this
case the necessary conditions (1) and (2) are obvious. we are going to prove
the conditions (3) — (6) by way of contradiction.

If 7 = ((n — 2)%,2""2) where n > 6 is potentially (K5 — Cj)-graphic,
then according to theorem 2.1, there exists a realization G of 7 containing
K5 — C4 as a subgraph so that the vertices of K5 — C; have the largest
degrees of #. Then the sequence 7 = (n — 4,n — 6,2"~%) obtained from
G — (K5 — C4) must be graphic and there must be no edge between two
vertices with degree n — 4 and n — 6 for the realization of n*, which is
impossible. Thus, 7 = ((n — 2)?,2""2) where n > 6 is not potentially
(K5 — C4)-graphic. Hence, (3) holds.

If # = (n - k,k +i,28,1"%2) where i = 3,4,.-.,n -2k and k =
1,2,.-+,[25*] — 1 is potentially (K5 — C4)-graphic, then according to theo-
rem 2.1, there exists a realization G of 7 containing K5 — C; as a subgraph
so that the vertices of K5 — C, have the largest degrees of w. Then the se-
quence 7* = (n—k—4,k+i—2,2"73,1"~=2) obtained from G — (K5 — C4)
must be graphic and there must be no edge between two vertices with de-
gree n — k — 4 and k + i — 2 for the realization of 7*. Thus, n* satisfies:
(n—k—4)+(k+i-2)<2(:i-3)+ (n—1i-2), that is, 0 < (—2), which
is a contradiction. Hence, (4) holds.

If = (4,2%) is potentially (K5 —Cj)-graphic, then according to theorem
2.1, there exists a realization G of 7 containing K5 — Cy as a subgraph so
that the vertices of K5 —Cj have the largest degrees of m. Then the sequence
n* = (2) obtained from G — (K5 — C4) must be the degree sequence of a
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simple graph, which is a contradiction. Thus, = = (4, 2°) is not potentially
(Ks — Cy)-graphic. Hence, (5) holds.

If m = (4, 2) is potentially (K5 —Cj)-graphic, then according to theorem
2.1, there exists a realization G of 7 containing K5 — Cy4 as a subgraph so
that the vertices of K5—C, have the largest degrees of . Then the sequence
7* = (22) obtained from G — (K5 — C;) must be the degree sequence of a
simple graph, which is a contradiction. Thus, = (4, 28) is not potentially
(K5 — C4)-graphic. Hence, (6) holds.

Now we prove the sufficient condition. Suppose the graphic sequence #
satisfies the conditions (1) — (6). Our proof is by induction on n.

First we prove the sufficient condition for n = 5. Since 7 # (42,2%),
then 7 is one of the following sequences:

(4%), (43,3%), (4%,3%,2), (4,3%), (4,3%,2%), (4,2%). It is easy to see
that they are all potentially (Ks — C4)-graphic. Therefore, 7 is potentially
(K5 — Cy4)-graphic for n = 5.

We now suppose that the sufficient condition holds for (n — 1) > 5. We
will prove that it holds for n. Let = (dy,ds,- - -, dn) be a graphic sequence
with n terms that satisfies the conditions (1) — (6). We only need to show
that 7 is potentially (K5 — Cy4)-graphic. If 7’ satisfies the assumption, then
7’ is potentially (K5 — C4)-graphic by the induction hypothesis. Therefore,
7 is potentially (Ks — C4)-graphic by Corollary 2.2. Thus, we consider the
following cases:

Case 1: If 7' = (4,25), then 7 = (5,3,2%) or 7 = (5,25,1). It is easy
to see that both of them are potentially (Ks — Cy)-graphic.

Case 2: If 7’ = (4,25), then 7 = (5,3,2%) or 7 = (5,25,1). It is easy
to see that both of them are potentially (K5 — C4)-graphic.

Case 3: @ = ((n — 3)%,2"3) wheren — 1 > 6.

If d, = 2, then 7 = ((n—2)2,2"~2), which is contradict to condition(8).

Ifd, =1, then 7 = (n — 2,n — 3,2"3,1). We are going to prove that
7 is potentially (K5 — C4)-graphic. First we show it is true forn =6. In
this case, 7 = (4, 3,23,1). It is easy to see that 7 is potentially (K5 — C;)-
graphic. Now we prove that 7 is potentially (K5 — Cy)-graphic for n > 7.
It is enough to show m = (n — 5,n — 6,276, 1) is graphic and there exist
no edge between two vertices with degree n—5 and n —6 for the realization
of m. Hence it is enough to show 72 = (n — 6,1*~%) is graphic. Clearly,
7 has a realization consisting of n — 6 edges and these edges have only one
vertex in common.

Thus, 7 = (n - 2,n — 3,2"~3,1) is potentially (Ks — C,)-graphic for
n> 6.

