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Abstract

Let G be a non-abelian group and let Z(G) be the center of G. Associate
with G a graph I'g as follows: Take G\Z(G) as vertices of I'¢ and join
two distinct vertices z and y whenever zy # yr. Graph I'g is called the
non-commuting graph of G and many of graph theoretical properties of I'g
have been studied. In this paper we study some metric graph properties of
Tc.

1 Introduction

Let I be an undirected connected graph without loops or multiple edges.
The sets of vertices and edges of I are denoted by V(I") and E(T'), respec-
tively. For vertices = and y in V(I'), We denote by d(z,y) the topological
distance i.e., the number of edges on the shortest path, joining the two
vertices of I'. Since I is connected, d(z,y) exists for all z,y € V(I'). The
name Wiener number or Wiener index is nowadays in standard use in chem-
istry and is sometimes encountered also in the mathematical literature( see
5, 2, 3, 4]). The Wiener index of the graph I' is the half sum of distances

over all its vertex pairs (u,v): W(T') = % z d(u,v).

u,veV(I’)
For an edge e(= uv) of a graph I, let n,(e) denote the set of vertices of I'
lying closer to u than to v and n,(e) is the set of vertices of I lying closer
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to v than to u.

The sets n,(e) and n,(e) play an important role in metric graph theory.
For more information on the research in this direction see [6, 10, 11]). Ivan
Gutman (7] defined the Szeged index, Sz(T'), of a graph I as:

Sz2T) = D Inu(@)lIns(e)l:

uv=e€E(l)

If T is a tree, then Sz(T') = W(I'). We recall that this is not true for any
graph.

Let G be a non-abelian group and let Z(G) be the center of G. Associate
with G a graph I as follows: take G\Z(G) as vertices of I'¢ and join
two distinct vertices  and y whenever zy # yz. Graph I is called the
non-commuting graph of G and many of graph theoretical properties of I'g
have been studied in [1, 12]. In this paper We study some metric properties
of I'¢ and compute the Wiener and Szeged indices of some linear groups.
Since Wiener and Szeged indices are invariant under graph isomorphism,
one of the advantages of this work is that for comparing the non-commuting
graph of groups, We can compare their indices at first.

If G and H are two graphs, it may happen that W(G) = W(H) but
Sz(G) # Sz(G). However, if G and H are two non-abelian groups, We
guess that if W(I'q) = W(Tg), then Sz(Tg) = Sz(Ty)!

1 metric properties of the non-commuting
graph

We begin with some basic metric properties of the non-commuting graph
of group G. The first lemma introduces an important fact about I'g.

Lemma 1 Let G be a non-abelian group. Then I'¢ is a connected graph
of diameter 2 and girth 3.

PROOF: See [1].
By the above Lemma it is clear that:

Remark 2 Let G be a non-abelian group and x € G\Z(G). Then

L, i y€G\Cola);
d(z,y) = { 2, :f yye Cg((;)\Z(G).

We prove a key lemma about n,(e) for an arbitrary finite non-abelian
group. It will be used later in the paper.
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Lemma 3 Let G be a non-abelian group and e = uwv € E(T'g). Then
nu(e) = ((Ce(v)\Ce(uw))\{v}) U {u}.

PrOOF: Let B = ((Cg(v)\Ca(u))\{v}) U {u}. An easy computing shows
that: B C n,(e). Now suppose that y € n,(e) and d(y, u) = t1,d(y, v) = ta.
So t; < tg. If to = 0, then ¢; < 0 which is impossible. If £, = 1, then¢; =0
and y = u. Finally, if t2 =2, then ¢; =0 or 1. According to the Remark
2, We have y = u or y € Cg(v)\Cg(u). This completes the proof.

We recall that a graph I is called distance-balanced if |n,(e)| = |ny(e)|
for any edge uv of E(I'). We now have the following proposition that
characterizes all finite non-abelian groups so that I'g is distance-balanced.

Proposition 4 Let G be a finite non-abelian group such that I'¢ is distance-
balanced. Then G is nilpotent of class at most 3 and G = P x A, where A
is an abelian group and P is a p-group (p is a prime) and furthermore I'p
18 a regular graph.

PRrRoOF: We show that for each u,v € G\Z(G), |Ce(u)| = |Ce(v)|. If
uv € E(Tg), then, by Lemma 3, We have |Cq(u)\Ce(v)| = |Ce(v)\Ce(u)|,
since |ny(e)] = |ny(e)|. Therefore |Ca(u)| = [Ce(v)]. Now suppose that
uwv € E(I'g). Since diam(I'g) = 2, so there exists y € V(I'¢) such that
uy,vy € E(l'g). Thus |Ce(u)| = |Ce(y)| = |Ce(v)]. Hence g is regular
and by [1, Proposition 2.6 ], G is nilpotent of class at most 3 and G =
P x A, where A is an abelian group and P is a p-group (p is a prime) and
furthermore I'p is a regular graph.

