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Abstract

A (k,t)-list assignment L of a graph G is a mapping which assigns a
set of size k to each vertex v of G and |U,cv(g) L(v)| = t. A graph G is
(K, t)-choosable if G has a proper coloring f such that f(v) € L(v) for each
(k, t)-list assignment L.

We determine ¢ in terms of k and n that guarantee (k,t)-choosability
of any n-vertex graph and a better bound if such graph does not contain

(k + 1)-clique.

Keywords : list assignment, list coloring, system of distinct represen-
tatives

1 Introduction

A k-list assignment L of a graph G is a mapping which assigns a set
of size k to each vertex v of G. A (k,zt)-list assignment of G is a k-list
assignment with |UveV(G) L(v)] = t. Given a list assignment L, a proper
coloring f of G is an L-coloring of G if f(v) is chosen from L(v) for every
vertex v of G. A graph G is L-colorable if G has an L-coloring. Particularly,
if L is a (k, k)-list assignment of G, then any L-coloring of G is a k-coloring
of G. A graph G is (k,t)-choosable if G is L-colorable for every (k,t)-list
assignment L. If a graph G is (k,t)-choosable for each positive number
t then G is called k-choosable and the smallest number k satisfying this
property is called the list chromatic number of G denoted by x;(G).

The problem of list assignments is first studied by Vizing[10] and by
Erdds, Rubin and Taylor[2]. In [2], the authors give a characterization of 2-
choosable graphs. However, there is no literature giving a characterization
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of k-choosable graphs for k¥ > 3. Given a positive integer k, k-choosable
graphs are investigated only for specific classes of graphs, for example, every
planar graph is 5-choosable while some planar graphs are 3-choosable. (See
6],(8],[9],[12],[13],[14], [15].) Some authors explore list assignment problems
by investigating uniquely k-list colorable graphs; for instant, Ganjari et al.
(1] use (k, t)-choosability of graphs in order to generalize a characterization
of uniquely 2-list colorable graphs.

Throughout the paper, G denotes a simple, undirected, finite, connected
graph; V(G) and E(G) are the vertex set and the edge set of G, respectively.
A clique is a set of pairwise adjacent vertices in a graph; a k-clique is a clique
of size k. An independent set in a graph is a set of pairwise nonadjacent
vertices; an independent set of size n is denoted by S,. For X C V(G),
G — X is the graph obtained from deleting all vertices of X from G. In case
X = {v}, we write G — v instead of G — {v}. The subgreph of G induced
by X, denoted by G[X] is the graph obtained from deleting all vertices of
V(G) outside X. A graph G is H-free if G has no induced subgraph which
is isomorphic to a graph H. A graph is called triangle-free if it is Ks-free.

When t < k or t > kn, there is no (k,t)-list assignment, so G is au-
tomatically (k,t)-choosable. Unless we say otherwise, our parameters k, n
and t in this paper are always positive integers such that t > k. If k > n
then all of the n-vertex graphs are (k,t)-choosable. When k > xi(G), a
graph G is always (k,t)-choosable; therefore, we focus on a positive integer
k such that k < xi(G).

Let S C V(G). If L is a list assignment of G, we let L|s denote L
restricted to S and L(S) denote [ J,c g L(v). For a color set A, let L — A be
the new list assignment obtained from L by deleting all colors in A from
L(v) for each v € V(G). When A has only one color a, we write L — a

instead of L — {a}.

Example 1.1.
(i) Choosability of cycles. The cycle C, is (2,t)-choosable unless n is odd

andt=2.

Note that a graph G is (2, 2)-choosable if and only if G is 2-colorable.
Hence, C,, is (2, 2)-choosable if and only if n is even. It remains to show
that all of the cycles are {2, t)-choosable for t > 3.

Let t > 3 and L be a (2, ¢)-list assignment of Cy,. Thus there are two ad-
jacent vertices vy, v, € V(G) such that L(vy) # L(vs). Let vg,v3...,v,_;
be remaining vertices along the cycle C, where v; is adjacent to v;; for
i=1,2,...,n—1. First we assign v; a color ¢ in L(v;) which is not in
L(v,,) and then we assign vertex vz a color in L(vz) different from ¢ and so
on. This algorithm guarantees that each pair of adjacent vertices receives

distinct colors.
(ii) Choosability of K2 3. The complete bipartite graph K 3 is (2,t)-choosable
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for every positive integer t.

Let {u1,uz} and {v1,vs,v3} be the bipartite sets of K53 and L a (2,t)-
list assignment of Ky 3. If L(uq) N L(uz) # 0 then u; and u, can be colored
by using the same color; hence, the remaining vertices in the other bipartite
set can be easily colored. Otherwise, L(u;1) N L(ug) = . There are four
possible ways to pick a color from each of L(u;) and L(us). Thus, we can
choose ¢; € L{u;) and ¢z € L(uz) such that {c1, ez} are distinct from L(v;)
for i = 1,2,3. Then, we can assign v; a color which is neither ¢; nor ¢; in

L{v;) for every i = 1,2,3.

