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Abstract

For paths P,, Chartrand, Nebesky and Zhang gave the exact
value of ac’(P,) for n < 8, and showed that ac’(P,) < (";%) + 2 for
every positive integer n, where ac’(P,) denotes the nearly antipodal
chromatic number of P,. In this paper, we determine the exact values
of ac’(P,) for all even integers n > 8.
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1 Introduction

Radio k-colorings were introduced by Chartrand, Erwan, Harary and Zhang
[1], which were inspired by (FM Radio) Channel Assignments Problem (see
[6]). For a connected graph G of order n and diameter d and a integer k
with 1 < k < d, a radio k-coloring of G is a function ¢: V(G) — N, such
that d(u, v) + Je(u) — ¢(v)] = k+1 for every pair u and v of distinct vertices
of G, where d(u,v) denotes the distance between u and v (the length of a
shortest « — v path) in G. The value rci(c) of a radio k-coloring ¢ of G is
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the maximum color assigned to a vertex of G; while the radio k-chromatic
number rci(G) of G is min{rci(c)} taken over all k-coloring c of G.

It is easy to see that the radio 1-coloring and ordinary colorings are syn-
onymous, and the radio 2-coloring problem corresponds to the well studied
L(2,1) (see [5] and references therein). Consequently, radio k-colorings
generalize many graph colorings. Moreover, radio d-colorings are referred
to as radio labelings and the radio d-chromatic number is called the radio
number, denoted by rn(G). Radio (d—1)-colorings are referred to as antipo-
dal coloring and the radio (d — 1)-chromatic number is called the antipodal
chromatic number, denoted by ac(G). Radio (d — 2)-colorings are referred
to as nearly antipodal coloring and the radio (d — 2)-chromatic number is
called the nearly antipodal chromatic number, denoted by ac’(G). Some
results of radio k-coloring, radio labeling, antipodal coloring and nearly
antipodal coloring of some graphs can be found in (1, 2, 3, 4, 7, 8, 9, 10].

For paths P(y), the exact values of rn(P,) and ac(P,) were determined
in [9) and [7], respectively. Note that if G is a connected graph of diameter
1 or 2, then ac’'(G) = 1; while if diam(G) = 3, then ac’(G) is the chro-
matic number of G. Thus nearly antipodal colorings are most interesting
for connected graphs of diameter 4 or more. For this reason, the nearly
antipodal chromatic number of paths P, were investigated in [4] by Char-
trand, Nebesky and Zhang. They showed that ac’(Ps) = 5, ac'(Ps) = 7,
ac'(P;) = 11 and ac’/(Ps) = 16, but the exact values of ac’(P,) for all
integers nn > 9 were not determined.

In [4], Chartrand, Nebesky and Zhang presented an upper bound of
ac’'(P,) for every positive integer n as follows.

Theorem 1.1 ([4]). If n is a path of order n > 1, ac/(P,) < (*5%) + 2.

In [10], Shen et al. provided an improved version for Theorem 1.1, they
showed that

Theorem 1.2 ([10]). If n is even and n > 10, then ac'(P,) < (";%) -2 -
|2} +7; if n is odd and n > 13, then ac'(Pp) < ("73) -2t - [L8) +8.

In this paper, we will present the exact values of ac’(P,) for all even
integers n > 8. We will show that ac’(P,p) = 2p® — 6p + 8 for every integer
p24

2 The exact values of ac'(P,) for p > 4

Theorem 2.1. For every integer p > 1, ac’(Psp) < 2p® — 6p + 8.
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Proof. Let Pop = (u1,us,...,u). Define a coloring ¢ of path Py:

f(u1)=p_1a

fw)=(p-1)(2p-3)+2, 2<i<p-1,
fup) = 2p* —6p+38,

flupti) =2p% —6p+9 — f(up_iy1), 1<i<p.

