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Abstract

Let AKju denote the A-fold complete multipartite graph with
u parts of size h. A cube factorization of AKj« is a uniform 3-
factorization of AKju in which the components of each factor are
cubes. We show that there exists a cube factorization of AKju if
and only if uh = 0 (mod 8),A(u —1)Ah =0 (mod 3) and u > 2.
It gives a new family of uniform 3-factorizations of AKxu. We also
establish the necessary and sufficient conditions for the existence of
cube frames of AKju.
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1 Introduction

Let G and H be two graphs. An H-decomposition of G is a decomposition
of the edges of G into isomorphic copies of H, the copies of H are called
blocks. Such a decomposition is called resolvable if it is to partition the
blocks into classes P; (called parallel classes or resolution classes) such
that every vertex of G appears exactly once in each P;. A resolvable H-
decomposition of G is sometimes also referred to as an H-factorization of
G, a class can be called an H-factor of G.

Necessary and sufficient conditions for a (resolvable) H-decomposition
of G have been established for various X and G. The most common prob-
lemn considered is that given a graph H, for which u does there exist a
(resolvable) H-decomposition of K, the complete graph on u vertices.
Other common choices for G include the A-fold complete graph AK,, and
the A-fold complete multipartite graph AKp« with u parts each of size
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h. H-factorizations (decompositions) of the above graphs have been con-
sidered for many different graphs H. An H-factorization of AK, is also
known as a resolvable design. An ‘H-factorization of AKpu is known as
a resolvable group divisible design (RGDD) with index A, the parts of
size h are called the groups of the design. We also for groups of differ-
ing sizes use an exponential notation h{'h3?--- h¥» to specify that there
are u; groups of size h;, this is the factorization’s or the RGDD’s type.
When H = K} we call it a (k,A\)-RGDD. For k = 3,4, the existence for a
(k, A)-RGDD of type h* has been extensively studied by several authors in
[4, 22, 23, 11, 12, 13, 14, 15, 16, 17, 24].

In this paper, we consider H-factorization of AKp« where H is a 3-cube.
The d-cube is a graph whose vertex set can be labelled with the set of all
binary d-tuples, so that its edge set consists of all pairs of vertices which
differ in exactly one coordinate. It is clear that d-cube has 22 vertices,
d - 2%~ edges, and is d-regular and bipartite. So for the existence of a
d-cube factorization of AK}«, we have the following lemma.

Lemma 1.1 Necessary conditions for the existence of a d-cube factoriza-
tion of AKpu are that uh =0 (mod 2¢) and A(u — 1)h =0 (mod d).

In 1979, Kotzig [19] posed two problems of d-cube decompositions and
factorizations of K,. Since these problems were introduced, the cube de-
composition problem and its variations have been investigated by many
people and several results have been obtained, although the cube decom-
position problem itself is far from being completely solved (see [20, 2, 3,
5, 7, 8, 9]). Progress on the cube factorization problem of K, has been
restricted to sporadic values of u or the case where u is a power of 2 (
see (7, 8]). In 2004, Adams et al.[1] settled the cube factorization problem
for d = 3 by showing that these necessary conditions in Lemma 1.1 with
h =1, =1 are also sufficient. Namely

Theorem 1.2 ([1]) There exists a cube factorization of K, if and only if
u=16 (mod 24).

Note that d = 3 is the first non-trivial value of d. A 1-cube factorization
is simply a 1-factorization. In this paper, we will settle the cube factoriza-
tion problem of AKp« for d = 3 by showing that the necessary conditions
in Lemma 1.1 are also sufficient (see Theorem 3.21).

In order to settle the 3-cube factorization problem, we want to apply
a construction technique that uses frames. In the section 2, we will give a
complete solution to the existence of 3-cube frames of AK}u.

