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Abstract. Multireceiver authentication codes allow one sender to construct an authenti-
cated message for a group of receivers such that each receiver can verify authenticity of
the received message. In this paper, we constructed two multireceiver authentication codes
from symplectic geometry over finite fields. The parameters and the probabilities of de-
ceptions of the codes are also computed.

§1 Introduction

Multireceiver authentication codes (MRA-codes) are introduced by Desmedt,
Frankel, and Yung (DFY) IY) as an extension of Simmons’ model of uncondition-
ally secure authentication. In an MRA-codes, a sender wants to authenticate a
message for a group of receivers such that each receiver can verify authenticity of
the received message. There are three phases in an MRA-codes:

1. Key distribution. The KDC (key distribution centre) privately transmits the
key information to the sender and each receiver (the sender can also be the KDC).

2. Broadcast. For a source state, the sender generates the authenticated mes-
sage using his/her key and broadcasts the authenticated message.

3. Verification. Each user can verify the authenticity of the broadcast mes-
sage.

Denote by X; x -+ x X, the direct product of sets Xj,---, X,, and by p; the
projection mapping of X; x: - -XX,, on X;. Thatis, p; : X;x- --xX,, — X, defined by
pi(x1, %2, +, %y) = x;. Let g : X; — ¥ and g2 : X; — Y be two mappings, we
denote the direct product of g; and g2 by g1 X g2, where g; Xg; : X; xX; = Y| XY,
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is defined by (g1 X g2)(x1, x2) = (g1(x1), 82(x2)). The identity mapping on a set X
is denoted by 1y.

Let C = (S, M,E, f) and C; = (S, M, E;, fi),i = 1,2, ..., n, be authentication
codes. We call (C;C;,C,,---,C,) a multireceiver authentication code (MRA-
code) if there exist two mappings 7 : E — E;X---XEpandnw : M = M X---XMn
such that for any (s,e) € S X E and any 1 < i < n, the following identity holds

pi(nf(s,€)) = fil(ls X pir(s, €)).
Let 7; = p;r and n; = pi. Then we have foreach (s,e) € S X E
mif(s,€) = fils X Ti)(s, €).

We adopt Kerckhoff’s principle that everything in the system except the actual
keys of the sender and receivers is public. This includes the probability distribu-
tion of the source states and the sender’s keys.

Attackers could be outsiders who do not have access to any key information,
or insiders who have some key information. We only need to consider the latter
group as it is at least as powerful as the former. We consider the systems that
protect against the coalition of groups of up to a maximum size of receivers, and
we study impersonation and substitution attacks.

Assume there are n receivers Ry,---,R,. Let L= {i1,---, 4} € {1,:--,n}, R, =
{Ri,-+,Ry} and E; = Eg, X ---X Eg,. We consider the attack from R; on a
receiver R;, where i ¢ L.

Impersonation attack: Ry, after receiving their secret keys, send a message m
to R;. Ry is successful if m is accepted by R; as authentic. We denote by P;[i, L]
the success probability of R, in performing an impersonation attack on R;. This
can be expressed as

P;[i, L] = max max P(m is accepted by R;ler)
et€E; meM

wherei ¢ L.

S ubstitution attack: Ry, after observing a message m that is transmitted by the
sender, replace m with another message m’. Ry is successful if m’ is accepted by
R; as authentic. We denote by Pgs[i, L] the success probability of Ry in performing
a substitution attack on R; . We have

Ps[i, L] = max max max P(R; accepts m’|m, e
S[, ] eL6E; meM m'EmeM ( i P | y L)

wherei ¢ L.
§2 Symplectic Geometry

Let F, be a finite field with g elements, n = 2v and define the 2v X 2v alternate

matrix
0 »
K = ( _ I(y) 0 ).
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The symplectic group of degree 2v over F;, denote by S py,(F,), is defined to be
the set of matrices
S p2(®,) = (TITK'T = K}
with matrix multiplication as its group operation. Let ]Ff,z") be the 2v-dimensional
~ row vector space over F,. S py,(F,) has an action on F” defined as follows
]FEJZV) xS sz(]Fq) - F?v)
((x1, %2, ...y X20), T) = (X1, X2, ..., X2))T.
The vector space Ff,z") together with this action of S p,,(F,) is called the symplec-
tic space over F,.

