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Abstract

A 2-factor of a graph G is a 2-regular spanning subgraph of G and a
2-factorization of a graph G is a 2-factor decomposition of G. A complete
solution to the problem of determining the spectrum of 4-cycles in 2-
factorizations of the complete bipartite graph is presented.

1 Introduction

A 2-factor of a graph G is a 2-regular spanning subgraph of G. If the
graph G is simple then necessarily any 2-factor of G consists of a collection of
cycles which partition the vertex set of G. A 2-factorization of G is a collection
of edge-disjoint 2-factors of G whose union is G. We use the notation F =
{F, F>,..., F} to denote a 2-factorization F with 2-factors F, F3,..., Fk. A
graph G is said to be 2-factorable, if there exists a 2-factorization of G. Clearly,
for G to possess a 2-factorization it must be regular of even degree.

Recently, some papers investigated the possible number of k-cycles in 2-
factorizations of K. In 1997, Dejter et al. [3] looked at the problem of con-
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structing 2-factorizations of K, containing & specified number of 3-cycles. Mod-
ulo a few exceptions they gave a complete solution for n = 1 or 3 (mod 6). In
1998, Dejter et al. [4] gave a complete solution to the problem of constructing
2-factorizations of K, containing a specified number of 4-cycles, where n is odd
andn >11:
{0: L., (n' - 1)("’ - 5)/8}1 ifn= l(mod 4);
{ {0,1,...,(n=1)(n - 3)/8}, if n=23(mod 4).

In 2000, Peter Adams et al. [1] obtained the solution for the number of 4-cycles
in 2-factorizations of K, \ F, where F is a 1-factor of K, and n is even, n > 10 :

{{0,1,...,n(n—2)/8}, if n = 0(mod 4);
{0,1,...,(n—2)(n—6)/8}, if n=2(mod 4).

Peter Adams et al. [2] obtained the solution for the number of 6-cycles in
2-factorizations of K,,, where n is odd:

{0,1,...,6k(2k — 1)}, ifn=12k+1;
{0,1,...,(6k + 1)2k}, ifn=12k+3;
{0,1,...,(6k + 2)2k}, if n =12k + 5;
{0,1,...,(6k + 3)2k}, ifn=12k+7;

{0,1,...,(6k+4)(2k + 1)}, ifn=12k+9;
{0,1,...,(6k+5)(2k +1)}, ifn=12k+11.

Selda Kiigiikgif¢i [6] obtained the solution for the number of 8-cycles in 2-
factorizations of K, where n is odd:

( {0,1,...,8k(2k — 1)}, ifn=16k+1;
{0,1,..., (8k + 1)2k}, if n =16k +3;
{0,1,...,(8k + 2)2k}, if n =16k + 5;
J{0.1,..., (8k +3)2k}, ifn=16k+7;
{0,1,...,8k(2k + 1)}, ifn=16k+9;
{0,1,...,(8k+5)(2k +1)}, ifn=16k+11;
{0,1,...,(8k + 8)(2k + 1)}, if n =16k + 13;
L {0,1,...,(8k+ 7)(2k + 1)}, if n =16k+ 15.

Selda Kiigiikgifci [7] obtained the solution for the number of 8-cycles in 2-
factorizations of Kop:

r {0,1,...,2k(8k — 1)}, if n = 16k;
{0,1,...,8k(2k - 1)}, if n =16k + 2;
{0,1,...,2k(8k + 1)}, if n = 16k + 4;
{0,1,...,2k(8k + 2)}, if n = 16k + 6;
{0,1,...,(2k + 1)(8k +3)}, ifn=16k+8;
{0,1,...,8k(2k + 1)}, if n = 16k + 10;
{0,1,...,(2k +1)(8k +5)}, ifn=16k+12;

 {0,1,...,(2k+1)(8k +6)}, if n=16k+ 14.
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The purpose of this article is to approach the same problem for 4-cycles on
the complete bipartite graph K, ». Of course, a 2-factorization of K, , exists
if and only if n is even. In this case, the number of 2-factors is n/2 and the
maximum number of 4-cycles in a 2-factorization of Knn is n?/4. When n
is odd, the graph K, , cannot be 2-factorable. However, if we remove a 1-
factor from the edge set of K, n, there is a different situation. Therefore, a
2-factorization of K, , when n is odd is a 2-factorization of K, , \ F, where F
is a 1-factor of K, n. Since the number of 2-factors is (n—1)/2 and each 2-factor
must contains at least one cycle of length at least 6, the maximum number of
4-cycles in a 2-factorization of K, » is (n — 1)(n — 3)/4.

Let S(n) be the set of all k£ such that there exists a 2-factorization of K, ,
containing exactly k 4-cycles. We define

_[{0,1,...,n%/4-2,n?/4}, ifn iseven;
FC(n) = { {0,1,...,(n—1)(n —3)/4}, ifn is odd.

It is obvious that S(n) € FC(n). Hence to obtain the results S(n) = FC(n)},
we need to show that FC(n) C S(n).

2 n= 1(mod 2)

In this section, we introduce a construction to count the number of 4-cycles
in the 2-factorization of K, » \ F for odd n, where F is a 1-factor of K, n.

A latin square A = (a;;) of order n is called idempotent if ay;; = i for each
i. Two idempotent latin squares, L = (l;;) and M = (m;;), are said to have k
entries in common off the main diagonal, if there are exactly k cells (3, ), i # 7,
such that [;; = m;;. Let J(n) be the set of all integers k such that there exists a
pair of idempotent latin squares of the order n which have k entries in common

off the main diagonal.

Lemma 2.1 {4], J(n) = {0,1,2,...,n—~n—6,n? —n —4,n? —n}, n > 6, and
J(3) = {6}, J(4) = {0, 12}, J(5) = {0, 2,4, 6,8, 10, 12, 20}.

Lemma 2.2 [1}. If there ezists a pair of idempotent latin squares of the order
n having x entries in common off the main diagonal, then there exists a 2-

factorization of Kon+1,2n+1 containing exactly © 4-cycles.

Now, we give the small case of the 2-factorization of K, ,\ F for n being odd.
This time, let A and B be the partite sets of K, o\ F, where A = {1,2,3,...,n},
B={n+1,n+2,n+3,...,2n} and F = {{1,n+1},{2,n+2},...,{n,2n}}.

Lemma 2.3 S(3) = {0}, S(5) = {0,1}, S(¢) = FC(3) fori=1,9.
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Proof:

n=3. From K33\ F = (1,5, 3,4,2,6), we have 0 € S(3).

n=5.0€S(5): (2,6,3,7,4,8,59,1,10); (4,6,5,7,1,8,2,9, 3, 10).
1€ S5): (3,6,4,7),(2,8,5,9,1,10); (2,6,5,7,1,8,4,10,3,9).
2 ¢ S(5): Suppose that 2 € S(5). Let F be the 2-factorization of Ky
with 2 Cy, where F = {F}, F3}. Then F; must be a 2-factor containing a
C, and a Cg. Let {z;, 29, 21, 23, 23} and {y1, y2, w1, w2, w3} be the partite
set of K55 and F} = (21,1, %2, ¥2) U (21, w1, 22, w2, 23, w3). Case 1, one
of the vertices of 4-cycle H in F; must be one of {z;,22,¥1,y2}. There-
fore, there is a subgraph (in fact, it is a path of length 2) of H in K33\
(21, w1, 20, w2, 23, w3), where the partite set of K33 is the set {2, 2z, 23}
and {w;, w2, ws}. But the edge set of K33\ (21, w1, 20, w2, 23, w3) is the
set {{21, w2}, {22, w3}, {23, w1}}, we have a contradiction. Case 2, there
are two vertices of H in the set {z1,72,¥1,¥%2}. They must be {z,,z,}
or {y1,y2}, say {z1,z2}. The other 2 vertices of H must be two of
{w1, wa, w3}, say {wy,wz}. On the graph K55\ Fi, we cannot find any
6-cycle containing the vertices {21, 22, 23, 1, ¥2, w3}

n=7,9. By Lemma 2.1 and 2.2, we have 6 € S(7) and {0,12} C S(9). The
remaining data is given in Appendix A. g

Lemma 2.4 {0,1,2,...,t —6,t —4,t} C S(n) for n = 1(mod 2) and n > 13,
where t = (n —1)(n — 3)/4.

