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Abstract

We study the independence number of the Cartesian product of binary
trees and more general bipartite graphs. We give necessary and sufficient
conditions on bipartite graphs under which certain upper and lower bonds
on the independence number of the product are equal. A basic tool will
be an algorithm for finding the independence number of a binary tree.

1 Introduction

In several recent papers ([2], [3],[4], and [5])) the authors investigate the inde-
pendence number of the Cartesian product of graphs. Our purpose here is to
continue this study, concentrating on the independence number of the Cartesian
product of binary trees and more general bipartite graphs. One technique used
to find the independence number of Cartesian products is to calculate lower and
upper bounds on the independence number and then investigate all possibilities
in between. To simplify this process, we give necessary and sufficient condi-
tions for the equality of lower and upper bounds for certain classes of bipartite
graphs and consider when the diagonal method (defined below) yields the in-
dependence number of the Cartesian product. We also define an algorithm for
finding the independence number of a binary tree and prove it gives a maximum
independent set.

Notation 1 For vertices g and h of a graph, g ~ h will mean that g and h are
adjacent.

For graphs G and H, the Cartesian product, G O H, is the graph with
vertex set G x H and edge set E defined by (gh,¢g'h’) e EGO H) iffg=¢'
and h ~ h' or g ~ ¢’ and h = I'. A set, S, of vertices in a graph is called an
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independent set of vertices if no pair of vertices in S is adjacent. A set, U, of
edges in a graph is called an independent set of edges, or matching, if no pair of
edges in U is coincident. The size of a maximum independent set of vertices in
a graph G is called the independence number and will be denoted by a(G); the
size of a maximum matching of a graph G is called the matching number and
will be denoted 7(G). A k-independent set is the disjoint union of k independent
sets of vertices; the size of the maximum k-independent set in the graph G will
be denoted ax(G). We define @(G) = max{a(G\S)}, where the maximum is
taken over all maximum independent sets S.

Whenever W is a set of vertices in a graph G,we shall write w = |W|. For
an induced subgraph W of G, we write |W| = |V/(W)].

Remark 2 We summarize a few relevant results:
1. [7] For any graphs G and H,
a(GOH) < min{a(G) |H|, «(H)|G| }

2. [4] For any graphs G and H,
o(GOH) < 7(G)az(H) + (|H| - 2r(H)) a(G)

3. [2]) If C,, represents a cycle on n vertices, then

o(Cok+10Com+1) = k(2m + 1), wherel <k <m

4. 4 If G = Vi + Vo and H = W) + W, are bipartite graphs such that
a(G) = |V1| and a(H) = |W,| then

o(GOH) = |V| [W1] + V2] [We|

We consider several techniques used in the literature. For a vertex h € H, let
G* = {(g,h) : g € G}. If S is an independent set of vertices in GOH and
H = {hy,ha,....,hn}, then we represent S as § =< 5%,52,...,5" >, where §* =
S N G*. Another technique, useful in finding lower bounds for a(GOH), is to
use a diagonal procedure [4]. Let G and H be graphs, set Gy = G and H; = H,
and pick 4; and B;, maximal independent sets in G; and H) respectively. Let
G2 = G1\A; and Hy = H; \ B; and select maximal independent sets Az in
G, and B, in H,. Continue until we arrive at graphs G, and Hj such that

V(Gk) = Ax or V(Hy) = Bi. Then U (A; x B;) is a maximal independent set

in GOH. Now, let A(GOH) = ma.x{z |A;] |Bi]}, where the maximum is over
all possible selections. Then A(GOH) < a(GOH). This gives a lower bound for
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o(GOH). For bipartite graphs, G = V; + V5 and H = W, + W,, there are three
approaches to finding the largest maximum independent set using the diagonal
procedure.

a. Bipartite approach: returns ((V; x W)U (Vo x Wy)).

b. Greedy approach: pick the largest independent set at each step in the

diagonal procedure.
c. Alternate approach: use the diagonal procedure, picking a maximal inde-

pendent set at each stage.
Klavzar [4] gives examples showing that each approach may yield the exact

value for a(GOH).