It is easy to see that the vertex u, has the maximum color e(u,) = 2% —
6p + 8. It suffices to show the distance condition:

d(u,-,u,-) + [c(u,-) - C(‘U.j)l > (d - 2) +1=2p-2 (1)

for every pair u;, u; of distinct vertices of Py,
We only need to verify that (1) holds for two vertices u; and upy; for
2<i<p-1land1l<j<p(the other cases can be checked easily). In

fact,

d(us, up+5) + |e(ws) — c(up+s)|
= (p+7— 1)+ |e(w) — [(20% — 6p +9) — c(up—ji1)]|
=(p+j—i)+|(p+j—i-1)(2p—3)+4—(2p> - 6p+9)]
=(@+j-9)+(([{-9)(2p-3)-(p-2)
_J G=-D@2p-2)+222p-2,ifi<j-1;
- { 2p-2+(E-5)2p-4)22p-2,if i >3]

0
In order to show that 2p? — 6p + 8 is also a lower bound of ac’(Py,) for
every integer p > 4, we establish a lemma as follows.

Lemma 2.1. Let ¢ be a nearly antipodal coloring of path P,, order the
vertices of P, as z1,%,...,Tn such that ¢(zi—1) < ¢(z;) fori =2,3,...,n.
Denote c(z;)—c(zi—1) = (n—2)—d(zi—1,zi)+€i,1 = 2,3,...,n, wheree; >
0. If there exists z; (2 < i < n—1) such that min{d(z;-1,z;), d(zi, Tis1)} >
%, then €; +€;41 2 2.

Proof. Assume, to the contrary, that &; + €;4, < 2. Without loss of gen-
erality, we assume that d(x;, zi+1) 2 d(%i-1,2;) > . Then d(zi,zi41) =
d(zi-1,%i) + d(Ti-1, Ti+1), and

e(@iv1) = o(zi-1)
= C(:BH.I) —_ c(zg) + e(z;) — c(z,-_l)
=(n—=2) —d(z;, Tis1) + €i41 + (0 — 2) = d(zi—1,2:) + &
< (n—2) —d(zi-1, Tit1) + 1 — 2d(2i-1, z;)
< (n—2) —d(zi-1,Tit1),

contrary to that c is a nearly antipodal coloring of P,. a
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Theorem 2.2. For every integer p > 4, ac'(Pap) > 2p® — 6p + 8.

Proof. Let Py, = (u1,u,...,uszp) and let ¢ be a nearly antipodal coloring
of Py,. Reorder the vertlces of Ppp 88 x1,%2,...,T2p such that ¢(z;-;) <
c(z;) for i = 2,3,...,2p. Denote c(z;) — c(zi-1) = (2p — 2) — d(zi-1,%:) +
€, = 2,3,...,2p, where &; > 0. Let z; = uo(;), where o is a permutation
of {1,2,...,2p}.

By the definition of ¢, c(z1) 2 1 and c(z;) 2 c(zi-1) + (2p — 2) -
d(zi-1,z;) for i = 2,3,...,2p. Thus, we have that

c(z2p)
21+ 21"2[(21) 2) — d(zi-1,%i) + e‘l] 2
= (4p* - 6p +3) — Ty d(wi-1,%:) + ity &

If Y2, d(zi—1,:) < 2p — 5, then c(z3p) > 2p® — 6p + 8 by (2), and we
are done. Hence, assume Y22, d(z;—1, ;) > 2p* — 5.

Claim 2.1. Ifz:‘ d(zi_1,2:) > 2p*—5, then 2p®~4 < E,___2 d(ziy,z;) <
2p% ~ 1.

In fact, note that d(z;—1,z;) is equal to either o(i) —o(i — 1) or o(i —
1) - o(%), whichever is positive. By replacing each term d(z;_1,z;) with
the corresponding (i) — o(i — 1) or o(i — 1) — o(%), whichever is positive,
we obtain a summation whose entries are +j for j € {1,2,...,2p}.

All together, there are 4p — 2 terms in the summation Z?ﬁz d(zi-1,z;),
half of them are positive and half of them are negative. Each j € {1,2,...,
2p} occurs as +j exactly twice in the summation, except for two j’s where
each occurs as j or —j only once.