In remainder of this paper deals exclusively with 3-cubes, so the term
cube will be used for 3-cube. We will use the notation [vy,vs, v3,vy;vs,



g, V7, Ug] to denote the cube with vertex set {v;,vs,...,vs} and edge set

{v1v2, v2u3, v3v4, V4v1, V56, V6VT, V7U8, VgUs, V1 Us, VaUs, V37, UaUs }-

2 Cube frames of \K}.’s

A useful tool in construction of factorizations is a frame. A A-fold H-
frame of type h* (or an H-frame of AK}p«) is a decomposition of AKX« into
edge-disjoint copies of H, called blocks, such that the set of blocks can be
partitioned into subsets, called partial factors (or holey parallel classes),
which satisfy the following conditions:

(1) each partial factor is a set of blocks in which each vertex of AKju
occurs either one or zero times;

(2) in each partial factor, the vertices that don’t occur are precisely the
vertices in a part (of size k) of AKpu.

An H-frame of MK, is usually called a almost resolvable H design of
order u. An H-frame is called a k-frame if H = K. Similarly, an H-frame
is called a cube frame if the graph H is a cube. For more information about
frames and almost resolvable designs, we can refer the interested readers
to [10] or [6].

In this section, we will establish the spectrum of cube frames of type
h*. To do this, we give some recursive constructions for cube frames.

Let G is a graph, we denote by G @ I, the graph whose vertex-set is
formed by replacing each vertex z of G by m vertices (z, 1), (z,2),..., (z,m),
with (z,%) adjacent to (y, j) if and only if 2 adjacent to y in G.

Lemma 2.1 Let m be a positive integer and C be a cube. Then there exists
a cube factorization of C @ Ip,.

Proof. Let C = [v), ws, v4, ws; wy, v3, w1, va), and let F be a 1-factorization
of K2 over the vertex set X, U X, which exists by [6], where X, =
{(v,NlF = 1,2,...,m}, Xo = {(w,5)lF = 1,2,...,m}. Furthermore, we
let F = {Fy, F,...,Fn}, and F; = {(v, k) (w ,Jk)) [k =1,2,...,m} where
{](‘)lk =12,...,m} ={1,2,...,m}. Now we use F; to construct a cube
factor of C @ I,. For each edge (v, k)(w, j(.)) € F,, we use C'(.) to de-
note the cube (v, k), (w2, 3{"), (va, k), (ws, (w4, 9, (45, ), (1,5,
(va, k)] in C® Im. Let €' = {CP,C{,...,c0}. Then it is not difficult
to verify that C* is a cube factor of C ®I and C = {C,C?,...,C™}isa
cube factorization of C @) Irn.

Lemma 2.2 Let m be a positive integer. Suppose there is a cube frame of
AKpu, then there is a cube frame of AK(mpyw.
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Proof. Let C be a cube frame of AKp«. Replace each vertex z of AKj«
by a set of m vertices (z, 1),(z,2), -, (z,m) and each edge of AKx« by a
copy of K,,2. Replace each cube C in C by a cube factorization of C @) I,
which exists by Lemma 2.1. This gives a cube frame of AK(;;pyu.

Lemma 2.3 Let h,ty,...,t, be positive integers and hlt;,1 < i < n. Sup-
pose there is a cube frame of AKy, ¢y,...t,, and for 1 < i < n there is
a cube frame of AKp,;/n+1y. Then there is a cube frame of AKp« where

u= ZISign(ti/h) + 1.

Proof. Let Xo = {1,2,...,h}, Xij = {(¢,5,1), (2, 5,2),..., (5,7, h)}, and
Xi = UigjcenXij for 1 < ¢ < n. Let the vertex set of AKy, 4,0,
be X = Uj<i<nXi, and let P be a cube frame of AKy, ¢, . ;. With parts
Xi,1 < i< n. It is not difficult to see that there are At;/3 partial factors
missing the vertices in Xj, call these Pij1, Pija, - - -, Pijianss), 1 < j < ti/h.