In the sequel we are partially motivated by the following open problem [4]:
characterize the graphs or bipartite graphs G and H for which a(GOH) =

A(GOH).

2 Binary trees

As is usual, a free is a graph which has a unique path from a designated vertex
(called the root) to any vertex. We assume the reader is familiar with the
standard definitions of sibling, parent, children, level, and leaves. (See, for
example, [6].) We follow [6] in the following definition of a binary tree. (Notice
that some authors define binary trees differently.)

Definition 3 A tree is binary if each vertex has zero or ezactly two children.
The height of a tree is the length of the longest path sterting from the root. A
tree of height h is called full if all the leaves are at level h.

Proposition 4 Let G and H be full binary trees.

1. If G and H both have odd height, then o(GOH) = 5/4a(G)a(H)

2. If both G and H have even height then o(GOH) = 5/4a(G)a(H) -
1/40(G) — 1/4a(H) +1/4

3. If G has even height and H odd, then «(GOH) = 5/4a(G)a(H)-1/4a(G)

Proof. These results follow from Remark 2 (4) above, the fact that for full
binary trees, a(G) = V; and a(H) = W}, and also from the easily proved result
that if G is full and has odd height then &(G) = 1/2a(G), while if G has even
height then &(G) = 1/2(a(G) —1). m

The greedy algorithm below finds a maximum independent set in a (not
necessarily full) binary tree. For a binary tree with root r and vertex set V, we

shall use the following notation:
For 0 < k < h, let Vi = {v € V : distance from v to r is exactly k}, let

ng = [Vi|, and label Vi = {v(x,1), Y(k,2)s - ¥(kni) }- If v € V and v is not a leaf,
then v! and v? will denote the two children of v.
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Algorithm 5

Input: T a binary tree with root r, height h, vertex set V.
Begin
Set S=¢
For j = 1 to ny, add v(p ;) to S. End for.
For count = h — 1 downto 0 do
For j = 1 t0 Neount doO
If Y(count,j) is a leaf, then add v(count,j) to S
Else
If v(mnt j) is not in § and 'u(cmm,a) is not in S,
then add Y(count,j) t0 S.
End if
End for
End for
Return S
End

Theorem 6 S is a mazimum independent set.

Proof. Clearly, S is an independent set of vertices. Assume there is a set S’
which is of maximum size. Then |S]| < |S’| . Using the notation of the algorithm,
for each j = 1..h, label S; =V; NS and S} = &' NV;. We prove that for every

, 85 =8} , from which it will follow that S s

For j = h, consider a pair of siblings, z = v! and y = v?, where v € V}_;.
Then both z and y are in S, by the algorithm. We claim both z and y are in
S;. If one of them, say v, is not in S}, then if v ¢ Sj,_;, then {y}U §' is an
mdependent set and |{y} US’| > || Thus, if y ¢ S}, then v € S;_, and so by
the independence of ', = ¢ S,. That is, if one of z or y is not in S}, then neither
is the other and v € S} _;. But if v € S},_,, consider $” = (§'\{v}) U {z,y}. If
v is the root, then S” is an independent set and |S”| > |S’|, while if v is not
the root, v's parent cannot be in S;,_, so that again S” is an independent
set and |S”| > |S’]. So, whether or not v is the root, we reach a contradiction,
and therefore both z and y must be in S}, . Since every pair of vertices with
distance h to the root must both be in S and in Sh, Sh =S}

Assume that for all levels j from h down to h — k, S; and S} are not only
the same size, but are the same sets. We show Sh—k—l = Sn-k_

If h—k—1 = 0, then if at least one child of 7, say rl isin S} _x = Sh—k, then
by the algorithm, r ¢ Sh—k-1 and since S’ is an mdependent set, T € Sh_p_1
50 Sh_k—1 = Sh_s_, = ¢. If neither r! nor r? is in Sp_x = s;,_k, then by the
algorithm, r € Sp_x—_1, and since S’is a maximum independent set, 7 € S} _,._;.
Thus, S}_,_; = Sh—k-1 = {r} and again the sets agree.