To maximize the summation Z,_g d(z;-1,T:), one needs to minimize
the absolute values for the negative terms while maximize the values for
the positive terms. It is easy to verify that there is only one combination
achieving the maximum summation: each of the number in {p + 2,p +
3,...,2p} occurs twice as a positive, each of {1,2,...,p — 1} occurs twice
as a negative, while p and p + 1 occurs once, respectively, as a negative
term and a positive term. Thus, the maximum summation is equal to
2[(p+2)+(p+3)+...+2p] - 2[1+2+ +(p-1) ] p+(p+1)=2p*-1.
Therefore, it holds that if 2;_2 d(zi-1,7;) > 2p®> — 5, then 2p? —4 <
sz d(zi—1,2;) < 2p% — 1.

In the following, according to the values of E._z d(z;_1,z;), we consider
four cases to prove that c(z2p) > 2p* — 6p + 8 respectively.

Case 1. 3%, d(zi_1,7:) = 2p* — 1.

In this case, by the discussion above only one combination achieving .
S, d(zi-1,2:) = 2p° — 1, we must have {o(1),0(2p)} = {p +1,p}. And
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in the only one combination, o(i) > p+1 if and only if #(i+ 1) < p. Denote
o(i0) = 1 and o(jo) = 2p, where iy # jo.

Subcase 1.1. (1) =p+1,0(2p) =

We have o(ip—1) > p+1,0(io+1) 2 p+2;0(jo—1) < p—-1,0(jo+1) < p.
Thus z;, and z;, satisfy the condition of Lemma 2.1, respectively. Therefore
we have that €5, + €041 = 2 and €5, + 5541 2 2.

Subcase 1.1.1. l]o —'I.ol > 2.

It is easy to see that 3"2%,¢; 2 4. Thus, by (2), we have c(zgp) >
(4p® —6p+3) — (2p° — 1) +4=2p*> —6p+ 8.

Subcase 1.1.2. jo =14p+ 1.

Note that o(1) = p+ 1, 0(2p) = p, c(Zis—1) < (i) (= e(Tjo—1)) <
e(Zig+1)(= c(2j,)) < e(zjo+1) and p > 4, we have that o(ip — 1) > o(1) =
p+1loro(o+1) <o(2p) =p. Ifo(ip — 1) > o(1) = p+ 1, we consider
three vertices z;5—1,%i, and zj, (If o(jo + 1) < o(2p) = p, consider three
vertices iy, Tj, and Zj,4+1, and the proof is similar). Since d(zi,-1,2;,) =
o(jo) —o(io —1) < 2p—(p+2) = p—2, d(zi,z5) = 0(jo) — o(do) =
2p — 1, d(zio-1,Zip) = 0(lo — 1) —0(io) =2 (p+2) — 1 = p+ 1, we have
d(Tig—1,ZTip) 2 d(Tig-1,Tj,)+3. We claim that &;, +¢€j, > 4, for otherwise,
e(Tjo) —(Tio—1) = e(Tjo) —c(Tio) +e(ip) —€(Tio—1) = (2p—2)—d(zs5, T55)+
€50 + (2 — 2) — d(Tip-1,%5,) + &5y < (2p—2) - d(xto—l’xao)a contrary to
that c is a nearly antipodal colormg of P,. Thus, we have 2,,,2 € 2> 4, and
by (2), we also have c(z2p) > 2p® — 6p + 8.

Subcase 1.1.3. iy = jo + 1.

In this case, by the discussion above only one combination achieving
2, d(zi-1,2:) = 2p°—1 and p > 4, we must have U(zo+1) >o(l) =p+1
and o(jo — 1) < 0(2p) = p. So we can show c(z;,) > 2p% — 6p + 8 by an
argument similar to that used in Subcase 1.1.2.

Subcase 1.2. o(1) =p,0(2p) =p+1.

We have o(ip—1) > p+2, a(zo+1) 2 p+1;0(jo-1) < p,o(Go+1) < p-1.
And we can show ¢(z2p) > 2p? — 6p + 8 by an argument similar to that
used in Subcase 1.1.

Case 2. Y%, d(z;_1,2:) = 20° = 2.

In this case, it is easy to verify that there are two combinations of the
terms in the summation Z.~2 d(z;-1, ;) achieving 2p? — 2, and we consider
two subcases a.ccordmg to the two combinations as follows.

Subcase 2.1. 2p? —2=YP, d(:z:,_l,a:,) =2[p+2)+(P+3)+...+
2p] - 21 +2+...+(p—2)+p|-(p—1)+ (p+1).