Let P be an m—dimensional subspace of FS”. We use the same latter P to
denote a matrix representation of P, i.e., P is an m X 2y matrix of rank m such that
its rows form a basis of P. The PK'P is alternate. Assume that it is of rank 2s,
then P is called a subspace of type (m, s). It is known that (see [2]) subspaces of
type (m, s) exist in FS” if and only if

2s<msv-s.
It is also known that subspaces of the same type form an orbit under S p;,(F,).
Denote by N(m, s; 2v) the number of subspaces of type (m, s) in ]Fff"’.

Denote by P* the set of vectors which are orthogonal to every vector of P,
ie.,

Pt =y e F?yK'x = Ofor all x € P).
Obviously, P* is a (2v — m)-dimensional subspace of Pff"’.

More properties of symplectic geometry over finite fields can be found in [2].

In [3], Desmedt, Frankel and Yung gave two constructions for MRA-codes
based on polynomials and finite geometries, respectively. There are other con-
structions of multireceiver authentication codes are given in [4],[5]. The con-
struction of authentication codes is combinational design in its nature. We know
that the geometry of classical groups over finite fields, including symplectic ge-
ometry, pseudo-symplectic geometry, unitary geometry and orthogonal geometry
can provide a better composite structure and easy to count. In this paper we con-

structed two multireceiver authentication codes from symplectic geometry over
finite fields. The parameters and the probabilities of deceptions of the codes are

also computed.

§3 Construction

Construction I
Let F, be a finite field with g elements and e;(1 < i < 2v) be the row vector

in Pf,z") whose i—th coordinate is 1 and all other coordinates are 0. Assume that
l<n<r<v. U={e,ez e, ie, U is an n—-dimensional subspace of
F® generated by €1, €2, , €s, then U* = ey, -+, &,, €y4ns1, -, €2,). The set of
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source states S ={s|s is a subspace of type (2r —n,r—n) and U C s C U*}; the set
of transmitter’s encoding rules Ey={er|er is a subspace of type (2n,n), U C er};
the set of ith receiver’s decoding rules Eg ={eg,ler, is a subspace of type (n + 1, 1)
which is orthogonal to {e1,-- -, €i-1, €41, *,en), U C eg},1 < i < n; the set of
messages M={m|m is a subspace of type (2r,7r), U C m}.

1. Key Distribution. The KDC randomly chooses a subspace er € Er, then
privately sends er to the sender 7. Then KDC randomly chooses a subspace
eg, € Eg, and eg, C er, then privately sends e, to the ith receiver, where 1 < i < n.

2. Broadcast. For a source state s € S, the sender calculates m = s + er and
broadcast m.

3. Verification. Since the receiver R; holds the decoding rule eg,, R; accepts
m as authentic if eg, C m. R; can get s from s = m N U+,

Lemma 3.1 The above construction of multireceiver authentication codes is
reasonable, that is

(1) ster=meM,foralls€S ander € Er;

(2) forany m € M, s = mn U* is the uniquely source state contained in m
and there is ey € Er, such thatm = s + er.

Proof: (1) For s € S, er € Er, from the definition of s and er, we can assume
that

, ™ 0 0
s=(U) " and (U)K(U)= o o o |,
Q] xrm e/ \@ 0 -I*m 0

U v\, (U 0o ™
er=( V) (V)x()=(0 )

Obviously, forany v e Vandv # 0, v ¢ s, therefore,
0 I® 0 0

U vy '(u ®
m=ster=| v l,and| v k| Vv || O ¢ v
0 0o [
Q Q Q 0 * - I(r—n) 0
From above, m is a subspace of type (2r,r)and U C m, i.e., m € M.

(2) For m € M, m is a subspace of type (2r,r) containing U. So there is
subspace V C m, satisfying

(V)e()-( )
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U
Then we can assume that m = [ |4 ] , satisfying
Q

0 I® 0 0

¢
el V)l o o o
=l o o o g

Q Q 0 0 - I(r—n) 0

Lets = ( g ), then s is a subspace of type 2r - n,r—n)and U c s ¢ U*,

ie., s € § is a source state. Forany v € Vandv # 0, v ¢ s is obvious, i.e.,

VvnUL = {0} Therefore,an*=( g)=s.Leter=( g),theneyisa

transmitter’s encoding rule and satisfying m = s + er.

If &’ is another source state contained in m, then U c &' ¢ U+, Therefore,
s cmnN Ut = s, while dims’=dims, so s'=s, i.e., s is the uniquely source state
contained in m.