Case 4: ' = (n—1—k,k+1i,2',1""""3) where i = 3,4,---,n—1 -2k
and k=1,2,---,[252] - L

Ifd,=2thenn—i-3=0and 7 = (n—k,k+1i+1,2*), which is
contradict to condition(4).
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If d, = 1, then 7 = (n — k', k' + i,2¢,1""*~2), which is contradict to
condition(4) .

Case 5: d,, > 4. In this case, 7’ satisfies the conditions (1) — (6). Thus,
7' is potentially (K5 — C4)-graphic. Therefore, 7 is potentially (K5 — Cj)-
graphic by Corollary 2.2.

Case 6: d, = 3.

If d; > 5, then «’ satisfies the conditions (1) — (6). Thus, n’ is poten-
tially (K5 — C4)-graphic. Therefore, 7 is potentially (K5 — C4)-graphic by
Corollary 2.2.

If d; = 4, there are two subcases: dg = 4 and d4 = 3.

Subcase 1: d4 = 4. In this case, d; = dy = d3 = d; = 4. Obviously, #’/
satisfies the conditions (1) — (6). Thus, 7’ is potentially (K5 — C4)-graphic.
Therefore, 7 is potentially (K5 — C4)-graphic by Corollary 2.2.

Subcase 2: dg = 3.

Subcase 2.1: d3 = 4. Then 7 = (43,3"3). Since o(x) is even, n must
be odd. We are going to prove that 7 is potentially (K5 — C4)-graphic. It
is easy to see that 7 = (43,34) is potentially (K5 — Cy)-graphic. If n > 9,
then (43,3"~3) has a realization containing a K5 — C, (see Figure 1).

Thus, 7 = (43,3"~3) where n is odd is potentially (K5 — Cy)-graphic.

Subcase 2.2: d3 = 3.

If d; = 4, then m = (42,3"~2). Since o(n) is even, n must be even. We
are going to prove that = is potentially (K5 — C,)-graphic. It is easy to
see that 7 = (42,3%) and 7 = (42, 3%) are potentially (K5 — C;)-graphic. If
n > 10, then (42,3"~2) has a realization containing a K5 — C; (see Figure
2).

Thus, 7 = (42,3"~2) where n is even is potentially (K5 — Cy)-graphic.

If dy = 3, then m = (4,3"~1). Since o(n) is even, n must be odd . We
are going to prove that 7 is potentially (K5 — C4)-graphic. It is easy to see
that 7 = (4, 3%) is potentially (K5 — Cy)-graphic. If n > 9, then (4,3""1)
has a realization containing a Ks — Cy4 (see Figure 3).

Thus, 7 = (4,3"~!) where n is odd is potentially (K5 — Cy)-graphic.

Case 7: d, = 2 and 7’ # ((n—38)%,2""3) wheren—1> 6, 7’ # (n—1—
k,k+1,2¢,1""*3) wherei = 3,4,---,n—1-2kand k = 1,2, -, [25%] - 1.
7 # (4,25), ' # (4,2%).

If d; > 5, then 7' satisfies the conditions (1) — (6). Thus, =’ is poten-
tially (K5 — C4)-graphic. Therefore, 7 is potentially (K5 — Cy4)-graphic by
Corollary 2.2.

If dy = 4, there are three subcases: da =4, d, =3 and d = 2.

Subcase 1: ds = 4.

If d3 = 4, then 7’ satisfies the conditions (1) — (6). Thus, 7’ is poten-
tially (K5 — C4)-graphic. Therefore, 7 is potentially (K5 — Cy)-graphic by
Corollary 2.2.
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If d3 = 3, then 7 = (42,8%,2"~2-%) wherea > 1 and n—2—a > 1. Since
o(m) is even, a must be even. We are going to prove that = is potentially
(K5 — C4)-graphic.

First, we consider 7 = (42, 32,2"~4). It is easy to see that 7 = (42, 32,22)
and m = (42,3%,23) are potentially (Ks — C4)-graphic. If n > 8, then
(42,32,2"~4) has a realization containing a K5 — Cy (see Figure 4). Thus,
we are done.

Then we consider 7 = (42,3%,2""2-%) wherea >4andn—-2-a> 1.
It is easy to see that = = (42,3%,2) and = = (42,34,22) are potentially
(K5 — Cy)-graphic. If a = 4 and n > 9, then (42,34,2"5) has a realization
containing a Ks — Cy (see Figure 5). If a > 6, then (42,3%,2"~2-%) has a
realization containing a K5 — C; (see Figure 6).

If d3 = 2, then 7 = (42,2"~2). Since 7 # (42,2*), we must have n > 7.
We are going to prove that 7 is potentially (Ks — Cs)-graphic. It is enough
to show m; = (2°~4) is graphic. Clearly, Cy—4 is a realization of 7;. Thus,
we are done.