In this case, we must have {¢(1),0(2p)} = {p+1,p—1}. And it is easy
to see that o(¢) > p+ 1 if and only if o(¢ + 1) < p. Denote o(ip) = 1 and
o(jo) = 2p.

Subcase 2.1.1. o(1) =p+ 1,0(2p) =

Note that o(s) > p+ 1 if and only if o (i + 1) < p, we have o(ip — 1) >
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p+1,0(i0+1) = p+2;0(jo—1) <p,o(jo+1) <p. Thus z;, and z;,
satisfy the condition of Lemma 2.1, respectively. Therefore we have that
Eig + Eig+1 = 2 and g5, + €541 = 2.

Subcase 2.1.1.1. |jo —zol >2.

It is easy to see that Z 2€i > 4. Thus, by (2), we have c(z2p) 2
(4p® — 6p + 3) — (2p® —2)+4 20?2 —6p+9.

Subcase 2.1.1.2. jo = + 1.

Note that o(1) =p+ 1, 0(2p) = p — 1 (that is z1 = up41, Top = Up-1),
e(Tio—1) < ¢(Tio) (= €(Zjo-1)) < e(Tig+1)(= (Zjo)) < &(Tjo+1) and p > 4.
If o(ip — 1) > p+ 1 or o(jo + 1) < p, we can show that &;, +¢&5, > 4 or
€jo + s,o+1 > 4 by an argument similar to that used in Subcase 1.1.2, and
hence Z,_2 €; > 4. Thus, by (2), we have c(z2p) > (4p% — 6p + 3) — (2p* —-
2) +4=2p%—6p+9.

If o(io — 1) = p+ 1 and o(jo + 1) = p, recall that o(1) = p+ 1,
o(2p) = p— 1 and p > 4, there must exist so > jo + 1 > ég + 1, such that
o(s0) = 2, 0(so—1) > p+2 and o(so+1) > p+2. Then it is easy to see that
z;, and x,, satisfy the condition of Lemma 2.1, respectively. Therefore we
have that &;, + €i,+1 = 2 and &, + e,o.H > 2. Thus, we have 21_2 £ >4,
and by (2), we also have c(z2p) > 2p* — 6p+9.

Subcase 2.1.1.3. i =jo + 1.

Note that o(ép + 1) = p + 2, we consider three vertices z;,,z;, and
Ti,+1. We can show that €, + €541 > 4 by an argument similar to that
used in Subcase 1.1.2, and hence 32, ¢; > 4. Thus, by (2), we have

c(z2p) > (4p? —6p+3) — (2p* —2) +4 = 2p2 —6p+09.

Subcase 2.1.2. o(1) =p-1,0(2p) =p+ 1.

Note that o(i) > p+ 1 if and only if o(i + 1) < p, we have o(ip — 1) >
p+2,0(i0+1) > p+ 1000 —1) <p,o(jo+1) <p. Thus z;, and z;,
satisfy the condition of Lemma 2.1, respectively. Therefore we have that
€ig + Eig+1 2 > 2and €jo + Ejo+1 > 2.

Subcase 2.1.2.1. |jo — o] > 2.

Similar to Subcase 2.1.1.1, we have c(z3p) > 2p® — 6p + 9.

Subcase 2.1.2.2. jo =ip+ 1.

By o(ip — 1) > p+2, we can show ¢(z3,) > 2p® —6p+9 by an argument
similar to that used in Subcase 1.1.2.

Subcase 2.1.2.3. ip=Jo+ 1.

Note that o(1) =p—1, 0(2p) =p + 1, c(Tj,-1) < c(zj,)(= ¢(Tip-1)) <
c(2i) (= e(Tjo+1)) < c(z,o.,.l) and p > 4. Then, by the symmetry of P,,,
we can show that c(z2p) > 2p? — 6p+9 by an argument similar to that used
in Subcase 2.1.1.2.

Subcase 2.2. 2p% —2 = Y2, d(zi-1,z:) =2[(p+ 1) + (p+3) +... +
2] -2 +2+...+(@-D]-p+(+2).

