A ZETA FUNCTION OF A SEMIREGULAR
WEIGHTED BIPARTITE GRAPH

Iwao SATO*
Oyama National College of Technology
Oyama, Tochigi 323-0806, JAPAN

November 29, 2006

Abstract

We give determinant expressions of the zeta function and an L-
function of a semiregular weighted bipartite graph. As an applica-
tion, we present a decomposition formula for the weighted complexity
of a semiregular weighted bipartite graph.

1 Introduction

Graphs and digraphs treated here are finite.

Let G be a connected graph with a set V(G) of vertices and a set E(G)
of edges. Set D(G) = {(u,v), (v,u) | wv € E(G)}. For e = (v,v) € D(G),
set u = o(e) and v = t(e). Furthermore, let e~l= (v, u) be the inverse of
e = (u,v).

A path P of length n in G is a sequence P = (ey,:--,e,) of n arcs such
that e; € D(G), t(e;) = olei41)(1 < i S n—1). If e; = (vi_y,v;) for
i=1,---,n, then we can write P = (vo,v1,***,¥n-1,v5). Set | P |= n,
o(P) = o(e1) and t(P) = t(en). Also, P is called an (o(P),¢(P))-path.
We say that a path P = (ej,---,es) has a backtracking if e,-]_ll = ¢; for
some i(1 < i £ n—1). A (v,w)-path is called a v-cycle (or v-closed
path) if v = w. The inverse cycle of a cycle C' = (e,---,ep) is the cycle
C-l=(e7l,- -, e7)).

We introduce an equivalence relation between cycles. Two cycles C; =
(e1,-+-,em) and Ca = (f1,+ -, fm) are called equivalent if f; = e;; for all
Jj. The inverse cycle of C is not equivalent to C. Let [C] be the equivalence
class which contains a cycle C. Let B™ be the cycle obtained by going r
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times around a cycle B. Such a cycle is called a multiple of B. A cycle C
is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is
not a multiple of a strictly smaller cycle. Note that each equivalence class
of prime, reduced cycles of a graph G corresponds to a unique conjugacy
class of the fundamental group 71(G,v) of G at a vertex v of G.

The (Thara) zeta function of a graph G is defined to be a function of a
complex variable u with | u | sufficiently small, by

Z(G’ “) = ZG(U) = H(l — ulcl)-l,
[l

where [C] runs over all equivalence classes of prime, reduced cycles of G,
and | C | is the length of C.

Let G be a connected graph with n vertices vy, -+, v,. The adjacency
matriz A(G) = (ai;) is the square matrix such that a;; =| {e € E(G) |
e = vv;} | if v; and v; are adjacent, and a;; = 0 otherwise. The degree
deg gv = deg v of a vertex v in G is the number of edges which are adjacent
to v. Let D = (di;) be the diagonal matrix with di; = dege v;, and
Q=D-1

Thara [7] defined the Ihara zeta function of a regular graph, and showed
that its reciprocal is a polynomial. A zeta function of a regular graph G
associated with a unitary representation of the fundamental group of G
was developed by Sunada [16,17]. Hashimoto [5] treated multivariable zeta
functions of bipartite graphs. Bass [1] generalized Thara’s result on Ihara
zeta functions of regular graphs to irregular graphs.

Theorem 1 (Bass) The reciprocal of the Ihara zeta function of G is given

b
’ Zo(w)~! = (1-u?)=" det(I - wA(G) + v*Q),

where n =| V(G) | and ! =| E(G) |.

Stark and Terras [14] gave an elementary proof of Theorem 1, and
discussed three different zeta functions of any graph. Recently, various
proofs of Theorem 1 were given by Foata and Zeilberger (3], Kotani and
Sunada [8]. Stark and Terras [15], and, independently, Mizuno and Sato [9]
obtained a decomposition formula for the Ihara zeta function of a regular
covering of a graph.

The complezity xK(G)(= the number of spanning trees in G) of a con-
nected graph G is closely related to the Ihara zeta function of G. Northshield
{11] showed that the complexity of G is given by the derivative of a determi-
nant contained in the reciprocal of its Ihara zeta function. For a connected

graph G, let fg(u) = det(I — vA(G) +42Q).
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Theorem 2 (Northshield) The complezity of G is given as follows:
fa(1) = 2(1 — n)x(G),
where n =| V(G) | and l =| E(G) |.

Furthermore, Hashimoto [6] and Northshield [11] gave the value of (1 —
u)*"™Zg(u)~? at v =1 in terms of the complexity of G.