Proof: Using Lemma 2.1 and Lemma 2.2 completes the proof. g

To solve the problem of the missing data of S(n), we need to describe the
construction methods referred to as prolongation. Prolongation enables us to
produce from a latin square of order n with k cell-disjoint transversals a latin
square of order n+k with a subsquare of order k. Let A be a latin square of order
n based on the symbols 1,2, ..., n with k cell-disjoint transversals 71, T, . . ., T.
Adding k new rows and k new columns produce a square B of order n + k as
follows: if (i,j) € T, we put B;; = n+ 7, Bin4r = Bnyrj = Aij and if
(4,5) € Tr, we put B; j; = A; ;. Finally, in the remaining subarray of order k,
we insert a latin square of order k based on the set {n +1,n+2,...,n+ k}.
We say that the transversal T, has been projected onto n +r** row and n + rth
column.

Lemma 2.5 {t —1,t —2,t - 3,t — 5} C S(n) for n = 1(mod 2) end n > 17,
where t = (n — 1)(n — 3)/4.
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Proof: Case 1, n = 4k + 1 and k > 4. Let A = (a;;) be a matrix of
order 2k — 3, where a;; = 2i — j (mod 2k — 3), then A is an idempotent
latin square of order 2k — 3 with 3 cell-disjoint transversals T}, 7%, T3, where
T, = {(ti+7) | i = 1,2,...,2k — 3} and the entry sum is modulo 2k — 3.
Applying prolongation and projecting T; onto 2k — 3 + i** row and 2k — 3 + itk
column, we have a latin square B of order 2k with a hole H size 3 based on
{2k — 2,2k — 1,2k}. Let G be a complete bipartite graph with partite sets
X and Y, where X = {z; | i = 1,2,3,...,4k}U {20} and ¥ = {y; | i =
1,2,3,...,4k} U {yo}. Let O1(B;1,35) be the 4-cycle (z:, yj, Titor, yj+2¢) and
O,(B;4,1) be the 6-cycle (z:, Y2k+is Toos ¥is Ti+2k Yoo). Set Fr. = {O1(B;4,5) |
i # j,Bij =r}U{02(B;r,7)}, forr =1,2,...,2k — 3. Then F} is a 2-factor
of G with 2k — 1 4-cycles and one 6-cycle. For r = 2k — 2,2k — 1,2k, set
F. = {01(B;i,j) | Bi;j = r}. Up to now, we have 4k? — 2k — 6 4-cycles and
2k — 3 6-cycles in the almost 2-factorization of G. In fact, the unused edges are
the edges of K7,7 whose partite set are {Zak—2, Z2k—1, T2k, Tak—2, Lak~1, Tdk) Too }
and {y2k-2, Yok—1, Y2k, Yak—2, Yak—1, Y4k, Yoo} Taking a 2-factorization of Ky 7
from Lemma 2.3, we obtain the 2-factorization of G. Therefore, we have a
2-factorization of G with 4k? — 2k — 6 + s 4-cycles, where s € S(7). Hence
t—1,t—2,t—3,t—5 € S(n), where ¢t = 4k? — 2k.

Case 2, n = 4k + 3 and k > 4. Let A = (a;;) be a matrix of order 2k — 3,
where a;; = 2i — j (mod 2k — 3), then A is an idempotent latin square of order
2k — 3 with 4 cell-disjoint transversals T1, T2, Ts, Ty, where T = {({,i+ ) |i =
,1,2,...,2k — 3} and the entry sum is modulo 2k — 3. Applying prolongation
and projecting T} onto 2k —3 +4** row and 2k — 3 +4** column, we have a latin
square B of order 2k+1 with a hole H size 4 based on {2k—2, 2k—1, 2k, 2k +1}.
Let G be a complete bipartite graph with partite sets X and Y, where X =
{2:11=1,2,3,...,4k+2}U{Zoo} and Y = {3; |1 =1,2,3,...,4k+ 2} U{yoo }.
Let O,(B;1, j) be the 4-cycle (i, y;, Tit2k+1, Yj+25+1) and O2(B;i,1) be the 6-
cycle (i, Y2k+1+i» Toos Uis Tit2k+1, Yoo)- et Fr = {O01(B;4,7) | i # 4, Bij =r}U
{O2(B;7,7)}, forr =1,2,...,2k—3. Then F, is a 2-factor of G with 2k 4-cycles
and one 6-cycle. For r = 2k—2, 2k—1, 2k, 2k+1,set F,. = {O1(B;i,j) | Bij =7}.
Up to now, we have 4k? + 2k — 12 4-cycles in the almost 2-factorization of G.
Taking a 2-factorization of Kg g, we obtain the 2-factorization of G. Therefore,
we have a 2-factorization of G with 4k? + 2k — 12 + s 4-cycles, where s € S(9).
Hence t —1,t —2,t —3,t — 5 € S(n), where t = 4k? + 2k. g

Lemma 2.6 S(i) = FC(i) fori=11,13,15.

Proof:

n = 11. Consider the idempotent latin square A of order 5 with a subsquare of
size 2, where
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1 4 5 3 2
5 2 41 3
A=] 45 3 21
231
31 2

Using the same construction of Lemma 2.5, we can obtained an almost
2-factorization of K111 \ Ks,s with 3 Cg and 18 C,. From the results
S(5) = {0, 1}, we have 18,19 € S(11) Using Lemma 2.1 and 2.2, we have
0,2,4,6,8,10,12,20 € S(11). The remaining data is given in Appendix A.

n = 13. By the above same method, we consider the idempotent latin square B
of order 6 with a hole size 2, where

WO O
Wb OO
N = RWka D
=Nt W
Ll - I -
[ZC N S )

We obtain an almost 2-factorization of K313\ K5 5 with 4 Cs and 28 C;.
From S(5) = {0,1}, we have 28,29 € S(13). For the idempotent latin
square C of order 6, where

165342
421635
95316 4
C=|516423]|
6 3425 1
342516

we have a 2-factorization F of K13,13\ F', where 7 = {F}, F%,..., Fg} and

r = {01(C;4,7) | i # 5,Cij = r}U{02(C;m,1)}. Fi = {(z2,v3,Zs, ¥0),
(z3, ya, T9, ¥10), (T4, Y2, T10, ¥8), (5, Y6, T11, ¥12)s (T6, ¥5, T12,911), (T2, ¥7,
Tooy Y1, L7y yOO} InterChanging the edges (1‘2, y3)1 (x3l y4)$ (x‘h y2) from
the edge set of Fy and (z2,y2), (z3,y3), (T4,v4) from F, we obtain a new
F;, where F, = {(z2,y2, %10, ¥s, T4, Y4, To, Y10, T3, ¥3, T8, ¥a), (T5, Y6, T11,
yu),(zs, Y5, T12, ¥11), (€1, ¥7, Toos Y1, 7, Yoo }- From the 2-factorization
{F\,F>,..., Fg}, we have 2’7 € S(13). Interchanging the edges (zs, yg), (zs,
ys) from the edge set of F} and (zs,¥s), (Zs, ¥s) from F, we obtain a new
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F}, where Fi = {(z2, y2, %10, U8, T4, Y4, Ts, Y10, T3, U3, Ts, ¥o), (%5, 5, T12,
Y11, Te, Y86, T11, ¥12), (T1, Y7, Toos Y1, T7, Yoo} From the 2-factorization {Fy,
F,,..., Fg}, we have 25 € S(13). Combining these results and Lemma 2.4,

we have S(13) = FC(13).
n = 15, For the idempotent latin square D of order 7 with a hole size 3, where

4 2

N = bW

3
2
1

0
BB W ot~
WO~ N B
BN Ut O
W NI
W A

We obtain an almost 2-factorization of K515 \ K77 with 4 Cs and 36
Cy. From S(7) = FC(7), we have 37,39, 40,41 € S(15). Combining these
results and Lemma 2.4, we have S(15) = FC(15).y

From Lemma 2.3, 2.4, 2.5 and 2.6, we obtain the following theorem.