In this case, we must have {c(1),c(2p)} = {p,p + 2}. And it is easy
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to see that o(¢) > p+ 1 if and only if (i + 1) < p. Denote o(ip) = 1 and
o(jo) = 2p.

Subcase 2.2.1. (1) =p,0(2p) =p+ 2.

By the symmetry of Ps,, we can show ¢(zg,) > 2p%> — 6p + 9 by an
argument similar to that used in Subcase 2.1.1.

Subcase 2.2.2. 0(1) =p+2,0(2p) =

By the symmetry of P, we can show c(z2,) > 2p°> — 6p + 9 by an
argument smular to that used in Subcase 2.1.2.

Case 3. 2'_2 d(zi-1,7:) = 2p% - 8.

In this case, it is easy to verify that there are three combinations of the
terms in the summation 2,—2 d(z;-1, ;) achieving 2p? -3, and we consider
three subcases accordmg to the three combinations as follows
. Subcase 3.1. 2p? -3 =Y, d(zi1,7:) = 2[(p+2) + (P +3) +... +

20 -2[1+2+...+(p— 3)+(p +pl-(p-2)+(p+1).

Subcase 3.2. 2p? -3 =Y, (a:,_l,z,) =2[p+1)+(P+3)+...+
2] -21+2+...+(p— 2)+p] -1+ (+2).

Subcase 3.3. 2p> -3 = 2,_211(:0._1,3:, =2p+1)+(P+2)+(p+
A +...+2]-214+2+...+(p-1)]-p+(p+3).

In the three cases above, we must have that {o(1),0(2p)} is equal to
{p+1,p-2}, {p+2,p—1} or {p+ 3,p — p}, respectively. And it is
easy to see that o(i) > p+ 1 if and only if o(i + 1) < p in all the three
cases above. If denote o(ig) = 1, then o(ip — 1) > p+ 1 and o(ép + 1) >
p+ 1. Thus z;, satisfy the condition of Lemma 2.1, therefore we have that
Eio + €io+1 = 2. This implies that E.—-z €; 2 2. Thus, by (2), we have
c(z2p) = (4p? —6p+3) (2p® -3)+2=2p% - 6p+8.

Case 4. Y77, d(a:._l,:z:,) =2p? —4.

In this case, it is easy to verify that there are four combinations of the
terms in the summation 21_2 d(z;-1, ;) achieving 2p? —4, and we consider
four subcases accordmg to the four combinations as follows.

Subcase 4.1. 2p? - 2, d(zi-1, ;) -2[(p+2)+(p+3)+ .+
2p)-2[1+2+...+(p- 4)+(p 2)+(-1)+p -(p- 3)+(p+1)

Subcase 4.2, 2p? —4 = Y2 d(zi—1,2:) =2[@+ 1)+ (P+3) +... +
2] -2[1+2+...+(p— 3)+(p D-(@-2)+(@+2).

Subcase 4.3. 2p? —4 =Y, d(a:,_l,a:,) =2[(p+1)+(p+2)+(p+
4)+...+2p] - 2[1+2+ +(p 2)+p-(p-1)+(p+3).

Subcase 4.4. 2p° -4 = Z,_z dlzi—n, ) =2[(p+1)+(@+2)+(p+
)+(m@+5)+...+20)-2[1+2+...+(p-1)—-p+(p+4).

In the four cases above, we must have that {c(1),o(2p)} is equal to
{p+1,p-3} {p+2,p-2}, {p+3,p— 1} or {p + 4,p}, respectively.
And it is easy to see that o(¢) > p+ 1 if and only if (i + 1) < p in all
the four cases above. If denote o(ip) = 1, then o(ip — 1) > p+ 1 and
o(ip + 1) 2 p+ 1. Therefore z;, satisfies the condition of Lemma 2.1, and
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we have that &;, +&;,41 > 2. This implies that Y72, &; > 2. Thus, by (2),
we have c(zp) > (4p*> —6p+3)— (20 —4) +2 = 2p% - 6p+9. O

Theorem 2.3. For every integer p > 4, ac'(Psp) = 2p% — 6p + 8.
Proof. Combining Theorem 2.1 and Theorem 2.2, Theorem 2.3 holds. O
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