For 1 < i < n, let @ be a cube frame of AK,/n+1) on the vertex
set X; U Xp with parts X;;,1 < j < t;/h and Xo. For each part X;;, let
Qij1, Qij2, - - -» Qij(an/3) be Ah/3 partial factors missing the vertices in X,
and for part Xo, let Qi1, Qi2,. .., Qian/3) be Ah/3 partial factors missing

the vertices in Xp.
For1<i<n,1<j<t/hand1<k<Ah/3,let

Rijk = Pijk U Qijk

and let
Ri = U Qik-

1<i<n
Then it is straightforward to check that

R= U ®&Ut U Ra)

1<k<AR/3 1<i<n,1<j<t: /h

forms a cube frame of AK}« on the vertex set X U X, with parts Xy and
Xij,1 <1< n,1< 7 <t;/h. The partial factors missing the vertices in Xj;
are Rij1, Rij2, ..., Rij(an/3) and the partial factors missing the vertices in
Xo are Ry, R2,...,Rans3. This completes the proof.

To apply the above recursive constructions, we need the following de-
signs constructed by using difference technique.

Lemma 2.4 There ezists a cube frame of Kas.

Proof. Label the vertices of K3 with the elements of Zg x Z3, with
the part set {{i} x Z3 : i € Zg}. A cube frame is given by developing the



following starter partial cube factor missing the vertices in {0} x Z3 modulo

(9"):
[(1,0),(2,0), (4,0), (2,1); (5,0), (6,2), (7, 2), (4, 2)],

((3,0),(6,0),(3,1),(8,1); (7,1),(5,1), (6,1),(2,2)],
[(7! 0)’ (1’ 1)’ (8’ 0)) (5, 2); (3’ 2)’ (8’ 2)’ (17 2)’ (4’ 1)]'

Lemma 2.5 There exists a cube frame of Kaiz.

Proof. Label the vertices of K1z with the elements of Z;7 x Z3, with
the part set {{i} x Z3 : 1 € Z17}. The following two starter cubes generate
a partial cube factor missing the vertices in {0} x Z3 by the operation
modulo(-,3).

[(1,0),(2,0), (4,0),(7,0); (10,0), (14,0), (16,1), (6, 1)],

[(3$ 0)! (111 1): (51 0)’ (121 1); (139 1): (81 O)’ (9’ l)a (15, 0)]

Then, we can get the desired cube frame by developing the above partial
cube factor by using the operation modulo (17,-).

Lemma 2.6 There exists a cube frame of Kgs.

Proof. Label the vertices of Kgs with the elements of Z3g, with the part
set {{i,i+5,--+,i+ 25} : 0 <4 < 4}. A cube frame is given by developing
the following starter partial cube factor missing the vertices in {0, 5, - - -, 25}
+3meodulo 30:

[1,3,4,7;13,21,27,24], [2, 16,12, 26; 6,23, 14, 22], (8,9, 17, 19; 11, 18, 29, 28].

Now we can establish the existence of cube frames with index A = 1.
The following known result was obtained by Adams et al.

Lemma 2.7 ([1, Lemma 4.1]) There ezists a cube frame of Kogu foru > 3.
Lemma 2.8 There ezists a cube frame of K3u foru=1 (mod 8).

Proof. Cube frames of K3 and K317 are given by Lemmas 2.4 and 2.5.
Thus it remains to consider u = 8n + 1 and n > 3. These designs can be
obtained by applying Lemma 2.3 with A = 3 to cube frames of K4~ for
n > 3 which come from Lemma 2.7.
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Lemma 2.9 There ezists a cube frame of Kgu foru=1 (mod 4).

Proof. Cube frame of Kgs is given by Lemma 2.6. Cube frame of Kgo
is given by applying Lemma 2.2 with m = 2 to a cube frame of K3s which
comes from Lemma 2.4. Now applying Lemma 2.3 with A = 6 to cube
frames of Kap4» for n > 3 which come from Lemma 2.7 gives the desired

designs.

Lemma 2.10 There ezists a cube frame of Ky« foru =1 (mod 2).

Proof. Cube frame of K33 can be obtained from a cube factorization
of Kj22, which exists by [1, Lemma 3.2]. Cube frame of K25 is given by
applying Lemma 2.2 with m = 2 to a cube frame of Kgs which comes from
Lemma 2.6. Now applying Lemma 2.3 with h = 12 to cube frames of Koyn
for n > 3 which come from Lemma 2.7 gives the desired designs.