Sato [12] defined a new zeta function of a graph by using a determinant
(e.f., [1])-

Let G be a connected graph and V(G) = {vy,--+,vn}. Then we consider
an n x n matrix W = (w;j)1<i,j<n With ij entry the complex number w;; if
(vi,v;) € D(G), and w;; = 0 otherwise. The matrix W = W(G) is called
the weighted matriz of G. For each path P = (v;,,--,v;,) of G, the norm
w(P) of P is defined as follows: w(P) = w;,i,Wiyis * * * Wi,_,i,. Furthermore,
let w(v.-,vj) = wij, Vi, V5 € V(G) and w(e) = Wij, e = ('U,','Uj) € D(G)
A weight w : D(G) — C is a real symmetric if w(e) is a real number
and w(e~!) = w(e) for each e € D(G). Then, note that W(G) is a real

symmetric matrix.
Let G be a connected graph with n vertices and m unoriented edges,

and W = W(G) a weighted matrix of G. Two 2m x 2m matrices B =
B(G) = (Be,f)e.senc) and Jo = Jo(G) = (Je,f)e,seD(G) are defined as
follows:

B, = { w(f) if t(e) = o(f), Jop= { 1 iff=el,

otherwise 0 otherwise.
Then the zeta function of G is defined by
Z1(G,w,u) = det(I, — u(B — Jo)) 1.

If w(e) = 1 for any e € D(G), then the zeta function of G is the Ihara zeta

function of G(see [1,5]).
Sato [12] gave a determinant expression for the zeta function Z; (G, w, u)

of a graph G. Let degg,u(v) = degw(v) = 3 ()=, w(e) for each vertex
v € V(G).

Theorem 3 (Sato) Let G be a connected graph, and let W = W(G) be
a weighted matriz of G. Then the reciprocal of the zeta function of G is
given by

Z1(G,w,u)~! = (1 —u®)™ " det(I, — uW(G) + u¥(D — 1,)),

where n =| V(G) |, m =| E(G) | and D = (d;;) is the diagonal matriz with
di; = degw(vi): V(G) = {'01, R vﬂ-}'
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In this paper, we consider the zeta function of some bipartite graph
with arc weights which are real and symmetric. In Section 2, we give
a determinant expression of the zeta function of a semiregular weighted
bipartite graph. In Section 3, we present a determinant expression for the
L-function of a semiregular weighted bipartite graph. In Section 4, we
give a decomposition formula for the weighted complexity of a semiregular
weighted bipartite graph. In Section 5, we give a decomposition formula of
the zeta function of a regular covering of a semiregular weighted bipartite
graph.

A general theory of the representation of groups, the reader is referred
to [13].

2 Zeta functions of semiregular weighted bi-
partite graphs

A graph G is called bipartite, denoted by G = (W1, V3) if there exists a
partition V(G) = V; U V; of V(G) such that uv € E(G) if and only if
u € V; and v € V;. A bipartite graph G = (V4, V2) is called (g3 + 1,92 +1)-
semiregular if deg gv = ¢; +1 for each v € Vi(i = 1,2). For a (q1+1,¢2+1)-
semiregular bipartite graph G = (4, V2), let GU be the graph with vertex
set V; and edge set {P : reduced path | | P |= 2;0(P),t(P) € V;} for
i =1,2. Then GIU! is (g1 + 1)gy-regular, and G!? is (g2 + 1)g;-regular.
Hashimoto (5] treated multivariable zeta functions of bipartite graphs.
For a graph G, let Spec(G) be the set of all eigenvalues of the adjacency

matrix of G.
Theorem 4 (Hashimoto) Let G = (V1,V2) be a connected (g1 +1, ga+1)-
semiregular bipartite graph with v vertices and € edges, | V1 |= n and
| Va2 |=m(n < m). Then
n
Z(G,u) 7 = (1 - u?) (1 + )™ " [J(1 - (A — 1 — g2)u? + qrgou?)
j=1
= (1 —u2)*(1 + gzu?®)™ " det(L, — (AlY) — (g2 — 1)I.)u? + q1gou'l,)

= (1 —u)**(1 + q1u?)" ™ det(Im — (AP = (g1 — 1)In)u? + q1gou’l,y),
where Spec(G) = {£M1,--+,£M,0,:++,0} and Al = A(Gl)(i =1, 2).