Corollary 5 Let G be a finite non-abelian group such that for each zy €
E(Tg) there ezists ¢ in Aut(I'g) such that o(z) =y and p(y) = z. Then
G is nilpotent of class at most 3 and G = P x A, where A is an abelian

group and P is a p-group.

ProoF: Let e = zy € I'¢ and let ¢ be an automorphism of I'¢ for which
¢(z) = y and ¢(y) = z. If a € ne(z), then d(a,z) < d(a,y). Therefore
d(p(a), p(x)) < d(p(a), »(y)) and so d(p(a),y) < d(p(a),z). It follows
that p(a) € ne(y). Likewise, if a € ne(y), then p(a) € n.(z). Hence
[ne(z)| = |ne(y)| and the Proposition 4 completes the proof.

Lemma 6 Let G be a finite group. Then
(1G] = 1Z2(G)I)(IG] - 21Z(G)| — 2) +|GI(k(G) — |1Z(G)])
2 b

W(le) =

where k(G) is the number of conjugacy classes of G.
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PROOF: Suppose that v € G\Z(G) and d(v) = z d(v,z). Then
z€ G\Z(G)

dlv) = Z d(v,z) + Z d(v,z)

z€ G\Co(v) z€ Co(W\Z(G)
= |G| - Ce()| + (ICc(v)| - 12(G)| - 1)2
1G] +1Ca(v)| - 212(G)| - 2. (1)

Now, by definition of the Wiener index, 2W(G) = Z d(v) and also
ve G\Z(G)
by (1) We have

oW (G)

> (Io1+1cow1 221 -2)
ve G\Z(G)
(1G] - 212(G)| - (6 - 1Z(G)) +

Y. ICs@).

ve G\Z(G)

But by Burnsid Lemma Z |Ca(v)| = k(G)|G], which implies
ve G

> ICew)| =IGIk(©G) - ClIZ(G),
v€ G\Z(G)

which completes the proof.

2 Wiener and Szeged indices of PSL(2, q)

In this section We first obtain Wiener index of I'pgy(2,q) and then Szeged
index of T'psr(2,9), in which ¢ = o (mod 4).

Theorem 1
11 q=2,
62 g=3,
1772 g=35,

W(CpsL(2, ¢)) =
£=g'=8°+5q+4 4 =0 (mod 4),

2
23_24—78g3+7g+16 g>5 and g#0 (mod 4).

Proor: By [8, Satz 6.14, p. 183}, PSL(2,2) = S3 and PSL(2,3) = A,.
So in the cases ¢ = 2 and ¢ = 3, the computation of W(I'psr(2,q)) is
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straightforward.
However, by [9, Theorems 5.5, 5.6 and 5.7], We have

K(G) = g+1 g=0 (mod 4);
Tl %2 g¢g>5andg#0  (mod 4).
We now that PSL(2,4) = PSL(2,5) (see {8, Satz 6.14, p. 183)).
Ifq=0 (mod 4),then |G|=gq(g+1)(g—1)and |Z(G)| = 1. So, by
Lemma 6,

6 — g —5¢°+5¢+4
W(FPSL(z,q))=q g 2q =,

Ifqg#0 (mod 4),then |G| = 24tE-D a4 |Z(G)| = 1. Hence, by
Lemma 6,

8 —¢*—7¢¥+7¢+16
W(TpsLi2,q) = -1 g 1 ,

which completes the proof.

Proposition 7 Let G = PSL(2,q), where q is a power of a prime p and
let k = ged(q — 1,2). Then

(1) a Sylow p-subgroup P of G is an elementary abelian group of order ¢
and the number of Sylow p-subgroups of G is ¢ + 1.

(2) G contains a cyclic subgroup A of order t = 9-‘;—1 such that Ng((u)) is
a dihedral group of order 2t for every non-trivial element u € A.

(8) G contains a cyclic subgroup B of order s = %L such that Ng({(u)) is
a dihedral group of order 2s for-every non-trivial element u € B.
(4) The set {P*, A%, B*|z € G} is a partition for G.

Suppose that a is a non-trivial element of G.
(5) Ifg=0 (mod 4), then

A*® ifa€ A" for somexz €G
Cg(a)={ B® ifa€ B® forsomez € G
P* ifa€ P® for somez € G

PROOF: See Proposition 3.21 of [1].
Now, it is clear, from the Proposition 7, that the number of conjugates
of P, A and B are ¢ + 1, q(q;' L and q(q,; 1 | respectively.
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Definition 1 Let I’ be a graph and A,B C V(T'). We define

Esp = {abeE(G) | ac A, be B},

SaB = Y Ina(ab)]|na(ab)l. (2

ab€EA,B
IfEqsp =0, then We define Sg,p =0. Also, for a € V(G) We put

E{a}.B = Ea,B-
Lemma 8 Let G = PSL(2,q), whereq =0 (mod 4). Suppose that
(P: i=12...,9+1}, {4: i=12,..,90} ond (B, : i=
1,2,..., ﬂgzll)-} are the set of all conjugates of P, A and B, respectively.
Then
(1) Sap = Sh,a-
(2) Sap=|P;j-1]-|Pi=1=(g—1)% wherea € P;, b€ P; and i # j.
(3) Sap=|4j—-1]-|Pi=1=(¢g—2):(¢g—1), wherea € P; and b € A;.
4) S;,;,= |Bj =1|-|Pi =1 =q-(¢—1), where a € P; and b € B;.
(5) Sop = IAJ' -1 |4 -1 = }q—2|2, where a € A;, b€ Aj and i # j.
(6) Sap=1|Bj—1|-1Ai =1 =¢q- (g —2), wherea € A; and b € B;.
(7) Sap=|B; —1|-|Bi — 1| = ¢, where a € B;, b€ B; and i # j.