Applying Lemmas 2.2 and 2.7-2.10, we have

Theorem 2.11 There ezists a cube frame of Kpu for (u—=1)h =0 (mod 8),
h=0 (mod3) andu > 3.

Next we will focus our attention on constructing the cube frames with
index A = 3.

Lemma 2.12 There erists a 3-fold cube factorization of type 42. Hence a
3-fold cube frame of type 43 exists.

Proof. Label the vertices of 3K42 with the elements of Zg, with the part
set {{i,4+2,i+4,i+6}:%=0,1}. A cube factorization is given by the
following cube factors.

Factor 1: [0,1,2,3;5,4,7,6]. Factor 2: [0,1,2,3; , , , 4).

Factor 3: [0,1,4,5;7,6,3,2]. Factor 4: [0,3,4,7;5,6,1,2].

Lemma 2.13 There ezists a 3-fold cube frame of type 8* for u > 3.

Proof. A 2-frame of type 2% exists for all v > 3 [6]. Let M be a 2-frame
of type 2* with the underlying graph K2.. Replace each vertex of Kau by
a set of 4 vertices, and each edge of Ko« by a copy of 3K2. Replace each
block in M by a cube factorization of 3K,2, which exists by Lemma 2.12.
This gives a 3-fold cube frame of type 8.

Lemma 2.14 There ezists a 3—fold cube frame of type 1* foru =1 (mod 8).



Proof. For u =9 and 17. Label the vertices of 3K, with the elements of
Zy. The two designs can be obtained by developing the following starter
blocks modulo u.

1 u=9:[1,2,3,6;8,4,7,5]

(2) u=17: [1,2,8,4;10,16,9,14],[5,7,11,13; 8,12, 6, 15).

For u = 8n + 1,n > 3, applying Lemma 2.3 with 2 = 1 to 3-fold cube
frames of type 8" for n > 3 coming from Lemma 2.13 gives the desired
designs.

Lemma 2.15 There erists a 3-fold cube frame of type 2* foru =1 (mod 4).

Proof. For u = 5, we give its direct construction as follows. Label the
vertices of 3K,s with the elements of Z1g, with the part set {{,i+5}:0 <
i < 4}. Developing the following starter cube [1,2,3,7;8,4,6,9] modulo 10
gives the desired designs. For u =9, applying Lemma 2.2 to a 3-fold cube
frame of type 1* which comes from Lemma 2.14 gives the desired designs.
For u = 4n + 1,n > 3, applying Lemma 2.3 with h = 2 to 3-fold cube
frames of type 8" for n > 3 coming from Lemma 2.13 gives the desired

designs.

Lemma 2.16 There exists a 3—fold cube frame of type 4* foru =1 (mod 2).

Proof. For u = 3, the desired design comes from Lemma 2.12. For u = 5,
applying Lemma 2.2 to a 3-fold cube frame of type 2° which comes from
Lemma 2.15 gives the desired designs. For u = 2n + 1,n > 3, applying
Lemma 2.3 with A = 4 to 3-fold cube frames of type 8" for n > 3 coming
from Lemma 2.13 gives the desired designs.

Applying Lemmas 2.2 and 2.13-2.16, we have

Theorem 2.17 There exists a 3-fold cube frame of type h* for (u—1)h =0
(mod 8) and u > 3.

We are now in a position to give our main result in this section.

Theorem 2.18 There exists a cube frame of AKyu if and only if (u—1)h =
0 (mod8), \h=0 (mod 3) and u > 3.

Proof. By simple counting argument, necessity is clear. Sufficiency can
be divided into the following two cases.

Case: A\=1,2 (mod3), (u~1)h=0 (mod8), h=0 (mod 3), and
u>3.

CaseIl: A\=0 (mod3), (u—-1)h=0 (mod 8), and u > 3.

The conclusion of Case I follows from Theorem 2.11 by repeating blocks A
times. The conclusion of Case II follows from Theorem 2.17 by repeating
blocks A/3 times. This completes the proof.
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3 Cube factorizations of AKj.'s

In this section, we will establish the existence of cube factorizations of
AKpe. For cube factorizations, we first present the following recursive
constructions which are similar to Lemmas 2.2 and 2.3.