Let G = (V},V2) be a connected bipartite graph. Then G is called a
(q1 +1, g + 1)-semiregular weighted bipartite graph if deg ., (v;) = g; +1 for

each i = 1,2 and each v; € V;. Then we obtain an analogue of Hashimoto’s
Theorem. For a square matrix F, let Spec(F) be the set of all eigenvalues

of F.
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Theorem 5 Let G = (V1, V) be a connected (g1 + 1,q2 + 1)-semiregular
weighted bipartite graph with v vertices and € edges, | V1 |=n, | V2 |=
m(n < m) and W = W(G) a real symmetric weighted matriz of G. Then

n
Z,(G,u) ™ = (1 —w?) (L + u?)™ " [ (1 — (A2 — a1 — g2)u® + q1qous?),
j=1

where Spec(W(QR)) = {£A,- -, £A,,0,--+,0}.
Proof. Similar to the proof of Theorem 4. Q.E.D.
Let G be a connected graph and W = W(G) a weighted matrix of

G. Then G is called a r-regular weighted graph if deg ,(v) = r for each
v € V(G). By Theorem 3, we obtain the following result.

Corollary 1 Let G be a connected (r + 1)-regular weighted graph with v
vertices and € edges, and W = W(G) a real symmetric weighted matriz of

G. Then

14
Z1(G,u)~t = (1 — )™ H(l — Aju+ ru?),
i=1

where Spec(W(G)) = {M1,- -, A}

3 L-functions of graphs

Let G be a connected graph with n vertices and ! unoriented edges, W =
W(G) a weighted matrix of G and I a finite group. Then a mapping o :
D(G) — T is called an ordinary voltage assignment if a(v, u) = a(u,v)?
for each (u,v) € D(G). For each path P = (ey,---,e,) of G, set a(P) =
a(ey) - a(er). This is called the net voltage of P. Furthermore, let p be a
unitary representation of I" and d its degree. The Kronecker product A@ B
_of matrices A and B is considered as the matrix A having the element a;;
replaced by the matrix a;;B.
The L-function of G associated with p and « is defined by

Z,(G,w,u, p,) = det(Tug —u Y _ p(h) ®(Bh —-Jn)7Y
her

where, for g € ', two matrices B, = (b(g)) and Jg = (cigf)) are given by

bﬁ‘}) — { w(f) if a(e) =g and t(e) = o(f),

otherwise.

and

¢ = 1 ife(f)=gande™! =,
0 otherwise.
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If p = 1 is the identity representation of I, then the L-function of G is
the zeta function of G:

Z,(G,w,u,p,a) = Z1(G,w,u).

Sato [12] gave a determinant expression for the L-function of G associ-

ated with pand a. Let 1 <i,j < n. For g €T, let the matrix W, = (w,(.g,, )
be defined by

w@ = w(u,v) if a(u,v) =g and (»,v) € D(G),
w0 otherwise.

Theorem 6 (Sato) Let G be a connected graph with n vertices and |
unoriented edges, W(G) a weighted matriz of G, T’ a finite group and
a : D(G) — T an ordinary voltage assignment. Furthermore, let p a
representation of I' and d the degree of p. Then the reciprocal of the L-
function of G associated with p and o is

21(G,w,u,p,0) " = (1-u?)" det(Ina—u Y p(h) Q) Wr+u(1a Q) Q)),
her

where Q =D — 1.
By Theorem 6, we obtain the following result.

Theorem 7 Let G = (W1, V2) be a connected (g1 + 1,92 + 1)-semiregular
weighted bipartite graph with v vertices and € edges, W = W(G) a real
symmetric weighted matriz of G, T be a finite group and o : D(G) — T’
an ordinary voltage assignment. Furthermore, let p be a unitary repre-
sentation of T and d = degp. Set | Vi |=n, | Vo |= m(n < m) and
W, = Eger W, p(g). Then

zl(Gawa u, p, a)_l
= (1 —u?)E9(1 4 gud) =m0 (1 - (A2 — g1 — g2)u? + qugaut),
where Spec(W,) = {£A1,* -+, +Ana,0,-++,0}.

Proof. The argument is an analogue of Hashimoto’s method [5].
By Theorem 6, we have

ZI(G’ w,u, p, a)_l
= (1-u)eMdet(Lg—uY 4 P(9) @ W, +2*(1: @ Q))

= (1-w?) " det(la —u T e Wo @ 0(0) + v’ QR 1La).
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Let Vi = {v, ++,un} and Vo = {v1,-+,v,}. Arrange vertices of G
as follows: u1,:*,Un;¥1,***,Vm. We consider the matrix W, under this
order. Then, with the definition, we can see that

0 B
W, = [ 8 ¢ J .
For e € D(G), we have p(a(e!))p(c(e)) = p(1) = I4. Since pis unitary,

pla(e™)) = pla(e))™" = ‘plafe)).