Theorem 2.7 S(3) = {0}, S(5) = {0,1} and S(n) = FC(n) for oddn, n> 7.

3 n= 0(mod 2)

We can now give the recursive method to count the number of 4-cycles of
2-factorization for the complete bipartite graph K, ,, for even n.

Let A and B be two sets of integers. We define A+B = {a+b}a € A,be B}.
Lemma 3.1 If S(2k) = FC(2k), then S(4k) = FC(4k) for all k > 5.

Proof. Let X = AUB and Y = CU D be the partite sets of Kyx 4k, where
|A] = |B| = |C| = |D| = 2k. Consider two complete bipartite graphs Kok ok,
one with partite sets AU C and another with BU D. Combining two 2-factors
on two graphs Ko 2k, we have a 2-factor of Kyx 4x. Therefore, we can obtain
k 2-factors of Kyx 4x. Similarly, consider two complete bipartite graphs Kox ok,
one with partite sets AU D and another with B U C. Thus, we obtain another
k 2-factors of K4k,4k-

Those 2k 2-factors of Kyi 4x form a 2-factorization of Kyt 4x. Let ky, ko, k3
and k4 be the number of 4-cycles in the 2-factorizations of Kz 2x with partite
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sets AUC, BUD, AU D and BUQC, respectively. Then ki + kg + k3 + k4 is
the number of 4-cycles in this 2-factorizations of Ky ax. Therefore,

S5(4k) D S(2k) + S(2k) + S(2k) + S(2k)
e e Ve Ve
AC B,D A,D B,C

Since S(2k) = FC(2k), we have
S(4k) 2 FC(2k) + FC(2k) + FC(2k) + FC(2k) = FC(4k).
This implies that S(4k) = FC(4k). g

Lemma 3.2 If S(2k) = FC(2k) and S2k+1) = FC(2k+1), then S(4k+2) =
FC(4k +2) for allk > 6.

Proof: Let AU B and C U D be the partite sets of Kyxy24k+2, where A =
{z1, %2, ..., Tok1}, B ={y1,%2,-- -, Y2641}, C = {z1,22,..., 22kn} and D =
{wy,ws,..., wak41}. Consider two complete bipartite graphs Kai41,2¢41 em-
bedded in the graph Kyi424k+2, Where A and C are the partite sets of the
first graph; and B and D are the partite sets of second graph. When we re-
move a l-factor, the remaining edges of Koai+1,2¢+1 can be partitioned into
2-factors. Combining two 2-factors on two graphs K2g412k+1 produces a 2-
factor of Kk y2,4k+2. Thus we obtain k 2-factors and one 1-factors Fy of
Kiiy2,4k+2, where Fy = {{zi, z:}, {ve,wi} | i = 1,2,...,2k + 1}. Similarly,
consider two complete bipartite graphs Koki1,2k+1 embedded in the graph
Kik42,4k+2, Wwhere A and D are the partite sets of the first graph; and B
and C are the partite sets of second graph. We have k 2-factors and one 1-
factors F, of Kak+2,4k+2, Where F2 = {{zi;,wi}, {yi, z:} | i=1,2,...,2k+ 1} or
F = {{zi,wi}, {vi, i1} | i =1,2,...,2k+1}. Combining the 1-factors F; and
Fy, we have a 2-factor of Kyk42,4k+2 With 2k + 1 4-cycles {(zi, wi,vi,2) | i =
1,2,...,2k + 1} or a 8k-+4-cycle (z1, w1, 11, 22, T2, W2, Y2, 23, - -+, Ti, Wi, Ui, Zit1,
co oy D2kl W2k41y Y241 21)-

The 2k + 1 2-factors of Kyk42,4x+2 form a 2-factorization of Kyk42 4k42. Let
k1, k2, k3 and k4 be the number of 4-cycles in the 2-factorizations of Kok 2641
with partite sets AUC, BUD, AUD and BUC, respectively. Then kj +ko+k3+
k4+s is the number of 4-cycles in the 2-factorizations of K4x 2 4k+2, Where s =0
or 2k+1. Since S(2k+1) = FC(2k+1), we have S(4k+2) 2 {k1+ka+ka+kqe+s |
ki, k2, ks, ks € FC(2k +1),s € {0,2k+1}} = {0,1,2,...,4k? — 2k + 1}.

We now use another construction for the remaining data. Let AU B and
C U D be the partite sets of Ksr42,4x+2, Where A = {z1,22,...,20c}, B =
{y1,92,-- .  v2k42}, C = {21,22,..., 224} and D = {wy,ws, ..., wok42}. Con-
sider two complete bipartite graphs Kox 2r and Kagy22k4+2 With partite sets
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AUC and BU D, respectively. Let G = {G1,Ga,...,Gx} be a 2-factorization
of Ko ok with partite sets A and C. Given an unipotent quasigroup, (X, o), of
order k + 1 with diagonal entries k+ 1. For 1 < a < k + 1, we define F, =
{C(yi,w;) | i0j =a,1 <4,j < k+1}, where C(yi, w;) = (y2i-1, w2, Y2i, w2j—1)
is a 4-cycle. Then, F, is a 2-factor of Kori22k+2- Combining the 2-factors
on graphs Koror and Koaki22k4+2, We obtain k 2-factors of Kaki2.4k42 (ie
G;UF;i=1,2,...,k) and a 2-factor, Fiy1, of Kogy22k4+2. In fact, Fiy) =
{(v2i-1, w2, Y20, w2i-1) } i = 1,2,...,k+ 1}.

For the other k+ 1 2-factors of K4x+2,4x+2, We construct it by using the two
complete bipartite graphs Kaz 2x+2 with partite sets AUD and CUB combining
the 4-cycles in F; as follows.

Let (Y,0) be a quasigroup of order k + 1 with (k + 1) o4 = i. For each
a €Y, set Hi = C(ya,wa) U {C(2,),C(zi,w;) | t0j = a,i,j € Y,i #
k + 1}. Then H, is a 2-factor of K4k+2,4k+2, for a = 1,2,...,k+ 1. By
this construction, we have S(d4k + 2) 2 S(2k) + (k+ 1)2 +k(k + 1) + k(k + 1)

e N N N e
AC B,D A,D B,C
= {3k? + 4k + 1,3k + 4k +2,...,4k% + 4k — 1,4k? + 4k + 1}.

From 4k2—2k+1 > 3k24-4k+1, we have k > 6. Hence S(4k+2) = FC(4k+2)
fork >6. g

We now give the small case of the 2-factorization of Ky, » for even n. In this
time, let A and B be the partite sets of Kn n, where A = {1,2,3,...,n} and
B={n+1,n+2,n+3,...,2n}.

Lemma 3.3 5(4) = FC(4)\ {1,2}, S(6) = FC(8) \ {4,6,7}, S(8) = FC(4) \
{14} and S(n) = FC(n), n = 10,12, 14, 16, 18,22.

Proof:

n=4.0e€54):(1,5,2,6,3,7,4,8):(3,54,6,1,7,2,8).

4€5(4):(1,5,2,6),(3,7,4,8);(3,54,6), (1,7, 2,8).

1 ¢ 5(4): If 1 € S(4), then there is one 2-factor (with 8 edges) contain-
ing the 4-cycle. The remaining edges of the 2-factor must be a 4-cycle.
However, this is a contradiction.

2 ¢ S(4) : If 2 € Q(4), then the 4-cycles are contained in the same 2-
factor or are different 2-factors. The remaining edges must be two 4-cycles.
However, this is a contradiction.