Lemma 3.1 Let m be a positive integer. Suppose there is a cube factor-
ization of AKp«, then there is a cube factorization of AK (mp)u.

Proof. Let C be a cube factorization of AK«. Replace each vertex z of
MK« by a set of m vertices (z,1), (z,2),- -, (z,m) and each edge of AK}«
by a copy of K,,2. Replace each cube C in C by a cube factorization of
C® I, which exists by Lemma 2.1. This gives a cube factorization of

AK(mh)u .

Lemma 3.2 Let h,t be positive integers and hit. Suppose there is a cube
factorization of AKyn, and there is a cube factorization of AKj(/ny. Then
there is a cube factorization of AKpu where u = nt/h.

Proof. Let Xij = {(i,j, 1), (i,j, 2)y..0y (2, 3, h)}, and X; = Ulngt/hXij
for 1 < i < n. Let the vertex set of AK» be X = Uj<i<nX;, and let P bea
cube factorization of AK;» with parts X;,1 < ¢ < n. It is not difficult to see
that there are A(n — 1)t/3 factors, call these P, Py, ..., Py(n_1)t/3. Now,
replacing each part X; of AK;» by the graph AKj,./» with parts X;; gives a
graph AKp« with parts X;;, 1 <i<nand 1<j<t/h. Let Q; be a cube
factorization of AKj(/n) on the vertex set X; with parts X;;,1 < j < t/h.
And let Q;1, Qi2,-- -, Qi(A(t—h)/3) be A(t — h)/3 factors of Q;.
For 1 < j < A(t—h)/3, Let

Ri= |J Qi
1<i<n
and let
R=( U »U U =R
1< <A (n-1)¢/3 1<iSM(t—h)/3

Then it is straightforward to check that R forms a cube factorization of
MK on the vertex set X with parts and X;;,1 <i<n,1 <j<t¢/h. And
P1,Pa,... ,'P).(,,_l)t/g and Ry, Rs,.. .,RA(g_h)/;; are its all factors. This
completes the proof.

Lemma 3.3 Let h,t be positive integers and h|t. Suppose there is a cube
frame of AK¢n, and there is a cube factorization of AKpe/n+1y. Then there
is a cube factorization of AKp« where u=nt/h + 1.
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Proof. Let Xo = {1,2,...,h}, Xi; = {(4,4,1),(¢,4,2),...,(i,4,h)}, and
Xi = Uigjct/nXij for 1 < i < n. Let the vertex set of AKi» be X =
Ui<i<nXi, and let P be a cube frame of AKi» with parts X;,1 < i < n.
For each part X;, there are exactly At/3 partial cube factors missing the
vertices in Xj, call these Pi1, Pi2, ..., Pia/3)-

Now, replacing each part X; of AK» by the graph AK},(e/n+1) With parts
Xi; and Xo gives a graph AKj. with parts Xp and X;5, 1 < i < n and
1< j<t/h. Forl<i<n,let @; be a cube factorization of AKje/nt1)
on the vertex set X; U Xo with parts Xo and X;;,1 < j <t/h, and call the
At/3 cube factors Qy, Qi2,. .., Qi(At/s)-

For1<i<n,1<j<At/3,let

Rij =Py U Qij

and let
R=  J Ru

1<i<n,1<5<At/3

Then R forms a cube factorization of AK« on the vertex set X U Xy with
parts Xp and X;;,1 <i<n,1<j<t/h. Where Ry;,1<i<n,1<j5<
* At/3 are its all cube factors. This completes the proof.

Now we consider the case with index A = 1.

Lemma 3.4 [1, Lemma 2.1] There ezists a cube factorization of Koaa.

By Lemmas 3.1 and 3.4, we have

Lemma 3.5 For any positive integer m, there exists a cube factorization
Of K (2m)4-

Lemma 3.6 There exists a cube factorization of Kpu forh=1,5,7,11,13,
17,19,23 (mod 24) and u =16 (mod 24).