Now assume h— k —1 > 0 and let £ = v! and y = v? be siblings at the
(h — k — 1) level. We consider three possibilities: that both z and y are leaves;
that exactly one is a leaf; and that neither is a leaf. In each case we show that

208



ZE€Shr-1iffz€S;_;_, and y € Sp—x-1 iff y € 5, _,_,. Since we do this for
every pair of vertices, it will follow that Sy =S} _,_;.

Case 1. If both z and y are both leaves, then using the same argument as
for Sk, = and y are both in S} _,_; and also in Sp_x_;.

Case 2. If z is a leaf and y is not & leaf, then z € Sj_k_; by the algorithm
and we label the two children of y, y! and y?. We first consider the subcase
that at least one of y's children, say y!, is in Sp—x = S,_,. Then, since
and §’ are independent sets of vertices, y ¢ Sp—x-1 and y € S},_,_,. Now, if
. = ¢8}_,_;, then since z is a leaf and z = v! and y = v? , it follows that v €

h—k—2- (Otherwise §” = S’ U {z} would be an independent set larger than
S'.) Consider S” = (S'\{v}) U {z}. If v is the root then S” is independent
and |S”| = |§’|. If v is not the root, then since v € §}_, _,, the parent of v is
not in S,_,_3 and so, again, S” is independent and |S”| = |$’| . Without loss
of generality, we replace S’ by §”. Then z isin S},_,_, and in Sp_k—; ,while y
is in neither Sp_x—y nor S;_,_;

For the remaining subcase of 2, assume z is a leaf, y is not a leaf, and neither
child of y is in S« (and so not in S},_; by the induction hypothesis). Then by
the algorithm, y € Si_x-1 and since z is a leaf, we also have z € Sy_x_;. We
claim both z and y are in S},_;_,. The proof follows exactly as in Casel.

Case 8. Now, if neither = nor y is a leaf, then each has two children. We
consider the subcases that z and y each has a child in S,_, that neither has
a child in Sh—&, and that exactly one has a child in Sy—¢. If z and y each has a
child in Sp—, then that child is in S} _, by induction, and so by independence,
« is neither in Sh_k-1 nor in Sj_,_,; and y is neither in S_x_; norin S},_,_,
(sothat £ € Spx-1 iffz € S},_,_;andy € Sp_s_1 iff y € S_,_,). If neither =
nor y has a child in S,_x, then by the assumption, neither has a child in Sh—-
By the algorithm, it follows that = € Sy_x—1 and y € Sz_x—;. We claim both
z and y are in S}_,_,. Again, this proof follows exactly as in the Case 1.

For the final subcase of 3, assume z and y each has exactly two children,
and say z has a child in Sh—x (so in S},_;) while y has no children in S_x (so
none in S},_,). Then by the algorithm, z ¢ S,_x—; and y € Sj,_x_;. We claim
T ¢S} y-yandy€S;__; Sincez hasachildin S},_,, z ¢ S,_,_, by the
independence of S’. Recall that v is the common parent of z and y. If y ¢
Sh_k-1,then v € S} _;_,. (Otherwise S = SU{y} is an independent which is
larger than S.) Thus, if y ¢ S} _,_;, v € S,_x_,. Consider " = (§"\{v})U{y}.
If v is the root then S” is independent and |S”| = |$’|. If v is not the root,
then since v € S} _,._,, the parent of v is not in S}, _,_, and so, again, §” is
independent and |S”| = |S’|. Without loss of generality, we replace S’ by S”.
Thenwe havey € S;_,_, andy€Sh-randx ¢ S;_,_, and z ¢ Sp_x-.

