Lower bounds for quaternary covering codes

Wolfgang Haas

December 2, 2006

Abstract

Let $K_q(n, R)$ denote the least cardinality of a q-ary code of length n, such that every q-ary word of length n differs from at least one word in the code in at most R places. We use a method of Blass and Litsyn to derive the bounds $K_4(5,2) \ge 14$ and $K_4(6,2) \ge 32$.

1 Introduction

Let $K_q(n, R)$ denote the least number of a collection (a code) of q-ary words of length n, such that every q-ary word of length n differs from at least one word in the collection in at most R places. The set of q-ary words of length n we denote by \mathbf{F}_q^n . W.l.o.g. we may assume $\mathbf{F}_q = \{0, 1, ..., q-1\}$. Let d(,) stand for the Hamming distance on \mathbf{F}_q^n , i.e. the number of coordinates, in which two words from \mathbf{F}_q^n differ.

For a monograph on covering codes see [4]. An updated table of bounds on $K_q(n, R)$ is published in internet by Kéri [5].

In a recent paper Blass and Litsyn [1] developed a method to derive lower bounds for $K_q(n,R)$ by showing directly, that for every q-ary code of length n with size small enough, there always exists a word with Hamming distance at least R+1 from every codeword. It depends on elementary estimations of the generalized function $N_q(d_1,d_2,...,d_M)$, which denotes the least N, such that whenever $\mathbf{x}_1,...,\mathbf{x}_M \in \mathbf{F}_q^N$ there exists $\mathbf{x} \in \mathbf{F}_q^N$ such that $d(\mathbf{x},\mathbf{x}_i) \geq d_i$ for $1 \leq i \leq M$. In this note we use the method of Blass and Litsyn to derive $K_4(5,2) \geq 14$ and $K_4(6,2) \geq 32$ improving on the previously best known bounds $K_4(5,2) \geq 12$ and $K_4(6,2) \geq 28$ due to Chen and Honkala [3]. The best known upper bounds are $K_4(5,2) \leq 16$ and $K_4(6,2) \leq 52$ (Östergård [6], [7]).

2 Notations and properties

Let $B_q(\mathbf{x}, R)$ denote the q-ary Hamming ball with radius R centered at $\mathbf{x} \in \mathbf{F}_q^n$, and $V_q(n, R)$ its cardinality, i.e.

$$V_q(n,R) = \sum_{0 \le i \le R} \binom{n}{i} (q-1)^i.$$

We say, that x r-covers y, if $d(x, y) \le r$. Let $A_q(n, d)$ denote the maximal cardinality of a q-ary code of length n and minimal Hamming distance at least d.

We use $N_q(d_1^{n_1}, d_2^{n_2}, ..., d_M^{n_M})$ as an abbreviation for

$$N_q(\underbrace{d_1,...,d_1}_{n_1},\underbrace{d_2,...,d_2}_{n_2},...,\underbrace{d_M,...,d_M}_{n_M}).$$

Apparently

$$N_q((R+1)^{m-1}) \le n \Leftrightarrow K_q(n,R) \ge m. \tag{1}$$

When we want to show $N_q(d_1, d_2, ..., d_M) \leq N$ we always assume, that arbitrary $\mathbf{x}_1, ..., \mathbf{x}_M \in \mathbf{F}_q^N$ are given. Let $a_i \in \mathbf{F}_q$ then denote the first symbol from \mathbf{x}_i for $1 \leq i \leq M$. We say the symbols $a_1, ..., a_M$ form the first column of the code.

Property 1 (Blass, Litsyn [1]). If

$$\sum_{1 \le i \le M} V_q(N, d_i - 1) < q^N,$$

then

$$N_q(d_1,d_2,...,d_M) \leq N.$$

Property 2. If

$$m((q-1)N-1) + 2A_q(N,3) + n < q^N, (2)$$

then

$$N_q(2^m, 1^n) \le N. \tag{3}$$

Proof. Assume $\mathbf{x}_1, ..., \mathbf{x}_m, \mathbf{x}_{m+1}, ..., \mathbf{x}_{m+n} \in \mathbf{F}_q^N$. Let $C_0 \subset C = \{\mathbf{x}_1, ..., \mathbf{x}_m\}$ be a maximal set of minimal Hamming distance at least three. Whenever

 $\mathbf{x} \in C - C_0$, then $B_q(\mathbf{x}, 1)$ contains at most $V_q(N, 1) - 2$ elements not already contained in $\bigcup_{\mathbf{y} \in C_0} B_q(\mathbf{y}, 1)$. This implies

$$\begin{vmatrix} \bigcup_{1 \le i \le m} B_q(\mathbf{x}_i, 1) \cup \bigcup_{m < i \le m+n} B_q(\mathbf{x}_i, 0) \\ \le |C_0|V_q(N, 1) + (|C| - |C_0|)(V_q(N, 1) - 2) + n \\ = |C|(V_q(N, 1) - 2) + 2|C_0| + n \\ \le m((q-1)N - 1) + 2A_q(N, 3) + n \\ < q^N = |\mathbf{F}_q^N| \end{aligned}$$

by (2), and (3) follows.

3 Proof of $K_4(5,2) \ge 14$

From now on we assume q = 4 and $a, a_i \in \mathbf{F}_4 = \{0, 1, 2, 3\}$.

a) $N_4(3^2, 2^{11}) \le 4$.

If a symbol different from a_1, a_2 occurs at most four times in the first column of the code then the result follows from $N_4(2^6, 1^7) \leq 3$ (property 2, use $A_4(3,3) = 4$ [2]). Otherwise $a_1 \neq a_2$ and at least one of the symbols a_1 and a_2 occurs exactly once in the first column. Then the result follows from $N_4(3,2,1^{11}) \leq 3$ (property 1).

b) $N_4(3^{13}) \le 5$.