From Lemma 3.1, we know that such construction of multireceiver authen-
tication codes is reasonable and there are n receivers in this system. Next we
compute the parameters of this codes.

Lemma 3.2 The number of the source states is |S| = N(2(r—n), r—n; 2(v—n)).

Proof: Since U c s c Ut s has the form as follows

s= ™ 0 0 0 n
0 @ 0 G4/ 2-n
n n

v-n

v-n
where (93, Q4) is a subspace of type (2(r—n), r—n) in the symplectic space Fg("‘"’.
Therefore, the number of the source states is |S| = NQ(r — n), r = n; 2(v — n)).

Lemma 3.3 The number of the encoding rules of transmitter is |Er| = g%*-™,
Proof: Since er is a subspace of type (2n,n) containing U, er has the form

as follows
e_(l(") 0 0 O)n
T=V 0 R I™ Ry ) n
n v=n n v-n

where Ry, R4 arbitrarily. Therefore, |Er| = >,

Lemma 3.4 The number of the decoding rules of ith receiver is |Eg | = g2*~™,

Proof: Since the ith receiver’s decoding rules e, is a subspace of type (n +
1, 1) containing U and eg, is orthogonal to (e, -, e;-1, €41, -, €,). SO we can
assume that eg, = ‘(ey,+--, €, u), Where u = (x; x -+ xz,). Obviously, x; =
e = Xy = Xprl = vt = Xyiel = Xywiel = 00 = Xyyn = 0, Xy = 1, and
Xntls® s Xys Xyansl, * ** » X2y arbitrarily. Therefore, |Eg | = g2,

Lemma 3.5 (1)The number of encoding rules ez contained in m is g2""-™;
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(2)The number of the messages is |M| = g N(2(r - n), r — n; 2(v - n)).

Proof: (1) Let m be a message. From the definition of m, we may take m as

follows
m 0 0 0 0 O

m= 0O I™» 0 0 0 0

-1 0 0 0™ o0 O

0 0 0 0 ™" ¢
n r=n v-r n r-n y=-r

If ez C m, then we can assume that

or = ™ 0 0 0 0 O0)a

TSV 0 R, 0 I™ Rs 0
n r-n v=r n r—-n y=r

where R,, Rs arbitrarily. Therefore, the number of er contained in m is g2,

(2) We know that a message contains only one source state and the number of
the transmitter’s encoding rules contained in a message is g2""~". Therefore we
have |M| = IS||Er|/q?"*~" = g*"*~N(2(r - n),r = m;2(v - n)).

Theorem 3.1 The parameters of constructed multireceiver authentication codes
are

’
n

| S |= NQ(r - n),r—n;2(v — n));
|Erl = ¢™;

1=
M| = gD NQ(r - n),r — n;2(v — n)).

Assume there are n receivers Ry, -+, Ry. Let L = {iy,+ -+, i} S {1,---,n},RL =
{Ri,,+-+ Ry} and EL = Eg, X -+ X Eg,. We consider the impersonation attack
and substitution attack from Ry on a receiver R;, where i ¢ L.

Without loss of generality, we can assume that Ry = {Ry,--, Ry}, E = Eg, X
-++X Eg,, where 1 <! < n — 1. First, we will proof the following results:

Lemma 3.6 For any ¢; = (eg,,***,er,) € Er, the number of er containing e,
is q2(n—l)(V-n).
Proof: For any ez = (eg,,"*,€r,) € EL, we can assume that
0 0O 0 0 o0
ee=| 0 I 0 0 0 O
0 0 R I 0 R
{ n-| v-n I n=l v-n
Therefore, er containing e, has the form as follows
™ o 0 0 0 O
| 0 “h o0 0 0 0
eT=l 0 0 R I® 0 Rs|’
0 0 Ry O 1@=H Ry
i

n-{ v=n ! n=-l y-n
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where R}, R}, arbitrarily. Therefore, the number of ey containing e, is g2®-%-™,
Lemma 3.7 For any m € M and ey, eg, C m,
(1) the number of er contained in m and containing e, is -7,
(2) the number of er contained in m and containing ey, eg, is g2*~=Xr-n),
Proof: (1) The matrix of m is like lemma 3.5, then for any ¢; C m, assume

that
™ o0 0 0 0 0 O0 O

e={ 0 I 0 0 0 0 0 0].
0 0 R 0I% 0 R O

! n-l r-n v-r | p-l ren v-r
If er ¢ mand er D e, then
M 0 0 0 O 0 0 0
o ™> 0 0 0 0 0 0
10 0 R 0 I® 0 R, O]
0 0 R, 0 0 /) R 0

where R3, R; arbitrarily. Therefore, the number of er contained in m and contain-
ing e, is g2 0r-m,