We’ve shown that for each pair z,y € V; , T € S;- iff z € S; and similarly for
y. Thus, S; = S} so that S =5’ and S is a maximum independent set. ®m

Corollary 7 If G is a full binary tree, then a mazimum independent set is
obtained by starting at the bottom, and including all vertices at every other

. , 2(2h+1 — 1) o e
level. If the height, h, of the tree is odd, then a(G) = — while if h is
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2h+2 -1
3
There are several known upper and lower bounds for «(GOH). Notice that

A*(GOH) defined below satisfies A*(GOH) < A(GOH) < o(GOH) and that
7(H) |G| + a(G)(|H| — 27(H)) is the upper bound in Remark 2 (2).

Theorem 8 Let H = W), + Wy be a bipartite graph satisfying o(H) = wy
and let G = Vi + V, be a bipartite graph. Define A*(GOH) = max{vyw; +
vowe, a(G)wy +@(G)wa}. Then A*(GOH) = 7(H) |G| + o(G)(|H| - 27(H))
if and only if vy = a(G) orwy, = |H| /2.

Proof. We will denote 7(H) |G| + a(G)(|H| — 2r(H)) by (ub). Since for a
biparitite graph H, a(H) + 7(H) = |H|, [4] , (ub) easily reduces to wav; +
wovy + @(G)wy — &(G)ws. Then A*(GOH) < o(GOH) < (ub).

Necessity. Since A*(GOH) = (ub), we have either

(1) »*(GOH) = vyw; +vaws or

(2) »*(GOH) = a(G)w; +&(G)w.

If (1) holds, then vyw; +vowe = A*(GOH) = wovy +weve +a(G)wr —(G)wa,
so that w; (v — @(G)) = wa(v; — a(G)). Equivalently, 0 =(w; — wq)(v1 — a(G)).
Thus, wy = wp or v; = a(G), from which it follows that w; = |H|/2 or

= a(G).

If (2) holds, then a(G)w; +@(G)wz = wavy +wava + a(G)wr — a(G)wy, so
we(a(G) + &(G)) = viwz + vawz = w2(v1 + v2). Since w2 # 0, &(G) +@(G) =
v, + vo = |G|. Since the size of a bipartition of a bipartitie graph is unique,
a(G) = v1, and the conclusion follows.

For the sufficiency, if a(G) = Vi, then vyw1 + vawz = A*(GOH) < (ub) =
wovy +wove+0(G)wy —aGwz = wavy +wove+v w1 —1 W = V1w +vowe. Thus,
A*(GOH) = (ub)

If wy = |H| / 2, then wy — wp = 0, 50 viw; + vewe < A*(GOH) < (ub) =
wavy + wave + a(G)wr — a(G)wz = wivr + wov2 + 0 = viw; + vawe. Again,
A*(GOH) = (ub) m

We will prove in Corollary 11 that if G = V) + V; is biparitite and H is a
full binary tree of odd height, then A\*(GOH) = (ub) if and only if v; = a(G).

In [2], Hagauer and Klavzar characterized a(GOP;n+1), where Pnyy is a
path of odd length. The lemma below shows that full binary trees act sim-
ilarly to paths in products with bipartite graphs. A word on notation: for
h € H, we have defined G* = {(g,h) : g € G} and represented a maxi-
mum independent set S in GOH as S =< S!,5%,..,8% >, where Sk =
S N Gh*. We slightly expand this notation for full bmary trees. Say the ver-
tices of the full binary tree H are listed from the root down, left to right, as
To1, 11, Z12, T21, T22, £23, T24) -y Thls Th2s -y Thze - Let Si; = SNG4 Then

S =< So1, 511512, 521522523524, .-, Sh1Sh2...Shan > .

Notice that we will use subscripts and omit commas between sets at the
same level.

even, a(G) =
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Lemma 9 Let H be a full binary tree of height h. For any graph G, there exists
a mazimum independent set in GOH of the form < B, AA, BBBB, ..., AA..A >
if h is odd and < A, BB, AAAA,...., AA..A > if h is even, where |A| > |B|.

Proof. Let S be a maximum independent set in GOH. We list the vertices of H
from the root down, left to right, as 201, Z11, 12, Z21, Z22, T23, T2d, ++ey Th, Th2, -ory Thoh-
Let S,’j = SN G%i. Then

S =< So1, 511512,...,5};15}.2...Sh2h >.