Thus, W, is Hermitian. Therefore, there exists a unitary matrix U €
U(md) such that

M1 0 0 .-+ 0
BU=[C, 0]= : :
* Und 0 0
Now, let
Ind 0
=% o]
Then we have

B 0 C, 0

tPWpP = th 0 o

0 0 o

Furthermore, we have
*PQRLIP=QR L.
Thus,
Z,(G,w,u, p, &)~ ! = (1 — u?)(&=1)4(] 4 gyy?)(m-n)d

1+ qu?)Ing -uC,
X det [ -u'C, (1 + g2u®)Ing
= (L) gut)

wdet | 1 q14%)Ing 0 _
-u'C, (14 g2u?)Ing = (1 + q1u?)~ 12 ¢C,C,

=(1- u?)(=4(1 + gau?) (M= det((1 +q1u?)(1 + gau?)Lg — u? tC,C,).
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Since W, is Hermitian, tC,C, is Hermitian and positive definite, i.e.,
the eigenvalues of *C,C, are of form:

A%:"')Aﬁd(Al:“'iAnd>0)-

Therefore it follows that

nd
Z:(G,w,u,p,0) 7! = (1—u?)( (1 4gyu?) =4 [T (1-(A2—g1 —go)u+q105u%)
i1

But, we have
det(AI — W,) = Am=™M det(A\%I - *C,C,),
and so
Spec(W,) = {£A1,-++,£An4,0,--+,0}.

Therefore, the result follows. Q.E.D.
In the case that p = 1(the trivial representation of I'), we obtain The-

orem 5.

4 Weighted complexity of a semiregular weighted
bipartite graph

Let G be a connected graph with n vertices and m edges, and W = W(G)
a weighted matrix of G. Then, let

fo(w,u) = det(I, —uW + (D — I,)u?).
When w = 1, i.e., w(e) =1 for each e € D(G), Theorem 2 implies that

K(G) = gy 1)

if m # n.

In the case that w is symmetric, ie., w(e™!) = w(e) for each e € D(G),
we consider all spanning arborescences of G rooted at any fixed vertex
v € V(G) (spanning trees of G oriented so that all edges point to v). The
sum of the product of weights of all arcs in those spanning arborescences
of G are not depended on a vertex v of G. Then this sum is called the
weighted complezity of G, denoted by «,,(G). Mizuno and Sato [10] showed
the following result.
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Theorem 8

Kw(G) = mf(w, 1),

where w(G) = 3, ¢ E(G) w(z,y).

Furthermore, they presented a formula for the weighted complexity of a
regular covering H of G in terms of that of G and a product of determinants
over all distinct irreducible representations of the covering transformation
group of H.

Next, we present a decomposition formula for the weighted complexity

of a semiregular weighted bipartite graph G.

Theorem 9 Let G = (V},V2) be a connected (g1 + 1, g2 + 1)-semiregular
weighted bipartite graph with v vertices and € edges, | Vi |=n, | V2 |=
m(n < m) and W(G) a real symmetric weighted matriz of G. Then

(g2 + )™ ™@az— 1) [[((@1 + 1)(g2 +1) = 2D),
J#1

kw(G) =

ng —m

where Spec(W(G)) = {£A1,-++,£A5,0,++,0} and Ay = /(g1 + 1)(g2 + 1).
Proof. Theorem 8 implies that

fowl)  _ fhlw,1)
2w(@) —) ~ 2ngy —m)’

kw(G) =

By Theorem 5, we have

n

folw,u) = 1+ g®)™ " [[(1 - O - @1 — g2)u® + qugou?),
i1

where Spec(W(G)) = {£Ay,:-- yEAn, 0,0 ,0}. Since
fe(w,1) =det(I, - W(G)+(D-1,)) =0,

we have n
A+a)™ " [[(a+D@e+1)-22) =0,
j=1
+v/(q1 + 1)(g2 + 1) € Spec(W(G)).
Set A1 = /(g1 +1)(g2 +1).

ie.,
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But,

n
folw,u) = (m—n)(1+gu2)™ "1 200u [ (1 - (A2 - g1 — go)u? + q1qau*)
i1

n
+(14+gu?)™ ™ ) (~2(M g1 —g2)ut+4q1920°) [ Q- (A2 -1 —g2)u?+q1gout).
i=1 e

Since A1 = /(g1 + 1)(g2 + 1), we have

f&(w,1) =2(1 + @)™ (@g2 - 1) [ (a1 + 1)(g2 + 1) - X2).
J#1

Therefore, it follows that
1+
k(@) = X 0,0, 1) [T (e + 1)(aa +1) - XD,
g1 j#1

Q.E.D.
From Theorem 9, we obtain a formula for the complexity of a complete

bipartite graph K = (see [2]).
Corollary 2 Let K, ,, be a complete bipartite graph and2 < n < m. Then
K(Kmpn) =m " 1nm1,

Proof. At first, let w(e) = 1 for each e € D(Kyn.n). Then K, p, is a
(m, n)-semiregular weighted bipartite graph. Let Vj, V, be the partite set
of Kjn,|Vi|=nand|Vz|=m. Thenwehaveqy =m—1andgo =n—1.