(2) Similarly, we can proof that the number of er contained in m and contain-
ing ey, eg, is g2~1-D-m,

Lemma 3.8 Assume that m; and m; are two distinct messages which com-
monly contain a transmitter’s encoding rule er. s, and s; contained in m; and m,
are two source states, respectively. Assume that so = sy N 53, dim s¢ = %, then
n <k £2r-n-1. For any e, e, C m; N my, the number of ey contained in
my N my and containing ey, eg, is g®*~~V&",

Proof: Since m; = s, + er,my = s + er and m; # my, then 5; # 52. And
for any s € S,s D U, therefore, n < k < 2r — n — 1. Assume that s is the
complementary subspace of so in the s;, then s; = sp + 5 (i = 1,2). Fromm; =
Sit+er= So+.s‘§+e1~ and s; = m; NU*, we have sp = (m. ] U")ﬂ(mz n U"') =
mNmaNU*L = siNmy = s,0my and myNmy = (s+er)Nmy = (S0+S; +er)Nmy =
((so + er) + 57) Nmy . Because so + er C my ,my Nmy = (so + er) + (s} Nmy) .
While si Nmy S sy Nmy =50, myNmy =59 +er.

From the definition of the message, we may take m;(i = 1, 2) as follows

™ 0 0 0 n
e = 0O Ppb 0 O r-n
Y10 0 I™ 0 |
0 0 O Py rn

n v—-n n v—n
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Let

™ 0 0 0 n
0 P, 0O O | r
mNnmy= 0 02 I(n) 0 "’l ’
0 0 0 P, r-n
n v-n n v-n

from above we know that my N"\my = so+er, then dim (m; Nmy) = k+n, therefore,

. {0 P, O 0 )_
dlm(o 0 0 P4)_k-n°

For any e., eg, C m) N my, we can assume that

® 0 0 0 0 O
eL= [ 0 1 0 0 0 O s
0 0 R I 0 Rg)

! n-| v-n | n-l v-n

9 0 0 0 0 0 0 :
ep, = [ 0 I™ 0 0 0 0 0 | at

0 0 R; 0 1 0 Rg) 1

1 n=l v-n -1 1 n-i v-n

If er € my N my and ey, e, C er, then er has the form as follows

% 0 0 O 0 0 O 0 i
0 b 0 0 0 0 0 0 n-l
|0 0 Ry I ? 0 0 0 Rs l
710 0 ¢ 0 I“FD 0 0 Ce | i
0 0 R 0 0 1 0 R, 1
0 0 C; 0 0 0 [) Cf) ni
i n=l v-n 1 i=I=1 1 n-i v-n

So it is easy to know that the number of ey contained in m; N m; and containing
ey, eg, is gI-Nk-",

Theorem 3.2 In the constructed multireceiver authentication codes, the largest
probabilities of success for impersonation attack and substitution attack from Ry,

on a receiver R; are

, 1 , 1
Pili, L] = q2(n—1)(v—r)+2(r-n) ’ Ps [" L] = q2r—n—l-|

respectively, where i ¢ L.
Proof: Impersonation attack: Ry, after receiving their secret keys, send a
message m to R;. Ry is successful if m is accepted by R; as authentic. Therefore

rneax |{er € Erler c mand er D e, ep,} |]
m

{{er € Erler D eL} |
q2(n-l—l)(r-n)

qZ(n—l)(v-n)

hmu=$%{
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1
= D)

S ubstitution attack: Ry, after observing a message m that is transmitted by
the sender, replace m with another message m’. Ry, is successful if m’ is accepted
by R; as authentic. Therefore
{"1‘33‘4 |{er € Erler c m,m’ and er > ey, eg,) I}

m

Pgli, L] = max max

eL€Ep meM |{er € Erler Cmander Der} |

B q(n-l-l)(k—n)

- nsk?zefn—l q*n=Dir-n)
1

q2r—n-l—l

Construction II

Assume that 1 < n < v, U = (e1,e2,-* ", €p), ie., U is an n—dimensional sub-
space of Fff") generated by e;,ez,---, €, then Ut = (e, -+, ey, €ysnsts ", €20).
The set of source states S ={s]s is a subspace of type (2(v—n),v—n) and s c U*};
the set of transmitter’s encoding rules Er={erler is an n—dimensional subspace
and U + er is a subspace of type (2n, n)}; the set of ith receiver’s decoding rules
Ep,={erler, is an 1-dimensional subspace and U + e, is a subspace of type
(n + 1, 1) which is orthogonal to {e|,*-*,ei_1,€i+1,"**,€p)}, | < i < n; the set
of messages M = {m|m is an (2v — n)-dimensional subspace and m* € Ey}.