Subcase 2: da = 3. Then 7 = (4,3%,2""1~%) wherea > 1and n—1-a >
1. Since o(w) is even, a must be even. We are going to prove that = is
potentially (Ks — Cy)-graphic.

First, we consider 7 = (4, 3%,2"~3). It is enough to show m; = (2"~5,12)
is graphic. Clearly, m; is graphic. Thus, = = (4,3%,2""3%) is potentially
(K5 — Cy)-graphic.

Second, we consider 7 = (4,3%,2"75). It is easy to see that 7 = (4, 34, 2)
and m = (4,3%,2%) are potentially (K5 — Cy)-graphic. If n > 8, then
(4,3%,2775) has a realization containing a K5 — Cy (see Figure 7). Thus,
we are done.

Then we consider 7 = (4,3%,2"~17%) wherea > 6andn—1-a > 1. It is
easy to see that m = (4, 3%, 2) is potentially (K — Cs)-graphic. If a = 6 and
n > 9, then (4,3%,27"7) has a realization containing a K5 — C (see Figure
8). Ifa > 8 and n — 1 — a = 1, then (4, 3%,2) has a realization containing
a Ks — Cy4 (see Figure 9). If a > 8 and n — 1 —a > 2, then (4,3%,27—1-9)
has a realization containing a K5 — Cj (see Figure 10). Thus, we are done.

Subcase 3: d; = 2. Then 7 = (4,2""!). Since 7 # (4,2°) and 7 #
(4,2°), we must have n > 8. We are going to prove that = is potentially
(K5 —C4)-graphic. It is enough to show 7y = (2"~°) where n > 8 is graphic.
Obviously, Cp_s is a realization of my. Thus, 7 = (4,2"~1) is potentially
(K5 — C4)-graphic.

Case 8: d, = 1and 7’ # ((n—3)%,2"73), 7’ # (n—1—k, k+i, 2, 17—i-3)
where i = 3,4,---,n —1 -2k and k = 1,2,---,[233] — 1. =’ # (4,25),
' # (4,25).

If d; > 5, then 7’ satisfies the conditions (1) — (6). Thus, 7’ is poten-
tially (Ks — C4)-graphic. Therefore, 7 is potentially (Ks — C4)-graphic by
Corollary 2.2.
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If d; = 4, there are three subcases: dp =4, do = 3 and d; = 2.

Subcase 1: dz = 4. In this case, 7’ satisfies the conditions (1) — (6).
Thus, 7’ is potentially (K5 — C4)-graphic. Therefore,  is potentially (K5 —
C,)-graphic by Corollary 2.2.

Subcase 2: dz = 3. Then 7 = (4, 3%, 2, 1”‘1“"“’) wherea > 1,a+b >4
and n—1—a—b> 1. Since o(w) is even, n — 1 — b must be even. We are
going to prove that = is potentially (K5 — C4)-graphic.

Subcase 2.1: a = 1. Then 7 = (4,3,2% 1"2-%), It is enough to show
7 = (2°3,17~1-?) is graphic. Clearly, m; is graphic. Thus, we are done.

Subcase 2.2: @ = 2. Then 7 = (4,32,2%,1"=3-%), It'is enough to show
m = (2°~2,171-%) is graphic. Clearly, m is graphic. Thus, we are done.

Subcase 2.3: a = 3. Then 7 = (4,3%,2% 1"~4-%), First, we consider
7 = (4,3%,2,1"%) where n is even. It is easy to see that = = (4,3%,2,1)
is potentially (K5 — C;)-graphic. If n > 8, then (4,3%,2,1""5) has a
realization containing a K5 — C4 (see Figure 11). Second, we consider
T = (4,3%,22,176) where n is odd. It is easy to see that m = (4,33, 22,1)
is potentially (K5 — Cy)-graphic. If n > 9, then (4,3%22,1"6) has a
realization containing a Ks — Cy (see Figure 12). Third, we consider
m = (4,3%,23,1""7) where n is even. It is easy to see that w = (4, 33,23,1)
is potentially (K5 —~ C,)-graphic. If n > 10, then (4,3%,2%,1""7) has
a realization containing a K5 — C4 (see Figure 13). Then, we consider
7 = (4,3%,2%,1"747%) where b > 4. In this case, (4,3%,2%,1"4~%) has a
realization containing a K5 — Cy (see Figure 14). Thus, we are done.

Subcase 2.4: @ = 4. Then 7 = (4,3%,2%,17~5-%), There are two sub-
cases: b>1and b=0.

Suppose b > 1. It is easy to see that 7 = (4,3%,2,1"%) and 7 =
(4,34,22,1™"7) are potentially (K5 — Cy)-graphic (see Figure 15 and Fig-
ure 16, respectively). If b > 3, then (4,3%,2% 175-?) has a realization
containing a K5 — Cy (see Figure 17). Thus, we are done.