From the above, we conclude that S(4) = FC(4)\ {1,2}.

n=6. 4,6,7 ¢ S(6) : Suppose that 4,6,7 € §(6). Let F be the 2-factorization
of Kge with 4, 6 or 7 4-cycles, where F = {F, F;, F3}. Since a 2-
factor with two C; implies that the remaining edges form a Cj4, we can
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only consider the following cases. Let the number of 4-cycles in each 2-
factor be {3,1,0}, {3,3,0} or {3,3,1}. Let the bipartite set of Kgg be
{z1, x2, 3, T4, 25, 26} U {Y1, Y2, Y3, Y4, ¥5, Y6} and the 4-cycles of F de-
noted by (x1,%1,%2,%2), (€3,¥3,%4,%4) and (zs,9s,%s, ¥6). Taking any
one 4-cycle in F3, there is a correspondence 4-cycle in F3. When we take
another 4-cycle in F3, the results of F> and F3 must be three 4-cycles.
Therefore, we have 4,6,7 ¢ S(6). According to the remaining data in
Appendix B, we conclude that S(6) = FC(6)\ {4,6,7}.

n = 8. Using the same construction of Lemma 3.1 and the result S(4) = {0, 4},
we obtain 0, 4,8,12,16 € S(8). From data in Appendix B, we have FC(8)\
{14} C S(8). As for 14 ¢ S(8), it can be obtained by using exhaustive
computing checking. Therefore, we conclude that S(8) = FC(8) \ {14}.

n = 10. Using the method in the proof of the first part of Lemma 3.2 with
S(5) = {0, 1}, we can obtain 0,1,2,...,9 € §(10). Using the proof in the
second part of Lemma 3.2 with S(4) = {0,4}, we have 21,25 € S(10).
Furthermore, using the modified method in the second construction of
Lemma 3.2 by replacing 2-factorization F of Kg g by 2-factorization F with
3 or 5 C;, we can obtain 15,17,19 € S(10). According to the remaining
data in Appendix B, we conclude that S(10) = FC(10).

n = 12. Using the same construction of Lemma 3.1 and the result S(6) =
{0,1,2,3,5,9}, we can obtain S(12) 2 {0,1,2,...,30, 32, 36}. According
to the remaining data in Appendix B, we conclude that S(12) = FC(12).

n = 14. Using the method in the proof of Lemma 3.2, we have 0,1,...,31 €
S(14) and 40,41, 42, 43,45,49 € S(14).
Again, using the modified method in the second construction of Lemma
3.2 by replacing 2-factorization F of Kgg by 2-factorization F with 8 or
12 C4, we can obtain 32, 33, 34, 35, 36,37, 38,39 € S(14). According to the
remaining data in Appendix B, we conclude that S(14) = FC(14).

n = 16. Using the proof in Lemma 3.1, we have 0,1,2,...,61,64 € S(16). Ac-
cording to the remaining data in Appendix B, we conclude that S(16) =
Fc(se).

n = 18. Using the method in the proof of Lemma 3.2, we have 0,1,2,...,57 €
S$(18) and 65,66,67,...,78,81 € S(18).
Using the modified method in the second construction of Lemma 3.2 by
replacing 2-factorization F of Kyg,10 by 2-factorization F with 17 Cy, we
can obtain 58,59, ...,64 € S(18). Replacing F by the 2-factorization of
Ki0,10 containing 23 C4 and the 2-factorization of K3 s with 16 Cy, we
can obtain 79 € S(18). Therefore, we have S(18) = FC(18).
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n = 22, Using the method in the proof of Lemma 3.2, we have 0,1,2,...,91 €
S(22) and 96,97,98, ...,119,121 € 5(22).

Again, using the modified method in the second construction of Lemma
3.2 by replacing 2-factorization F of K312 by 2-factorization F with 32
C4, we can obtain 92,93,94,...,115,117 € 5(22). Therefore, we have
S5(22) = FC(22).

Applying the small cases to Lemma 3.1, and 3.2 recursively, we obtained the
following results:

Theorem 3.4 S(4) = {0, 4}, S(6) = FC(6)\{4,6,7}, S(8) = FC(8)\{11,13,14}
and S(n) = FC(n) for even n, n 2 10.

4 Summary

From Theorems 2.7 and 3.4, we obtained the following Main Theorem.
Main Theorem S(n) = FC(n) foreven n and n > 10, 0dd n and n > 7.

Appendix A

n="1.

0eS(7):(1,93,11,5,13,7, 8, 2,_10, 4, 12, 6, 14); (1, 10, 5, 14, 2, 11, 6, 8,
3,12,7,9,4,13); (1,11,7,10,6,9, 5, 8, 4, 14, 3, 13, 2, 12).

1e8(7):(1, 13,2, 14), (3, 8,4,9,5,10,6,11,7, 12); (5,8, 6,9, 7,10, 1, 11,
2,12, 4,13, 3, 14); (2, 8,7, 13, 5, 11, 3, 9, 1, 12, 6, 14, 4, 10).
2€5(7):(1,13,2,14),(6,8,7,9), (4, 10,5, 11, 3, 12); (3, 8, 4, 9, 5, 13, 7, 10,
2,11, 1, 12, 6, 14); (2, 8, 5, 14, 4, 13, 3,9, 1, 10, 6, 11, 7, 12).
3e5(7):(1,13,2,14), (3,8, 4,9,5,10,6, 11, 7, 12); (3, 13, 4, 14), (5, 8, 6, 9,
7,10, 1, 12, 2, 11); (1, 9, 3, 11), (2, 8, 7, 13, 5, 14, 6, 12, 4).
4e€8(7):(1,13,2, 14), (6,8, 7, 9), (4, 10, 5, 11, 3, 12); (3, 8,4, 9), (1, 10, 7,
13, 5, 14, 6, 12, 2, 11); (3, 13, 4, 14), (2, 8,5, 9, 1, 12, 7, 11, 6, 10).
5e€8(7):(1,9, 3,13), (6, 11, 7, 12}, (2, 8, 5, 14, 4, 10); (4, 9, 5, 13), (6, 8, 7,
10), (1, 12, 3, 11, 2, 14); (1, 11, 5, 10), (2,12, 4, 8, 3, 14, 6, 9, 7, 13).

n=29.

1€ 5(9) : (8 10,9, 11)(12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7); (1, 14, 9,
15, 2, 16)(4, 10, 5, 11, 6, 12, 8,13, 7, 17, 3, 18); (2, 10, 3, 11, 4, 12, 5, 13, 6, 14,
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7,15, 8, 16, 9, 17, 1, 18); (6, 10, 7, 11, 1, 15, 5, 18, 8, 14, 4, 17, 2, 12, 9, 13, 3,
16).

2€5(9):8,15,9,16), (1, 17, 2, 18), (3, 10, 4, 11, 5, 12, 6, 13, 7, 14); (5, 10,
6, 11,7, 12, 8, 13, 9, 14, 1, 15, 2, 16, 3, 17, 4, 18); (7, 10, 8, 11, 9, 12, 1, 13, 2,
14, 6, 17, 5, 16, 4, 15, 3, 18); (2, 10, 9, 17, 7, 15, 5, 13, 3, 11, 1, 16, 6, 18, 8, 14,
4, 12).

3€5(9): (8,10, 9, 11)(12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7); (1, 17, 2,
18)(3, 10, 4, 11, 5, 12, 6, 13, 7, 14, 8, 15, 9, 16); (3, 13, 9, 17)(6, 10, 7, 11, 1, 14,
4, 12, 8, 18, 5, 15, 2, 16); (2, 10, 5, 13, 8, 16, 1, 15, 7, 17, 4, 18, 3, 11, 6, 14, 9,
12).