Proof. Applying Lemma 3.1 to a cube factorization of K, , which exists
by Theorem 1.2, gives the desired design.

Lemma 3.7 There exists a cube factorization of Kou foru =4 (mod 12).

Proof. Foru=4 (mod 12), a (4,1)-RGDD of type 1* exists [6]. Let R
be a (4,1)-RGDD of type 1* with the underlying graph K,,. Replace each
vertex of K, by a set of 2 vertices, and each edge of K, by a copy of Koa.
Replace each block in R by a cube factorization of Kgs, which exists by
Lemma 3.4. This gives a cube factorization of Kou.

Lemma 3.8 There exists a cube factorization of Kogu for u > 2.
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Proof. There is a 1-factorization of Kau for u > 2 [6]. Let P be a
1-factorization of type 2* with the underlying graph Kj.. Replace each
vertex of Ko« by a set of 12 vertices, and each edge of Kou by a copy of
Ks2. Replace each block in P by a cube factorization of K2, which exists
by Lemma 3.2 in [1]. This gives a cube factorization of Kpqu.

Lemma 3.9 There exists a cube factorization of K12« foru=0 (mod 2).

Proof. There is a 1-factorization of K,, for u =0 (mod 2) [6]. Let P be
a 1-factorization of type 1% with the underlying graph K,. Replace each
vertex of K, by a set of 12 vertices, and each edge of K, by a copy of Ksa.
Replace each block in P by a cube factorization of Kj92, which exists by
Lemma 3.2 in [1]. This gives a cube factorization of K;ou.

Lemma 3.10 There exists a cube factorization of K4« foru =4 (mod 6).

Proof. By Lemma 3.5 there is a cube factorization of K. For u =
6n +4,n > 1, applying Lemma 3.3 with h = 4 to a cube frame of Ks2n41
coming from Lemma 2.10 gives the desired design.

Lemma 3.11 There exists a cube factorization of Kgu foru=1 (mod 3).

Proof. Foru=1 (mod 3), a (4,1)-RGDD of type 4* (i.e., a resolvable
(4u, 4,1)-BIBD) exists [17). Let R be a (4,1)-RGDD of type 4* with the
underlying graph Kj4u.. Replace each vertex of K4u by a set of 2 vertices,
and each edge of K4« by a copy of Koa. Replace each block in R by a
cube factorization of Ka«¢, which exists by Lemma 3.4. This gives a cube
factorization of Kgu.

Lemma 3.12 There exists a cube factorization of Keu foru=0 (mod 4).

Proof. There is a cube factorization of Kg« by Lemma 3.5. For v =
4n,n > 2, applying Lemma 3.2 with h = 6 to a cube factorization of Ko4n
coming from Lemma 3.8 gives the desired design.

Lemma 3.13 There exists a cube factorization of K3« foru =0 (mod 8).

Proof. For u = 8, label the vertices of K3s with the elements of Z5;, U
{001, 002,003}, with the parts {001, 002,003} and {,i+7,i+14},0 <i < 6.
A cube factorization is given by developing the following starter cube factor
+3 modulo 21.

[001,0,1,2;4,6,9,17), [002, 11,7, 13; 12, 16, 19, 3], [c03, 5, 8, 10; 15, 14, 18, 20].

For u = 8n,n > 2, applying Lemma 3.2 with h = 3 to a cube factorization
of Ko4n coming from Lemma 3.8 gives the desired design.

252



Summing up, we have

Theorem 3.14 There exists a cube factorization of Kpu foruh =0 (mod 8),
(u—1)h=0 (mod3) andu > 2.

Proof. Conclusion follows from Lemmas 3.1 and 3.6- 3.13.

Next we consider the case with index A = 3,

Lemma 3.15 There ezists a 3-fold cube factorization of type 2% foru=0
(mod 4).