We show, starting at level h, that for every full subtree T of H, SN (GOT') has
constant values on every level of T. Consider the full subtree with root z(,_);.
Since S(h—1; is independent of both Sn(zj-1) and Shz;, then if |Suej_1)| #
|Sh2j], we could replace the smaller value with the larger one and have an
independent set in GOH larger than S, which is not possible. Thus, we can
assume Sh(gj_l) = Shgj.

Now, working our way up, assume that each full binary subtree has constant
values at each level and consider the left subtree, call it T, with 1, as its root
and the right subtree, T5, with z;5 as its root. That is, we assume that for each
i (i=2..h), Sy =S;;forall j=2.2"! and also for each i (i =2...h), S;;
=S5 for all j = 2'-1+1,...,2". Let ST} = SN(GOT}) and ST, = SN (GOTy).
Now, since So; must be independent of both S1; and Sy, then if |STy| # |ST3|,
then we could replace the subtree with smaller absolute value with the entire
larger one and obtain an independent set in GOH which is larger than S. Thus,
we can assume that they have the same absolute value, and without loss of
generality, we can assume they are the same; that is, ST} = ST5. We conclude
that the independent set which has for each i (i = 2...k), S;; = S for all
7 =1...2" has value |S|

For each %, let S; be the common set on the ith level. Then

) S =< 8y, 515, 32,323252, ey SESN.... S >

Now, pick i so that |S;| + |Si41| = max{|S;| +|S;+1]} . Pick A, B € {S;, Si4+1}
so that |A] = max{|S;|, |Si+1]} and B = min{|S;],|Si+1|}. Finally, let

S' =< A, BB, AAAA,..., AA..A > if the height h is even

and S =< B, AA, BBBB, ..., AA..A>if his odd
Then 8 is independent and |S| > |S|, so by maximality, |S'| = |S|. =

Theorem 10 Let H = W) + W, be a full binary tree and let G=V; + V; be a
bipartite graph. Then

1. M(GOH) = a(GOH) = max{|A|w; + |B|ws : A independent in G, B
independent in G\ A}

2. If H has odd height, then o(GOH) = viw; + vawp, = a(G)w; +
@(G)we whenever v <3 ora(G)=1v,

3. If H has odd height and vy > 3, then a(GOH) < viw; +vowy +wa(vy —3)

4. If H has even height, then a(GOH) = viw, + vowy whenever vy < 2
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Proof. (1) By the preceeding lemma, there exists a maximum independent set
of GOH, of the form § = < A, BB, AAAA, ..., AAA.A> or

< B,AA,BBBB,...., AAA...A > depending on whether the height is even
or odd. Let a = |A| and b = |B| and w; = |W;|. Then, in either case, we have
|S| = aw; + bwa, with @ > b. We know that A(GOH) < a(GOH) = |8| =
aw; + bwz . By definition of A(GOH), aw; + bwy is less than A(GOH), so
MGOH) £ a(GOH) = max{aw; + bw; : A independent in G, B independent
in G — A} < AM(GOH) and the result follows.

(2) and (3). We assume H has odd height. Then

§' =< V5,1, Ve Ve Vs, .., V. V1 >

is an independent set by the construction of a(H) in Algorithm 5. Let S be a
maximum independent set in GOH. Then |S'| < |S| and, by the preceeding
lemma, we can assume S =< B, AA,BBBB,...,AAA...A >, so that, using the
same notation as above, |S| = aw; + bwa with a > b. Notice that a + b <
vy + vg = |G| . We can easily verify that in a full binary tree of odd height,
wg = 1/2wy, s0 that |§'|=wv; +wave = 2wav1 +wavs = wa(2v1 +vy). Similarly
|St = wa(2a + b).

If @ + b = 11 + vo, then since bipartitions are unique, @ = v, and b = vp. It
follows that |S’| = wa(2v1 + v2) = we(2a+b) = |5].