PRroOOF: Part (1) is trivial and the proofs of the other parts are similar.
So We prove only the part (2). Let @ € P; and b € A;. By Lemma 3,
na(ab) = ((Ca(b)\Ce(a))\{b}) U {a}. Now by part 5 of Proposition 7,
Cg(a) = P; and Cg(b) = Aj. So ng(ab) = ((4;\P;)\{b}) U {a}. By part
4 of Proposition 7, the set {P*, A%, B® | z € G} is a partition of G,
hence n,(ab) = (A; — {1,b}) U {a}. Thus |n.(ab)] = |4;|-1=(¢g—-1)-1.
Likewise, |ny(ad)| = |P;| = 1 = ¢ — 1. Therefore Sz p = (¢ —2) - (g - 1).

Lemma 9 Under the assumptions of Lemma 8 and if
F # E € {P*, A%, B®|z € G}, then

Sre = (Bl - 1) (IF| - 1)%

PRrOOF: We give the proof only for the case F' = P; and E = A;, the other
cases are similar.

Let a € P; and b € Aj. By Lemma 3, n,(ab) = ((Ce(b)\Ce(a))\{b}) U
{a}. Now by part 5 of Proposition 7, Cg(a) = P; and Cg(b) = A;.
So ng(ab) = ((A;\P:)\{4}) U {a}. By part 4 of Proposition 7, the set
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{P*, A®*, B® | z € G} is a partition of G, hence na(ab) = (4; -
{1,b}) U {a}. Thus |n,(ab)| = |A;j| -~ 1. Likewise, |nq(ab)| = |Pi| - 1. Thus
Sap = (|4;] = 1) - (|P| — 1). Therefore

SP(,Aj = Z E sa,b
a€P;\{1} beA;\{1}

> > (41-1-(Rl-1)

a€Pi\{1} be A;\{1}

(14;1 = 1)*- (|1P] = 1),

Corollary 10 Under the assumptions of Lemma 8, We have

(1) Sp.p, = (IPj| = 1) - (|P| = 1)*, where 1 <i#j<q+1.

(2) Sp,,a, = (141 =12 - (|P| - 1)?, where1<i<q+1landl1<j<a.
(3) Sp,B; = (I1Bj| —1)? - (IP:| —1)?, where1<i<g+1land1<j<B.
(4) Saa, = (41 -1)%- (A - 1)?, wherel1<i#j<a.

(5) Sa,.B, = (IBj| —1)%- (|Ai] —1)%, where 1<i<aand1<j< 8.
(6) Sa,.B, = (IBj| —1)2- (|Bi] — 1)?, where 1<i#j < 8.

PRrRoOF: By using the Lemma 9 and an easy computation the proof is
obtained.

Theorem 2 Let G = PSL(2,q), where q=0 (mod 4). Then

a(g — 1)(g +1)(¢° — 2¢* — ¢* + 5¢° — 5q + 3)
> i

Sz(Tg) =
PROOF: By relation (2) of Definition 1,

282(G) = Sg, ¢
= Su?__f,‘a, G‘+SU?=1A"G+SU‘? By, G

i=1

q+1 « B8
T o= Z Sp;, a\p, + ZSM, a\a; + ZSBi, o\, (8)
But, by Lemma 9,
'SP.‘, G\p = SP.-, Ug;:Pj\Pi + SP" AR Y] + SP&, Uf,:lBj
q+1 a B
= Z Sp, PJ"'ZSPhAf"'ZSPu B,
§=1, j#i i=1 j=1

= ¢ (IBI-1)*+a- (14 - )*(R| - 1)* +
B (1Bl - *(IP] - 1)%
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Repeated applications of Lemma 9 enables us to write

(g+1)- (P - 1)*(J4] - 1)* +
(@=1)- (|4 = 1)* + 8- (I1Bi] - 1)*(JAs| - 1)2,
Ss. o8, = (g+1)-(1B|-1)*(B:i-1)*+
a-(JAi| - DX(Bi| - 1)* + (8- 1)- (IB:] - 1)*.

Sa;, 6\

The proof is completed by replacing the above equations in (3).

3 Questions

Let us end the paper by a question and a problem.

(1) Let G and H be two non-abelian groups. Is it true that if W(I'¢) =
W (Ty), then S2(I'g) = S2(Tx)?

(2) Find Sz(T'psr(a,q) When g#0  (mod 4).
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