1. Key Distribution. The KDC randomly chooses a subspace ey € Er, then
privately sends er to the sender 7. Then KDC randomly chooses a subspace
eg, € Ep, and eg, C er, then privately sends eg, to the ith receiver, where 1 < i < n,

2. Broadcast. For a source state s € §, the sender calculates m = s + ey and
broadcast m.

3. Verification. Since the receiver R; holds the decoding rule eg,, R; accepts
m as authentic if eg, C m.

Lemma 3.9 The construction II is reasonable.

Proof: For s € S, er € Er, from the definition of s and ey, we can assume

that
A I*™ 0 0
“(B 0o 0 1(*-'0)'
n v=n n v-n
er=(X X I X, ).
n v-n n v=n
Then

A I 0 0
m=s+er=|B 0 0 Io-m
Y 0 1@ 0
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where Y = X; — X2A — X4B. Therefore, m is an (2v — n)—dimensional subspace
andm* =(Y ‘B I™ -'A)eEr,ie,meM.

For m € M, m* € Er, then (mN U*)* = m* + U is a subspace of type (2n, n).
Therefore, m N U+ is a subspace of type (2(v — n),v—n). Let s = mn U+, then
s € §. We can assume that

A IO 0 0 .
m=]y{B 0 0 I | s:mﬂU"=(2 o 1(211)).
Y 0 I™ o 0 0

Let ez=(Y 0 1™ 0 ) , then er is an n—dimensional subspace and U + ey
is a subspace of type (2n, n). Therefore, er is an encoding rule of transmitter and
satisfying s + er = m.

If & is another source state contained in m, similar to the proof of the lemma
3.1, we have s'=s, i.e., s is the uniquely source state contained in m.

Theorem 3.3 The parameters of this construction are

IS| = qD!(v—n); |E7| = qn(Zv—n); |Eg,| = qZV-n; M| = qn(2v—n).

Proof: From the proof of the lemma 3.9, for any s € S,er € Er, 5, er have

the form as follows

A I*™ 0 0
“(B 0 0 1o ) er=(X X 17 X )

respectively. Therefore, |S| = g™, |Er| = ¢"®~™. Since m € M if and only if
m* € Er, we have |[M| = |Er| = ¢"®@-",
For any eg, € Eg,,
ex=(R R 01 0 Ri).
n v-n i-1 1 n-i v-n
Therefore, |[Eg,| = 2.
Similar to the lemma 3.6-3.8, we have the following three lemmas.

Lemma 3.10 For any e, = (eg,,***,er) € EL, the number of er containing
eL is q(n-l)(2v—n).

Lemma 3.11 For any m € M and ez, eg, C m,

(1) the number of e contained in m and containing e, is g**~P0-n;

(2) the number of er contained in m and containing e, eg, is g?®*~-D0-m,

Lemma 3.12 Assume that m; and m, are two distinct messages which com-
monly contain a transmitter’s encoding rule er. s and s, contained in m; and m;
are two source states, respectively. Assume that sp = s) N s2, dim sp = %, then
0 < k < 2(v—n) - 1. For any e, eg, C m; N my, the number of e7 contained in

my N my and containing ey, eg, is gD,
Theorem 3.4 In the construction II, the largest probabilities of success for
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impersonation attack and substitution attack from R; on a receiver R; are

. 1 , 1
Pili,L] = mw—_”)y Psli, L] = P

respectively, where i ¢ L.
Proof: Impersonation attack:

max | {er € Erler Cmand éer D eL,eR,l |
N meM
Py[i, L) = max
ecEy |ler € Erler D ey} |
q2(n—1—l)(v—n)
PP

1
= gD+ 2-n)"

S ubstitution attack:

Pg[i, L) = max max

eL€EL meM

max | {er € Erler Cm,m’ and er D e, e} |
|{er € Erler Cmander D e} |

n-I-1)

= max ————
Osks2(v-n)=1 @2=D(v=n)
1

q2v—n—l- 1
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