If a+b < v + vg, then (following [2])), e + b < v1 +v2 -1 and a <
v +vp—1—b< vy +vy—2since b > 1. Then || = wa(2a+b) = wa(a+(a+b)) <
wa(vy +v2—14+vy +v2 — 2) = wo(2vy + vo + (vg ~ 3)).

Whenever vy < 3 , this last term is less than or equal to wa(2v; +v2) = |§7|.
Thus, in this case |S| = |9’| = viw; + vowa. Now, also consider

§" =< a(G), &(G)a(G), ... &G)a(G)..a(G)>

Then S” is an independent set in GOH,and |$”| = a(G)w; + @&(G)ws, so that
[8"] < |S] = |9]. If o(G) + @(G) = v1 + vz, then again using the fact that
bipartitions are unique, we have |S/| = |S”|. If &(G) + @(G) < v; + vz, then
a(G) > vy, so that @(G) < vz < 3. Thus a(G) =2 v1 +1 and 3 > vz > &(G) >
vy — 2. Now we have

|S"| = W2(2Q(G) +'07(G)) > wo(2(vy + DN+v-2)= 'lUQ(2’U1 +vg) = |S'| = ISl .

This completes the case when v, < 3. When v, > 3, we have the inequality of
the statement. When a(G) = v, the result follows from [4].

(4) When H has even height, it is easily verified that we = 1/2(w; — 1)
or equivalently, w; = 2ws + 1. Then using the same notation and inequalities
as in part (2), we have: .

|S| = a(2w2 + 1) +bwy =wa(2a+b)+a <
wa(vy +up—14v1+v2-2)+a<
wo(2vy + v2 + U2 -3+t -2=
wa(2v; + v2) +v; +wz(v2 -34+v—-2)=
wa(2v1 + v2) +v1 + wa(2vp — 5) = |§'| + w2 (2v2 - 5)
If v < 2, this last term is less than [S']. ®
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Corollary 11 Let G = Vi + V, be bipartite and H a full binary tree of odd
height. Then A(GOH) = (ub) if and only if v; = a(G).

Proof. Since H has odd height, w; = 2w; and A(GOH) = «(GOH) =
max{Aw; + Bw : A independent in G, B independent in G \ A}. If o(G) = v,
then a(GOH) = vyw; + vawa = MGOH). It than follows from Theorem 10,
that A*(GOH) = (ub), and hence, A\(GOH) = (ub).

Conversely, if A(GOH) = (ub), then we have A(GOH) = a(GOH) =
max{aW; + bW, : A independent in G, B independent in G \ A} = (ub),
so there are independent sets A and B so that

aw; + bwy = vawy + viwe + &(G) (w1 — we) = w2 |G| + a(C)w;,

since wy = 2wz. Then aw; + bwz = wa(|G| + a(G)), and hence aw; = wy(|G| +
a(G) — b). But since B C G\A, A C G\B, and we have |G|~ b > a. It follows

that
aw, = wy(|G + &(G) — b) 2 wya+&(G)) 2 wy(a +a) = 2uza = wya.

Therefore, equalities hold throughout, and so |G| — b = a. Thus, a+b =
|G| = v1 + v2. Since bipartitions of bipartite graphs are unique, it must be that
A=YV, and B = V3, and hence, A*(GOH) < MGOH) = o(GOH) = vyw; +
vowe < A(GOH). Thus, A*(GOH) = (ub) and so it follows from Theorem 8
that a(G)=v;. ®

As mentioned in the introduction, one technique that can be used to find the
independence number of a product is to find lower and upper bounds and then
examine each possibility between these bounds. It would be useful to know when
the upper bound is not too much larger than the lower bound. Unfortunately,
the next example shows that the upper bound may be arbitrarily larger than
the independence number, complicating the computational process, even for

very simple graphs.
Example 12 Let H = K, 5, the complete bipartite graph on one and two ver-
tices. Then for each positive integer k, there is a binary tree Gx = V; +
Vo satisfying:

L ao(Ge)=v1+k

2. A(GxOH) = a(G:OH) = 2v1 + vz = 2a(G) + &(G) = 2 + 12k

3. (ub) = a(Gx,0OH) + k

Proof. Let G* be the binary graph on nine vertices shown in Figure 1. Let
G1 = G* . It is easily verified that v; = 5, v2 = 4, a(G) = 6, and &(G) = 2.
Assume Gi_j has been defined. Identify the bottom right vertex of G;_; with
the root of a copy of G*. The resulting graph is Gj.
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Figure 1: A tree on 9 vertices.