Let A = {(8, 15, 9, 16), (1, 17, 2, 18), (3, 10, 4, 11, 5, 12, 6, 13, 7, 14); (2,
15, 3, 16), (4, 17, 5, 18), (6, 10, 7, 11, 8, 12, 9, 13, 1, 14)} and B = {(6, 13, 7,
14), (8, 15, 9, 16), (4, 17, 5, 18), (2, 10, 3, 11, 1, 12);(6, 10, 7, 11), (4, 12, 5,
15), (8, 13, 9, 14), (2, 16, 3, 17, 1, 18)}.
4€8(9): Au{(5 10,9,11,1,12,2, 13, 3,17, 7, 15, 4, 14, 8, 18, 6, 16); (2, 10,
8,13, 5, 15,1, 16, 4, 12, 7, 18, 3, 11, 6, 17, 9, 14)}.
5¢5(9): Au{(4, 12, 7, 15), (2, 10, 5, 13, 8, 18, 6, 16, 1, 11, 3, 17, 9, 14); (8,
10,9, 11, 6, 17, 7, 18, 3, 13, 2, 12, 1, 15, 5, 16, 4, 14)}.
6 € S(9): BU{(1, 13, 2, 14, 3, 15), (4, 10, 5, 11, 8, 12, 9, 17, 7, 18, 6, 16); (6,
12, 7, 15, 2, 17), (8, 10, 9, 11, 4, 14, 1, 16, 5, 13, 3, 18)}.
7€ 509): BU{(2, 13, 3, 15), (4, 10, 5, 11, 8, 12,9, 17, 7, 18, 6, 16, 1, 14); (8,
10,9, 11, 4, 16, 5, 13, 1, 15, 7, 12, 6, 17, 2, 14, 3, 18)}.
8 € 5(9): BU{(4, 10, 5, 16), (8, 11,9, 12), (1, 13, 3, 14, 2, 17, 6, 18, 7, 15); (8,
10,9, 17,7, 12,6, 16, 1, 14, 4, 11, 5, 13, 2, 15, 3, 18)}.
9¢ S(9): (3, 10, 4, 11), (5, 12, 6, 13), (1, 14, 2, 15), (8, 16, 9, 17, 7, 18); (5, 10,
6, 11), (7, 14, 8, 15), (1, 16, 2, 17), (4, 12, 9, 13, 3, 18); (7, 10, 8, 11), (1, 12, 2,
13), (6, 14, 9, 15, 3, 16, 4, 17, 5, 18); (7, 12, 8, 13), (2, 10, 9, 11, 1, 18), (3, 14,
4,15, 5, 16, 6, 17).
10 € 8(9) : (1, 13, 8, 14), (4, 15, 9, 16), (2, 17, 3, 18), (6, 10, 7, 11, 5, 12); (7,
13,9, 14), (1, 15, 8, 16), (5, 17, 6, 18), (2, 10, 3, 11, 4, 12); (8, 11, 9, 12), (2, 15,
3, 16), (1, 17, 7, 18), (4, 10, 5, 13, 6, 14); (2, 13, 3, 14), (8, 10, 9, 17, 4, 18)(1,
11, 6, 16, 5, 15, 7, 12).
11 € 5(9) : (4, 10, 6, 11), (1, 12, 5, 13), (2, 14, 3, 15), (8, 16,9, 17, 7, 18); (7,
10, 8, 11), (2, 13, 3, 16), (1, 17, 5, 18), (4, 12, 6, 14, 9, 15); (7, 13, 8, 14), (1, 15,
5, 16), (4, 17, 6, 18), (2, 10, 3, 11, 9, 12); (2, 17, 3, 18), (7, 12, 8, 15), (5, 10, 9,
13, 6, 16, 4, 14, 1, 12).
n=11

Let A= {(1, 21, 2, 22), (3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8, 17, 9, 18, 10, 19,
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11, 20)}, B = {(6, 15, 7, 16), (4, 17, 5, 18), (10, 19, 11, 20), (8, 21, 9, 22), (2,
12, 8, 13, 1, 14); (3, 21, 4, 22), (5, 12, 6, 13, 7, 14, 8, 15, 9, 16, 10, 17, 11, 18, 1,
19, 2, 20)}, C = {(6, 15, 7, 16), (4, 17, 5, 18), (10, 19, 11, 20), (8, 21, 9, 22),
(2, 12, 3, 13, 1, 14); (10, 12, 11, 13), (8, 17, 9, 18), (6, 19, 7, 20), (1, 21, 2, 22),
(4, 14, 5, 15, 3, 16)}.

1eS(11): AU{(5, 12, 6,13, 7, 14, 8, 15, 9, 16, 10, 17, 11, 18, 1, 19, 2, 20, 4,
21, 3, 22); (7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 17, 2, 18, 3, 19, 4, 22, 6, 21, 5,
20); (9, 12, 10, 13, 11, 14, 1, 15, 2, 16, 3, 17, 4, 18, 5, 19, 6, 20, 8, 21, 7, 22); (2,
12,11, 21, 9, 19, 7, 17, 5, 15, 3, 13, 1, 20, 10, 22, 8, 18, 6, 16, 4, 14)}.

3¢ S(11): AU{(3, 21, 4, 22), (5,12, 6,13,7, 14,8, 15,9, 16, 10, 17, 11, 18, 1,
19, 2, 20); (5, 21, 6, 22), (7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 17, 2, 18, 3, 19, 4,
20); (9, 12, 10, 13, 11, 14, 1, 15, 2, 16, 3, 17, 4, 18, 5, 19, 6, 20, 8, 21, 7, 22); (2,
12,11,21,9,19, 7, 17, 5, 15, 3, 13, 1, 20, 10, 22, 8, 18, 6, 16, 4, 14)}.

5 S(11) : BU{(4, 12,9, 18, 8, 16), (5, 13, 10, 22, 6, 14, 11, 21, 2, 15, 1, 20, 3,
17,7, 19); (7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 17, 2, 18, 3, 19, 4, 20, 6, 21, 5,
22); (10, 12, 11, 13, 4, 14, 5, 15, 3, 16, 2, 22, 1, 21, 7, 20, 8, 17, 9, 19, 6, 18)}.

7€ S(11) : BU{(5, 21, 6, 22), (7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 17, 2, 18, 3,
19, 4, 20); (1, 21, 2, 22), (9, 12, 10, 13, 11, 14, 4, 16, 3, 15, 5, 19, 7, 17, 8, 20, 6,
18); (4, 12, 11, 21, 7, 22, 10, 18, 8, 16, 2, 15, 1, 20, 3, 17, 9, 19, 6, 14, 5, 13)}.

9 € S(11): CU{(3, 21, 4, 22), (5, 12, 6, 13, 7, 14, 8, 15, 9, 16, 10, 17, 11, 18, 1,
19, 2, 20); (1, 15, 2, 16, 8, 20), (4, 12,9, 19, 3, 17, 7, 21, 11, 14, 6, 18, 10, 22, 5,
13); (7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 17, 2, 18, 3, 20, 4, 19, 5, 21, 6, 22)}.

5,
11 € 8(11) : Cu{(1, 17, 2, 18), (3, 19, 4, 20), (5, 21, 6, 22), (7, 12, 9, 14, 10, 15,
11, 16, 8, 13); (6, 12, 8, 20, 5, 13, 9, 19, 1, 15, 2, 16, 10, 17, 3, 18, 11, 21, 4, 22,
7, 14); (4, 12, 5, 19, 2, 20, 1, 16, 9, 15, 8, 14, 11, 17, 7, 21, 3, 22, 10, 18, 6, 13)}.

13 € 5(11) : (6, 15, 9, 16), (5, 17, 10, 18), (4, 19, 11, 20), (7, 21, 8, 22), (2, 12,
3,13, 1, 14); (10, 15, 11, 16), (3, 17, 9, 18), (5, 19, 6, 20), (1, 21, 2, 22), (7, 12,
8, 14, 4, 13); (10, 12, 11, 13), (5, 14, 7, 15), (4, 16, 8, 17), (1, 18, 6, 22, 9, 21, 3,
20, 2, 19); (6, 12, 9, 13), (1, 15, 2, 16), (10, 14, 11, 17, 7, 20, 8, 18, 4, 21, 5, 22,
3,19); (4, 12, 5, 13, 8, 15, 3, 16, 7, 19, 9, 14, 6, 21, 11, 18, 2, 17, 1, 20, 10, 22).

14 € 5(11) : (6, 15, 7, 16), (4, 17, 5, 18), (10, 19, 11, 20), (8, 21, 9, 22), (2, 12,
3,13, 1, 14); (10, 12, 11, 13), (8, 17, 9, 18), (6, 19, 7, 20), (1, 21, 2, 22), (4, 14,
5,15, 3, 16); (7, 12, 8, 13), (1, 17, 2, 18), (3, 19, 4, 20), (5, 21, 6, 22), (9, 14, 10,
15, 11, 16); (1, 15, 8, 16), (2, 19, 5, 20), (6, 12, 9, 13, 4, 21, 11, 14, 7, 22, 10, 17,
3,18); (4, 12, 5,13, 6, 14, 8, 20, 1, 19, 9, 15, 2, 16, 10, 18, 11, 17, 7, 21, 3, 22).
15 € S(11) : (6, 14, 8, 15), (2, 16, 9, 17), (4, 20, 5, 21), (3, 12, 11, 18, 10, 19, 7,
22, 1, 13); (6, 12, 8, 13), (7, 16, 10, 17), (4, 18, 5, 19), (1, 14, 11, 20, 2, 21, 9,
22, 3, 15); (7, 14, 10, 15), (1, 18, 3, 19), (6, 20, 8, 21), (2, 12, 9, 13, 11, 16, 4,
17, 5, 22); (7, 12, 10, 13), (2, 18, 9, 19), (1, 20, 3, 21), (4, 14, 5, 15, 11, 17, 8,
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16, 6, 22); (4, 12, 5, 13), (2, 14, 9, 15), (1, 16, 3, 17), (6, 18, 8, 22, 10, 20, 7, 21,
11, 19).