Suppose b = 0. Then 7 = (4,3%,175). Since o(r) is even, n — 5 must
be even. Clearly, (4,3%,17~%) has a realization containing a K5 — C; (see
Figure 18). Thus, we are done.

Subcase 2.5: a > 5. Then 7 = (4,3%,2%,17~1-%=%) where a > 5 and
n—1—a—b2>1. There are two subcases: > 1 and b=0.

Suppose b > 1.

If a is even, it is easy to see that m = (4,35,2,17~%) has a realiza-
tion containing a Ks — Cy (see Figure 19) . If a = 6 and b > 2, then
(4,35,2%,177-?) has a realization containing a K5 — Cy (see Figure 20).
If a > 8 and b = 1, then (4,3%2,1""2-9) has a realization containing a
K5 — C4 (see Figure 21). If @ > 8 and b > 2, then (4,32, 2b, 17—1-8-8) hag
a realization containing a K5 — Cj (see Figure 22).

If a is odd, it is easy to see that m = (4, 3%,2, 1"~7) has a realization con-
taining a K5 —Cy (see Figure 23). Ifa = 5 and b > 2, then (4, 35, 26, 17—6-b)
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has a realization containing a K5 — Cy (see Figure 24). If e > 7 and b =1,
then (4, 3%, 2, 1"~2-°) has a realization containing a K5 —Cj (see Figure 25).
If a > 7 and b > 2, then (4, 3%,2%,17~1~2-%) has a realization containing a
K5 — Cy4 (see Figure 26). Thus, we are done.

Suppose b = 0. Then m = (4,3%,1*"1~2). Since o(n) is even, n — 1
must be even.

If a is even, it is easy to see that m = (4, 35, 12) is potentially (K5 — C;)-
graphic. If a = 6 and n > 11, then (4,3%,17~7) has a realization containing
a Ks — Cy (see Figure 27). If a > 8, then (4,3%,1"~17%) has a realization
containing a K5 — Cy (see Figure 28).

If a is odd, it is easy to see that 7 = (4,3% 1) and = = (4,37,1) are
potentially (K5 — Cy)-graphic. If a = 5 and n > 9, then (4,3%,17~6) has
a realization containing a K5 — C4 (see Figure 29). If a = 7 and n > 11,
then (4,37,1778) has a realization containing a K5 — Cy (see Figure 30).
If a > 9, then (4,3% 1""1-9) has a realization containing a K5 — C, (see
Figure 31). Thus, we are done.

Subcase 3: dy = 2. Then 7 = (4,2%,1""1=%) wherea > 4 and n—1—a >
1. Since o(7) is even, n — 1 — a must be even. We are going to prove that
7 is potentially (K5 — Cy)-graphic. If a = 4, then 7 = (4,24,1"~5) where
n — 5 is even. It is enough to show m; = (1"~%) is graphic. Clearly, m;
has a realization consisting of 252 disjoint edges. Thus, 7 = (4,24,1"~%)
is potentially (K5 — Cy)-graphic. If a > 5, it is enough to show m =
(2°—%,1~1-9) is graphic. Clearly, m, is graphic. Thus, we are done.

4 Application

Using Theorem 3.1, we give a simple proof of the following theorem due to
Lai [6]):

Theorem 4.1 (Lai [6]) For n > 5, 0(K5 — C4,n) = 4n — 4.

Proof: First we claim that for n > 5,0(Ks — C4,n) > dn—4. It is
enough to show that there exist m with o(m;) = 4n — 6, such that m
is not potentially (Ks — C4)-graphic. Take m = ((n — 1)2,2"~2), then
o(m) = 4n — 6, and it is easy to see that m; is not potentially (K5 — Cy)-
graphic by Theorem 3.1.

Now we show that if 7 is an n-term (n > 5) graphical sequence with
o(m) > 4n — 4, then there exist a realization of 7 containing a K5 — Cj.
Hence, it suffices to show that = is potentially (K5 — Cy)-graphic.

Ifds = 1,theno(n) =d1+do+d3+ds+(n—4)and dy +dp+d3+dy <
12 + (n — 4) = n + 8. Therefore, o(7) < 2n + 4 < 4n — 4, which is a
contradiction. Thus, ds > 2. :

If d) < 3, then o(m) £ 3n < 4n — 4, which is a contradiction. Thus,

d > 4.
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Since o(m) > 4n — 4, then 7 is not one of the following:

(n—-2)%,2""2) for n > 6, (n—k, k+1,2¢,1""*~?) where i = 3,4,--- ,n—
2kand k= 1,2,---,[257%]-1, (4,2°), (4, 26). Thus, 7 satisfies the conditions
(1) — (6) in Theorem 3.1. Therefore, 7 is potentially (K5 — C,)-graphic.
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