If in a column of the code one symbol occurs at most twice then the result follows from a). Otherwise w.l.o.g. let 0 be the symbol which occurs exactly four times in every column of the code. Since the four codewords beginning with 0 may be assumed not all to be equal (by $K_4(5,2) \ge 12$ [3]), we may assume (after some exchanging of rows and columns of the words), that the first codeword begins with a_10 , where $a_1 \ne 0$. Now there must be a symbol $a^* \ne 0$, which does not occur in the second column of the three codewords beginning with a_1 . Since a_1 and a^* occur exactly three times in every column of the code, the result follows from $N_4(2^6, 1^7) \le 3$ (property 2).

The bound $K_4(5,2) \ge 14$ now follows from (1) and b).

4 Proof of $K_4(6,2) \ge 32$

a) $N_4(3, 2^{15}, 1^{15}) \le 4$.

W.l.o.g. $\mathbf{x}_1 = \mathbf{0}$, the all-zero word. Let $A_i \subset \mathbf{F}_4^4$ ($0 \le i \le 4$) denote the set of words containing the symbol 0 exactly i times. Let $A_{\ge 1} = \mathbf{F}_4^4 - A_0$. For i = 0, 1 let u_i (resp. v_i) denote the number of indices j among $\{2, ..., 16\}$

(resp. $\{17, ..., 31\}$) such that $\mathbf{x}_j \in A_0$ if i = 0 and $\mathbf{x}_j \in A_{\geq 1}$ if i = 1. Every word from A_0 (resp. $A_{\geq 1}$) 1-covers at most 9 (resp. 3) words from A_0 and every word from A_0 (resp. $A_{\geq 1}$) 1-covers at most 4 (resp. 7) words from A_1 . a) now follows if we can show

$$A_0 \cup A_1 \not\subset \bigcup_{2 \leq j \leq 16} B_4(\mathbf{x}_j, 1) \cup \bigcup_{17 \leq j \leq 31} B_4(\mathbf{x}_j, 0)$$

since $B_4(\mathbf{x}_1, 2) = A_2 \cup A_3 \cup A_4$. Assuming the contrary, by the previous paragraph we would have

$$9u_0 + 3u_1 + v_0 \ge |A_0| = 81 \tag{4}$$

and

$$4u_0 + 7u_1 + v_1 \ge |A_1| = 108. (5)$$

Addition of (4) and (5) together with $u_0 + u_1 = 15$, $v_0 + v_1 = 15$ yields $3u_0 + 165 = 3u_0 + 10(u_0 + u_1) + (v_0 + v_1) = 13u_0 + 10u_1 + (v_0 + v_1) \ge 189$ and thus $u_0 \ge 8$, but then $4u_0 + 7u_1 + v_1 \le 4u_0 + 7(15 - u_0) + 15 = 120 - 3u_0 \le 96$, contradicting (5).

Let $N_4^{(s)}(d_1,...,d_{31})$ denote the corresponding value of N, when in all columns every symbol occurs at least s times.

b) $N_A^{(7)}(3^7, 2^{24}) \le 5$.

In each column every symbol occurs at most ten times. If a symbol does not occur among $a_1, ..., a_7$ then the result follows by $N_4(2^{17}, 1^{14}) \leq 4$ (property 1). Otherwise there exists a symbol which occurs exactly once among $a_1, ..., a_7$. Now the result follows from a).

c) $N_4^{(6)}(3^6, 2^{25}) \le 5$.

In each column every symbol occurs at most thirteen times. If a symbol does not occur among $a_1, ..., a_6$ then the result follows by $N_4(2^{19}, 1^{12}) \leq 4$ (property 2, use $A_4(4,3) = 16$ [2]). Otherwise there exist at least two different symbols among $a_1, ..., a_6$ which occur exactly once among $a_1, ..., a_6$. At least one of them occurs at most ten (indeed nine) times in the first column. Now the result follows by a).

d) $N_4(3^{31}) \le 6$.

If a symbol occurs at most five times in a column, the result follows by $N_4(3^5, 2^{26}) \leq 5$ (property 1). Otherwise, if in a column a symbol occurs exactly six times, the result follows by c). And if every symbol occurs at least seven times in every column, the result follows by b).

The bound $K_4(6,2) \ge 32$ follows from (1) and d).

Wolfgang Haas Albert-Ludwigs-Universität Mathematisches Institut Eckerst. 1 79104 Freiburg Germany

References

- [1] U. BLASS, S. LITSYN, Several new lower bounds for football pool systems, Ars Combinatoria 50 (1998), 297-302.
- [2] A. BROUWER, Table of general quaternary codes, http://www.win.tue.nl/~aeb/codes/quaternary-1.html.
- [3] W. CHEN, I.S. HONKALA, Lower bounds for q-ary covering codes, IEEE Trans. Inform. Theory 36 (1990), 664-671.
- [4] G. COHEN, I.S. HONKALA, S. LITSYN, A. LOBSTEIN, Covering Codes, North Holland Mathematical Library, vol 54, 1997, Elsevier.
- [5] G. KÉRI, Tables for Covering Codes, http://www.sztaki.hu/~ keri/codes/.
- [6] P.R.J. ÖSTERGÅRD, Upper bounds for q-ary covering codes, IEEE Trans. Inform. Theory 37 (1991), 660-664 and 37 (1991), 1738.
- [7] P.R.J. ÖSTERGÅRD, New constructions for q-ary covering codes, Ars Combinatoria 52 (1999), 51-63.