16 € S(11) : (2, 15, 10, 16), (1, 17, 11, 18), (5, 19, 6, 20), (4, 21, 7, 22), (3, 12,
9, 14, 8, 13); (1, 15, 6, 16), (8, 17, 9, 18), (10, 19, 11, 20), (2, 21, 3, 22), (4, 12,
7,14, 5, 13); (8, 15, 9, 16), (3, 17, 5, 18), (4, 19, 7, 20), (1, 21, 6, 22), (2, 12, 10,
13, 11, 14); (1, 13, 6, 14), (4, 17, 10, 18), (2, 19, 3, 20), (8, 21, 9, 22), (5, 12, 11,
16, 7, 15); (4, 14, 10, 22, 5, 21, 11, 15, 3, 16)(6, 12, 8, 20, 1, 19, 9, 13, 7, 17, 2,
18).

17 € S(11) : (6, 15, 11, 16), (5, 17, 9, 18), (7, 19, 10, 20), (4, 21, 8, 22), (2, 12,
3,13, 1, 14); (9, 15, 10, 16), (3, 17, 11, 18), (5, 19, 6, 20), (1, 21, 2, 22), (7, 12,
8, 14, 4, 13); (9, 12, 10, 13), (5, 14, 7, 15), (4, 16, 8, 17), (1, 18, 2, 19), (3, 20,
11, 21, 6, 22); (1, 15, 2, 16), (7, 17, 10, 22), (4, 18, 8, 20), (3, 19, 9, 21), (5, 12,
11, 14, 6, 13); (1, 17, 2, 20), (4, 12, 6, 18, 10, 14, 9, 22, 5, 21, 7, 16, 3, 15, 8, 13,
11, 19).

Appendix B

n = 6.

0e€86):(1,7,2,8,3,9, 4, 10, 5, 11, 6, 12); (3, 7, 4, 8, 5, 9, 6, 10, 1, 11, 2,
12); (5, 7, 6, 8,1, 9, 2, 10, 3, 11, 4, 12).

1€56):(1,73,9,5,11), (2, 8, 4, 10, 6, 12); (4, 7, 5, 12, 1, 8, 6, 9, 2, 10, 3,
11); (2, 7, 6, 11), (3, 8, 5, 10, 1, 9, 4, 12).

2€856):(1,7,3,9, 4,11, 5, 12), (2, 8, 6, 10); (1, 8, 4, 10, 3, 12, 2, 11), (5, 7,
6,9); (2,7, 4,12,6,11, 3, 8,5, 10, 1, 9).
3eS5(6):(1,94,12),(2,8,5,11),(3,7,6,10); (1, 7, 2, 9, 3, 8), (4, 10, 5, 12,
6, 11); (1, 10, 2, 12, 3, 11), (4,7, 5, 9, 6, 8).
5€.5(6):(1,8,6,10),(2,7,5,9), (3, 11, 4,12); (1, 7, 4, 10, 2, 8, 3, 9), (5, 11,
6,12); (3,7,6,9, 4,8, 5,10), (1, 11, 2, 12).

9¢e5®): (5, 7,6,8),(1,9,2,10), (3, 11, 4, 12); (1, 7, 2, 8), (3, 9, 4, 10), (5,
11, 6, 12), (3, 7, 4, 8), (5, 9, 6, 10), (1, 11, 2, 12).

n=_.

1e8(8): (1,9 2,10), (3,11, 4, 12, 5, 13, 6, 14, 7, 15, 8, 16); (3, 9, 4, 10, 5,
11, 6,12, 7, 13, 8, 14, 1, 16, 2, 15); (6, 9, 7, 10, 8, 11, 1, 12, 2, 13, 3, 14, 4, 15,
5, 16); (5, 9, 8, 12, 3, 10, 6, 15, 1, 13, 4, 16, 7, 11, 2, 14).

2e€8(8): (1,9,2,10), (3, 11, 4, 12), (5, 13, 6, 14, 7, 15, 8, 16); (3, 9, 4, 10, 5,
11, 6, 12, 7, 13, 8, 14, 1, 15, 2, 16); (5, 9, 6, 10, 7, 11, 8, 12, 1, 16, 4, 13, 2, 14,
3,15); (7,9, 8, 10, 3,13, 1, 11, 2, 12, 5, 14, 4, 15, 6, 16).
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3eS5(8): (1,9, 2,10), (3, 11, 4, 12), (5, 13, 6, 14, 7, 15, 8, 16); (11, 1, 12, 2,
13, 3, 16, 4, 14, 5, 15, 6)(7, 9, 8, 10); (3, 9, 6, 16, 2, 15, 1, 14, 8, 11, 5, 12, 7, 13,
4, 10); (4, 9, 5, 10, 6, 12, 8, 13, 1, 16, 7, 11, 2, 14, 3, 15).

Let A = {(1, 9, 2, 10), (3, 11, 4, 12), (5, 13, 6, 14), (7, 15, 8, 16)} and
B ={(1,9, 2, 10), (3, 11, 4, 12), (5, 13, 6, 14), (7, 15, 8, 16);(3, 9, 4, 10), (1,
11, 2, 12), (7, 13, 8, 14), (5, 15, 6, 16)}.
5¢85(8): Au{(1, 11, 6, 16, 5, 15, 4, 14, 3, 13, 2, 12), (7, 9, 8, 10); (13, 1, 14,
2,15, 3, 16, 4, 9, 5, 10, 6, 12, 7, 11, 8);(3, 9, 6, 15, 1, 16, 2,11, 5, 12, 8, 14, 7,
13, 4, 10)}.
6€5S(8): Au{(1, 11,6, 16,5, 15, 4, 14, 3, 13, 2, 12), (7, 9, 8, 10); (5, 9, 6, 12,
8, 11), (3, 10, 4, 16, 2, 15), (1, 13, 7, 14); (3, 9, 4, 13, 8, 14, 2, 11, 7, 12, 5, 10,
6, 15, 1, 16)}.
7eS8(8): Au{(11,1,12,2, 13,3, 14, 4, 15, 5, 16, 6), (7, 9, 8, 10);(7, 11, 8,
12), (5, 9, 6, 15, 3, 10), (131142164)(713814) 3,9, 4, 10, 6, 12, 5,
11, 2, 15, 1, 16)}.
9¢5(8): Au{(3,94,10,5,11,6,12 , 7,13, 8, 14), (1, 15, 2, 16); (5, 9, 6, 10,
7,11, 8, 12), (1, 13, 2, 14), (3, 15, 4, 16); (7, 9, 8, 10, 3, 13, 4, 14), (1, 11, 2, 12),
(5, 15, 6, 16)}.
10€ S(8): BU{(5,9, 8, 12,7, 10), (1, 11, 2, 13, 4, 14), (3, 15, 6, 16); (6, 9, 7,
11, 8, 10), (1, 12, 2, 14, 3, 13), (4, 15, 5, 16)}.
11 € §(8) : Au{(1, 11, 2, 15), (3, 10, 6, 16), (4, 13, 8, 14), (5,9, 7, 12); (1, 12, 2,
16), (3, 13, 7, 14), (4, 9, 6, 11, 8, 10, 5, 15); (1, 13, 2, 14), (3, 9, 8, 12, 6, 15), (4,
10, 7, 11, 5, 16)}.
13e 5(8) : Au{(1,11,2,12),(3,9, , 14), (4, 10, 8, 13), (5, 15, 6, 16); (1, 13,
2, 14), (3, 15, 4, 16), (5, 10, 7, 12), (6, 9, 8, 11); (1, 15, 2, 16), (3, 10, 6, 12, 8, 14,
4,9,5, 11,7, 13)}.
n = 10.