Furthermore,
Spec(Km,n) = {£v/mn,0,..-,0}.
By Theorem 9, it follows that
£(Kmn) = semnsmn™ (m—1)(n—1) = 1)(mn)"-!

= 1 n-1,,m-1 — -1, m—
= ——m"In™"(mn —m —n) = m""1pm-1,

Q.E.D.

5 Zeta functions of regular coverings of graphs

Let G be a connected graph, and let N(v) = {w € V(G) | (v,w) € D(G)}
denote the neighbourhood of a vertex v in G. A graph H is called a covering
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of G with projection 7 : H — G if there is a surjection 7 : V(H) — V(G)
such that 7|y, : N(v') — N(v) is a bijection for all vertices v € V(G)
and v’ € 7~1(v). When a finite group II acts on a graph G, the quotient
graph G/11 is a graph whose vertices are the IT-orbits on V(G), with two
vertices adjacent in G/II if and only if some two of their representatives
are adjacent in G. A covering 7 : H — G is said to be regular if there is
a subgroup B of the automorphism group AutH of H acting freely on H
such that the quotient graph H/B is isomorphic to G.

Let G be a graph, I" a finite group and a : D(G) — I an ordinary
voltage assignment. The pair (G, ) is called an ordinary voltage graph.
The derived graph G* of the ordinary voltage graph (G, ) is defined as
follows: V(G*) = V(G) x T and ((u,h),(v,k)) € D(G*) if and only if
(u,v) € D(G) and k = ha(u,v). The natural projection 7 : G* — G is
defined by m(u,h) = u. The graph G* is called a derived graph covering
of G with voltages in I" or a I'-covering of G. The natural projection 7
commutes with the right multiplication action of the a(e),e € D(G) and
the left action of T on the fibers: g(u, k) = (v, gh), g € T, which is free and
transitive. Thus, the I'-covering G* is a | I" |-fold regular covering of G
with covering transformation group I'. Furthermore, every regular covering
of a graph G is a I-covering of G for some group I'(see [4]).

Let G be a connected graph, I a finite group and a : D(G) — T an
ordinary voltage assignment. In the I-covering G%, set v, = (v,g) and
eg = (e,g), where v € V(G),e € D(G),g € I'. For e = (u,v) € D(G),
the 1a.rc e, emanates from u, and terminates at vg,(,). Note that ;! =
(e™ga(e)-

Legt %i)/’ = W(G) be a weighted matrix of G. Then we define the weighted
matric W = W(G?) = (W(ug,vs)) of G* derived from W as follows:

im0 9SO

Sato [12] presented a formula for the zeta function of a regular covering
H of G in terms of a product of L-functions of G over all distinct irreducible
representations of the covering transformation group of H.

Theorem 10 (Sato) Let G be a connected graph, W(G) a weighted ma-
triz of G, T a finite group and o : D(G) — T' an ordinary voltage assign-
ment. Then we have

Z,(G*,w, u) = H Z,(G,w,u,p, a)degp’
P

where p runs over all inequivalent irreducible representations of T'.

By Theorems 8,10, we obtain the following result.
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Corollary 3 Let G = (V},V2) be a connected (q1 + 1,g2 + 1)-semiregular
weighted bipartite graph with v vertices and € edges, W = W(G) a real
symmetric weighted matriz of G, T be a finite group end a : D(G) — T’
an ordinary voltage assignment. Furthermore, let p; = 1,ps,...,pr be
inequivalent irreducible representations of I', and f; = degp; for each i =
1,---,k, where fy =1. Set| Vi |=n,| Va2 |=m(n <m) and |T' |=r. Then

Z,(G*,w,u “l=q(1 _u2)(t—v)r(1 + q2u2)(m—n)r

k nri
X Iliza Hjil(l - (A?,j - a1 — @)v? + qigeut),

where Spec(W,,) = {£Ai1,++, £Aijng;, 0,0+, 011 < i < k).
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