For G, the following are easily proved by induction: a(G) = 1 4 5k, v, =
1+ 4k, vy =4k, @(G) =2k, and |G| =1+ 8k. It then follows immediately
that @(Gx) = v1 + k and then from these results and the previous theorem
that

2u; + vg = 2a(G) +@(G) = 2 + 12k < M(GOH) = o(GOH)
= max{aw; + bw; : A independent in G, B independent in G\A}
= max{(2a + b) : A independent in G, B independent in G\ A}.

Notice that w; = 2w; = 2, which explains the final equality. We claim that the
inequality is actually an equality.

Assume there are sets A and B in Gy such that A is independent in G, B
is independent in Gi\A and 2a + b is a maximum. In the top copy of G*, the
only choices for A and B force a and b to divide as 6 and 2 respectively or 5 — 4
or 5 — 3 and then the largest contribution to 2a + b from this top copy is 14.
Notice that that the root and the bottom right vertex are both in A or both in
B. As we move down through copies of G*, then since the root of each copy
is already labeled, the maximum contribution to 2a + b from each copy is 12.
Thus the maximum value of 2a + b on G* is 14 + 12(k — 1) = 12k + 2, and so
equality holds.

For (3), notice that (ub) = w2 (|G|)+a(G)(w2—w1) = 1(1+8k)+(1+5k)(1) =
2+13k=a(G,OH)+k. m

We've shown above that for a biparitie graph G and 2 full binary tree H,
MGOH) = a(GOH). The following conjecture seems natural, yet the author
has only been able to prove it in the special case that |H| £ 9. G* will denote
the graph in the previous example.

Conjecture 18 If G is bipartite and H is a binary tree, then A(GOH) =
o(GOH).

Lemma 14 Let H = G*. If G is bipartite then A(GOH) = o(GOH)

Proof. Let S be a maximum independent set in GOOH. Then S must be of the
form < R, T, U, V,W, X, X,Y,Y >, where we list the sets from the root down,
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left to right. Now say A, B, C are maximal independent sets in G with absolute
values a, b, c respectively. If |U| = |V, then assuming a > b, the largest possible
value for | S| is 5a+4b. If |U| # |V|, then the largest possible value is 6a+ 5b+ ¢
or 5a+3b+c. Thus A(GOH) < a(GOH) = max([5a+4b, 6a+2b+c, 5a+3b+c},
and this last set is in the form of a diagonal set, and so equality holds. m

Theorem 15 Let H be a binary tree with |[H| < 9 and let G be bipartite, then
MGOH) = o(GOH).

Proof. There are exactly seven binary trees with nine or fewer vertices, up to
isomorphism. One of these seven is G*, and so in that case, the result follows
from the preceeding lemma. Two of the six are full binary trees, and then the
result follows from Theorem 10 . There are four remaining cases. The first of
these trees is shown below.

Figure 2: A tree on 5 vertices.

For this tree, a(H) = wy = 3 and a(G) = wp = 2. A maximum independent
set S in GOH is of the form < R, T,U,V,V >. If T| = |U|, A is a maximal
independent set in G, and B is a maximal independent sets in G\ A, then the
largest possible value for |S| is 3a + 2b. If |T| # |U| , then the largest possible
value for |S| is still 3a + 2b, and this value is maz{aw; + bws : A, B maximal
independent in G} < M(GOH), so that A(GOH) = o(GOH).

The verifications for the other cases follow similarly. =
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