Let A = {(3, 11, 4, 12), (5, 13, 6, 14), (7, 15, 8, 16), (9, 17, 10, 18), (1, 19,
2, 20); (1, 11, 2, 12), (3, 13, 4, 14), (5, 15, 6, 16), (7, 17, 8, 18), (9, 19, 10, 20)}.
10 € S(10) : AU {(5, 11, 6,12, 7, 13, 8, 14, 9, 15, 10, 16, 1, 17, 2, 18, 3, 19, 4,
20); (7, 11, 8, 12, 9, 13, 10, 14, 1, 15, 2, 16, 3, 17, 4, 18, 5, 19, 6, 20); (9, 11, 10,
12,5, 17,6, 18, 1, 13, 2, 14, 7, 19, 8, 20, 3, 15, 4, 16)}.
11 € S(10) : AuU{(5, 11, 6, 12), (7, 13, 8, 14, 9, 15, 10, 16, 1, 17, 2, 18, 3, 19, 4,
20); (7,11, 8, 12, 9, 13, 10, 14, 1, 15, 2, 16, 3, 17, 4, 18, 5, 20, 6, 19); (9, 11, 10,
12,7, 14, 2, 13, 1, 18, 6, 17, 5, 19, 8, 20, 3, 15, 4, 16)}.

12 € 5(10) : AU{(3, 19, 4, 20), (5, 11, 6, 12, 7, 13, 8, 14, 9, 15, 10, 16, 1,17, 2,
18); (9, 11, 10, 12), (1, 13, 2, 15, 3, 16, 4, 18, 6, 17, 5, 20, 8, 19, 7, 14); (7, 11, 8,
12, 5, 19, 6, 20), (9, 13, 10, 14, 2, 16), (1, 15, 4, 17, 3, 18)}.
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13 € S(10) : AU{(7, 11, 8, 12), (5, 17, 6, 18), (3, 19, 4, 20), (1, 13, 2, 14, 9, 15,
10, 16); (5, 11, 6, 12, 9, 13, 10, 14, 8, 19, 7, 20), (1, 15, 2, 16, 3, 17, 4, 18); (9,
11,10, 12, 5, 19, 6, 20, 8, 13, 7, 14, 1, 17, 2, 18, 3, 15, 4, 16)}.

14 € S(10) : Au{(4, 17, 5, 18), (6, 19, 7, 20), (8, 11, 10, 12, 9, 14), (1, 13, 2, 15,
3, 16); (3, 19, 4, 20), (5, 11,7, 13, 8, 12), (1, 15, 9, 16, 10, 14, 2, 17, 6, 18); (5,
19, 8, 20), (6, 11, 9, 13, 10, 15, 4, 16, 2, 18, 3, 17, 1, 14, 7, 12)}.

16 € S(10) : AU {(7, 11, 8, 12), (3, 19, 5, 20), (1, 13, 10, 16, 9, 14, 2, 15, 4, 17,
6, 18); (5, 11, 10, 12), (6, 19, 7, 20), (8, 13, 9, 15, 3, 18, 4, 16, 2, 17, 1, 14); (6,
11,9, 12), (4, 19, 8, 20), (2, 13, 7, 14, 10, 15, 1, 16, 3, 17, 5, 18)}.

18 € 5(10) : (5, 11, 8, 12), (1, 13, 2, 14), (3, 15, 10, 16), (6, 17, 9, 20), (4, 18, 7,
19); (3, 11, 7, 12), (6, 13, 8, 14), (4, 15, 9, 16), (5, 17, 10, 18), (1, 19, 2, 20); (4,
11, 10, 13, 5, 14, 9, 12), (1, 16, 2, 17), (7, 15, 8, 20), (3, 18, 6, 19); (6, 11, 9, 13,
7, 14, 10, 12), (1, 15, 2, 18), (3, 17, 4, 20), (5, 16, 8, 19); (1, 11, 2, 12), (3, 13,
4,14), (5, 15, 6, 16, 7, 17, 8, 18, 9, 19, 10, 20).

20 € S(10) : (4, 11, 7, 12), (6, 13, 10, 14), (3, 15, 8, 16), (1, 18, 2, 19), (5, 17, 9,
20); (9, 11, 10, 12), (5, 13, 7, 14), (1, 15, 2, 16), (3, 17, 4, 18), (6, 19, 8, 20); (3,
11, 6, 12), (8, 13, 9, 14), (4, 15, 10, 16), (1, 17, 2, 20), (5, 18, 7, 19); (5, 11, 8,
12), (1, 13, 2, 14), (3, 19, 4, 20), (7, 15, 9, 16, 6, 18, 10, 17); (1, 11, 2, 12), (3,
13, 4, 14), (5, 15, 6, 17, 8, 18, 9, 19, 10, 20, 7, 16).

22 € S(10) : (6, 11, 10, 12), (7, 13, 9, 14), (1, 15, 2, 18), (3, 17, 4, 20), (5, 16, 8,
19); (5, 11, 8, 12), (1, 13, 2, 14), (3, 15, 10, 16), (4, 18, 7, 19), (6, 17, 9, 20); (3,
11, 7, 12), (6, 13, 8, 14), (4, 15, 9, 16), (5, 17, 10, 18), (1, 19, 2, 20); (4, 11, 9,
12), (5, 13, 10, 14), (7, 15, 8, 20), (1, 16, 2, 17), (3, 18, 6, 19); (1, 11, 2, 12), (3,
13, 4, 14), (5, 15, 6, 16, 7, 17, 8, 18, 9, 19, 10, 20).

23 € S(10) : (4, 11,7, 12), (6, 13, 10, 14), (3, 15, 8, 16), (1, 18, 2, 19)(5, 17, 9,
20); (9, 11, 10, 12), (5, 13, 7, 14), (1, 15, 2, 16), (3, 17, 4, 18), (6, 19, 8, 20); (3,
11, 6, 12), (8, 13, 9, 14), (4, 15, 10, 16), (5, 18, 7, 19), (1, 17, 2, 20); (5, 11, 8,
12), (1, 13, 2, 14), (7, 15, 9, 16), (6, 17, 10, 18), (3, 19, 4, 20); (1, 11, 2, 12), (3,
13, 4, 14), (5, 15, 6, 16), (7, 17, 8, 18, 9, 19, 10, 20).

n=12.

31 € S(12): (4, 13, 7, 14), (5, 15, 8, 16), (2, 17, 11, 18), (3, 19, 10, 24), (6, 20,
9, 23), (1, 21, 12, 22); (5, 13, 8, 14), (6, 15, 7, 16), (1, 17, 12, 18), (4, 19, 9, 22),
(3, 20, 10, 23), (2, 21, 11, 24); (3, 13, 6, 14), (1, 15, 2, 16), (4, 23, 5, 24), (11,
19, 12, 20), (7, 21, 8, 22), (9, 17, 10, 18); (7, 23, 8, 24), (11, 15, 12, 16), (3, 17,
4,18), (1, 19, 2, 20), (5, 21, 6, 22), (9, 13, 10, 14); (1, 13, 2, 14), (3, 15, 4, 16),
(5, 17, 6, 18), (9, 21, 10, 22, 11, 23, 12, 24), (7, 19, 8, 20); (11, 13, 12, 14), (9,
15, 10, 16), (7, 17, 8, 18), (6, 19, 5, 20, 4, 21, 3, 22, 2, 23, 1, 24).