Proof. Foru =0 (meod 4), a (4,3)-RGDD of type 1* exists [6]. Let R
be a (4,3)-RGDD of type 1* with the underlying graph 3K,,. Replace each
vertex of 3K, by a set of 2 vertices, and each edge of 3K, by a copy of
K»2. Replace each block in R by a cube factorization of Ky, which exists
by Lemma 3.4. This gives a 3-fold cube factorization of type 2.

Lemma 3.16 There ezists a 3-fold cube factorization of type 4% foru=0
(mod 2).

Proof. There is a 1-factorization of K, for u=0 (mod 2) [6]. Let P be
a 1-factorization of type 1* with the underlying graph K,. Replace each
vertex of K, by a set of 4 vertices, and each edge of K, by a copy of 3K,2.
Replace each block in P by a 3-fold cube factorization of type 42, which
exists by Lemma 2.12. This gives a 3-fold cube factorization of type 4.

Lemma 3.17 There exists a 3-fold cube factorization of type 8% foru > 2.

Proof. There is a 1-factorization of Kz« for u > 2 [6]. Let P be a
1-factorization of type 2% with the underlying graph Kj.. Replace each
vertex of Ko« by a set of 4 vertices, and each edge of Ky« by a copy of
3K,42. Replace each block in P by a 3-fold cube factorization of type 42,
which exists by Lemma 2.12. This gives a 3-fold cube factorization of type

8v.

Lemma 3.18 There exists a 3-fold cube factorization of type 18,

Proof. Label the vertices of 3Ky with the elements of Z7 U {00}, A cube
factorization is given by developing the following cube factor modulo 7.

[,0,1,5;6,4,2,3].
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Lemma 3.19 There ezists a 3-fold cube factorization of type 1% foru=0
(mod 8).

Proof. There is a 3-fold cube factorization of type 1% by Lemma 3.18.
For u = 8n,n > 2, applying Lemma 3.2 with h = 1 to a 3-fold cube
factorization of 8" coming from Lemma 3.17 gives the desired design.

Applying Lemmas 3.1, 3.15-3.17 and 3.19, we have

Theorem 3.20 There ezists a 3-fold cube factorization of type h* for uh =
0 (mod 8) andu > 2.

We are now in a position to give our main result in this paper.

Theorem 3.21 There ezists a cube factorization of AKn« if and only if
uh=0 (mod8), A(u—1)h=0 (mod 3) and u > 2.

Proof. Necessity is from Lemma 1.1. Sufficiency can be divided into the
following two cases.

Case: A\=1,2 (mod3),uh=0 (mod8), (u—1)h=0 (mod 3), and
u> 2.

CaseII: A\=0 (mod3),uh=0 (mod 8),and u > 2.

The conclusion of Case I follows from Theorem 3.14 by repeating blocks A
times. The conclusion of Case II follows from Theorem 3.20 by repeating
blocks A/3 times. This completes the proof.

4 Concluding remarks

A k-factor of a graph G is a k-regular spanning subgraph of G. A k-
factorization of G is a set of k-factors of G whose edge sets partition the edge
set of G. A k-factorization in which all of the k-factors are isomorphic is
called uniform. For uniform 3-factorizations of Kz« in which the structure
of the 3-factors is specified in advance, very little is known. For u = 10,
the smallest non-trivial value of u for which there exists a 3-factorization
of K., a complete enumeration of 3-factorizations of K, is given in [18].
Resolvable group divisible designs (RGDDs) of type h* with block size
k = 4 and index A = 1 or 3 are equivalent to 3-factorizations of AK}u in
which each 3-factor consists of hu/4 vertex disjoint copies of K4, and are
known to exist if and only if uh =0 (mod 4) and AM(u~1)Ah =0 (mod 3)
and u > 4 with 6 definite exceptions and a handful of possible exceptions
of (h,u,)) (see [11, 12, 13, 14, 15, 16, 17, 24]). This is a first family of
uniform 3-factorization of AKp«. Adams et al. [1] gave a second complete
family of uniform 3-factorizations of K, (see Theorem 1.2). In this paper,
we generalize Adams et al.'s result and give a second complete family of
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uniform 3-factorizations of AKx« (see Theorem 3.21). For 3-factorization
problem of AKpu, there is still much work to do.
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