33 € 5(12): (3, 13, 4, 14), (8, 15, 9, 16), (11, 17, 12, 18), (1, 19, 2, 24), (5, 21,
6, 22), (7, 20, 10, 23); (9, 13, 10, 14), (7, 15, 12, 16), (3, 17, 4, 18), (5, 19, 6,
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20), (1, 22, 2, 23), (8, 21, 11, 24); (8, 13, 11, 14), (1, 15, 2, 16), (9, 17, 10, 18),
(3, 19, 4, 20), (5, 23, 6, 24), (7, 21, 12, 22); (6, 13, 12, 14), (5, 15, 11, 16), (7,
17, 8, 18), (1, 20, 2, 21), (3, 22, 4, 23), (9, 19, 10, 24); (5, 13, 7, 14), (1, 17, 2,
18), (11, 19, 12, 20), (8, 22, 9, 23), (3, 21, 4, 24), (6, 15, 10, 16); (1, 13, 2, 14),
(5, 17, 6, 18), (3, 15, 4, 16), (7, 19, 8, 20, 9, 21, 10, 22, 11, 23, 12, 24).

34 € 5(12): (3, 13, 4, 14), (5, 15, 6, 16), (8, 17, 12, 18), (9, 19, 10, 20), (1, 22,
2, 23), (7, 21, 11, 24); (11, 13, 12, 14), (7, 15, 9, 16), (1, 17, 2, 18), (5, 19, 6,
20), (3, 21, 4, 22), (8, 23, 10, 24); (5, 13, 6, 14), (3, 17, 4, 18), (11, 19, 12, 20),
@1, 21, 2, 24), (7, 22, 9, 23), (8, 15, 10, 16); (7, 13,9, 14), (1, 15, 2, 16), (10, 17,
11, 18), (3, 19, 4, 20), (5, 23, 6, 24), (8, 21, 12, 22); (11, 15, 12, 16), (7, 17, 9,
18), (1, 19, 2, 20), (5, 21, 6, 22), (3, 23, 4, 24), (8, 13, 10, 14); (1, 13, 2, 14), (3,
15, 4, 16), (5, 17, 6, 18), (9, 21, 10, 22, 11, 23, 12, 24), (7, 19, 8, 20).

n =14,

44 € S(14): (4, 15, 8, 16), (13, 17, 14, 18), (10, 20, 11, 21), (3, 19, 7, 22), (5,
23, 6, 28), (1, 25, 2, 26), (9, 24, 12, 27); (3, 15, 5, 16), (11, 17, 12, 18), (4, 21, 6,
22), (7, 26, 8, 27), (10, 25, 13, 28), (1, 23, 2, 24), (9, 1, 14, 20); (12, 15, 13, 16),
(6,17, 7, 18), (10, 19, 11, 22), (3, 20, 5, 21), (4, 23, 8, 24), (1, 27, 2, 28), (9, 25,
14, 26); (1, 17, 2, 18), (4, 19, 8, 20), (13, 21, 14, 22), (11, 23, 12, 28), (3, 24, 7,
25), (5, 26, 6, 27), (9, 15, 10, 16); (6, 15, 7, 16), (1, 19, 12, 20), (2, 21, 9, 22),
(13, 23, 14, 24), (4, 25, 8, 28), (3, 26, 11, 27), (5, 17, 10, 18); (11, 15, 14, 16),
(8, 17, 9, 18), (1, 21, 12, 22), (3, 23, 7, 28), (5, 24, 6, 25), (4, 26, 10, 27), (2, 19,
13, 20); (5, 19, 6, 20, 7, 21, 8, 22), (9, 23, 10, 24, 11, 25, 12, 26, 13, 27, 14, 28),
(3, 17, 4, 18), (1, 15, 2, 16).

46 € 5(14): (10, 15, 11, 16), (1, 17, 2, 18), (3, 19, 4, 20), (13, 21, 14, 22), (5,
23, 6, 28), (7, 25, 8, 26), (9, 24, 12, 27); (7, 15, 8, 16), (11, 19, 12, 20), (1, 21, 2,
22), (3, 23, 4, 24), (10, 25, 13, 28), (5, 26, 6, 27), (9, 17, 14, 18); (5, 15, 6, 16),
(12, 17, 13, 18), (1, 19, 2, 20), (10, 21, 11, 22), (3, 27, 4, 28), (7, 23, 8, 24), (9,
25, 14, 26); (13, 15, 14, 16), (7, 17, 8, 18), (3, 21, 4, 22), (5, 24, 6, 25), (11, 23,
12, 28), (1, 26, 2, 27), (9, 19, 10, 20); (3, 15, 4, 16), (5, 17, 6, 18), (7, 19, 8, 20),
(13, 23, 14, 24), (10, 26, 11, 27), (1, 25, 2, 28), (9, 21, 12, 22); (10, 17, 11, 18),
(13, 19, 14, 20), (5, 21, 6, 22), (1, 23, 2, 24), (3, 25, 4, 26), (7, 27, 8, 28), (9, 15,
12, 16); (3, 17, 4, 18), (7, 21, 8, 22), (9, 23, 10, 24, 11, 25, 12, 26, 13, 27, 14,
28), (5, 19, 6, 20), (1, 15, 2, 16).

47 € S(14): (12, 15, 14, 16), (5, 17, 6, 18), (10, 19, 11, 20), (3, 21, 4, 22), (7,
23, 8, 24), (1, 26, 2, 27), (9, 25, 13, 28); (11, 15, 13, 16), (7, 17, 8, 18), (1, 19, 2,
20), (3, 23, 4, 24), (10, 27, 12, 28), (5, 25, 6, 26), (9, 21, 14, 22); (3, 15, 4, 16),
(13, 17, 14, 18), (7, 19, 8, 20), (10, 21, 12, 22), (5, 23, 6, 24), (1, 25, 2, 28), (9,
26, 11, 27); (7, 15, 8, 16), (11, 17, 12, 18), (5, 21, 6, 22), (1, 23, 2, 24), (10, 25,
14, 26), (3, 27, 4, 28), (9, 19, 13, 20); (5, 15, 6, 16), (12, 19, 14, 20), (1, 21, 2,
22), (11, 23, 13, 24), (3, 25, 4, 26), (7, 27, 8, 28), (9, 17, 10, 18); (1, 17, 2, 18),
(3, 19, 4, 20), (11, 21, 13, 22), (12, 23, 14, 24), (7, 25, 8, 26), (5, 27, 6, 28), (9,
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15, 10, 16); (1, 15, 2, 186), (5, 19, 6, 20), (7, 21, 8, 22), (11, 25, 12, 26, 13, 27,
14, 28), (3, 17, 4, 18), (9, 23, 10, 24).

n = 16.

62 € S(16): (7, 17, 8, 18), (9, 19, 10, 20), (3, 21, 4, 22), (13, 23, 14, 24), (12,
25, 16, 26), (5, 27, 6, 28), (11, 29, 15, 32), (1, 30, 2, 31); (3, 17, 4, 18), (1, 19,
2, 20), (11, 21, 16, 22), (13, 25, 15, 26), (9, 29, 10, 30), (5, 23, 6, 24), (7, 27, 8,
28), (12, 31, 14, 32); (14, 17, 15, 18), (7, 19, 8, 20), (9, 21, 10, 22), (12, 23, 16,
24), (5, 25, 6, 26), (3, 27, 4, 28), (1, 29, 2, 32), (11, 30, 13, 31); (9, 17, 10, 18),
(5, 19, 6, 20), (13, 21, 14, 22), (11, 23, 15, 24), (3, 25, 4, 26), (1, 27, 2, 28), (7,
31, 8, 32), (12, 29, 16, 30); (11, 17, 12, 18), (13, 19, 16, 20), (7, 21, 8, 22), (9,
23, 10, 24), (1, 25, 2, 26), (5, 31, 6, 32), (3, 29, 4, 30), (14, 27, 15, 28); (5, 17,
6, 18), (1, 21, 2, 22), (11, 25, 14, 26), (13, 27, 16, 28), (9, 31, 10, 32), (3, 23, 4,
24), (7, 29, 8, 30), (12, 19, 15, 20); (13, 17, 16, 18), (11, 19, 14, 20), (1, 23, 2,
24), (7, 25, 8, 26), (9, 27, 10, 28), (3, 31, 4, 32), (5, 29, 6, 30), (12, 21, 15, 22);
(13, 29, 14, 30, 15, 31, 16, 32), (1, 17, 2, 18), (3, 19, 4, 20), (11, 27, 12, 28), (5,
21, 6, 22), (7, 23, 8, 24), (9, 25, 10, 26).
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