2 (k,t)-choosability of graphs

This section aims to investigate parameters k, n and ¢ which guarantee
that every n-vertex graph is (k, t)-choosable. It may not be true that (k, t)-
choosability implies (k,t+ 1)-choosability. Example 2.1 illustrates this fact.

Example 2.1. Let X,Y be the bipartite sets of K9 10. To show that
Kio,10 is (3,4)-choosable, let L be a (3,4)-list assignment of Kjg,10. For
any u € X, at least one of the numbers 1,2 is in L(u). Hence, each vertex
in X can be colored by only color 1 or 2. For all v € Y, at least one of the
numbers 3,4 is in L(v). Hence, we can color each vertex in Y by only color

3or 4.

128
124
126 €
134 @
136 €
145 @
234
2356 @
245
345

Figure 2.1: A (3, 5)-list assignment of Kjg 10

Next claim that Ko 10 is not (3,5)-choosable, let L be the (3,5)-list
assignment shown in Figure 2.1. At least 3 colors must be used to color
all vertices in each bipartite set of Kjg10. However, only 5 colors are
available; hence, there are u € X and v € Y receiving the same color. It is

a contradiction. O

323



Given a collection of subsets of X, A = {41, 4y,...,A,}, a System of
Distinct Representatives (SDR) of A is a set of distinct elements a,, a3, ...a,
such that a; € A; for all 7. The following theorem shows the well-known nec-
essary and sufficient condition for the existence of an SDR. Indeed, Hall’s
Theorem [3] is originally proved in the language of an SDR and is equivalent
to Menger’s Theorem [7)].

Theorem 2.2. [11] Given a collection of sets of X, A = {A;,A,,..., A},
an SDR of A exists if and only if | ;s Ail = |J| for all J C {1,2,...,n}.

Corollary 2.3. Let L be a list assignment of a graph G. If |L(S)| > |S| for
all S C V(G), then G is L-colorable. Moreover, there ezists an L-coloring
such that each vertex of G assigned by distinct colors.

Proof. Let V(G) = {v1,v2,...,9,}. Assume that |L(S)| > |S| for all S C
V(G). From Theorem 2.2, there exist ¢; € L(v1),co € L(v2)...,cp €
L(v,) such that ¢,¢z,...,c, are distinct. Thus we define f : V(G) —
{1,2,...,n} by f(v;) = c; hence, f is an L-coloring. O

Theorem 2.4 studies a more profound condition than one in Corollary 2.3
to conclude an L-colorable graph. Kierstead [5] and He et al. [4] use it
to investigate the list chromatic number on some complete multipartite
graphs.

Theorem 2.4. [4] Let L be a list assignment of a graph G and let S C V(G)
be a mazimal non-empty subset such that |L(S)| < |S|. If G[S] is L|s-
colorable then G is L-colorable.

To utilize Theorem 2.4 as well as simplify our proof, throughout the rest
of our paper, we will use a stronger assumption by considering all nonempty
subsets S C V(G) such that |L(S)| < |S]. In addition, we combine it with
the next lemma, which has a simple proof but is quite useful, to obtain the
desired results.

Lemma 2.5. Let Ay, As, ..., Aq be k-setsand J C {1,2,...,n}. If|UL, 4 2
p, then |U;ey Ail 2 p— (n—|J]k.

Proof. Let Ay, Ay,..., A, be k-sets such that [, Ail > p and J C
{1,2,...,n}. Suppose that |{J;c; Ai| < p— (n—|J|)k. Thus |, Ai] <
|Uies Ail + [Uigs Ail < p—nk +|Jlk + k(n —|J[) = p. It is a contradic-
tion. a

The next theorem is our first main result.

Theorem A. For an n-vertex graph G, if t > kn — k? + 1 then G is
(k,t)-choosable.
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Proof. Let G be an n-vertex graph. Suppose t > kn — k> +1. Let L be a
(k, t)-list assignment of G; that is, we obtain |L(V(G))| =t > kn — k2 + 1.
Let S C V(G). If | 8| < k, then, together with [L(S)| > k always, |L(S)| >
|S|. Otherwise, S| > k + 1. By Lemma 2.5, |L(S)| > kn—k?+1 - (n -
|S|)k = k|S|—k2+1 = |S|+(k—1)|S|-k2+1 > |S|+(k—1)(k+1)~k>+1 =
|S]. Hence |L(S)| > |S]| for all S C V(G); therefore, by Corollary 2.3, G is
L-colorable. O

In particular, Theorem A can be rephrased in terms of a sufficient con-
dition of the existence of an SDR on k-sets, concluded in Corollary 2.6.

Corollary 2.6. Let A = {A;,As,...,An} be a collection of k-subsets of a
universal set X. If |, Ai| 2 kn — k% + 1, then A has an SDR.

i=1

3 (k,t)-choosability of Ki,i-free graphs

Theorem A shows that if £ > kn — k% + 1 then every n-vertex graph is
(k,t)-choosable. In this section, we focus on k < ¢ < kn — k2. Theorems
and lemmas are provided in order to prove Theorem B as our second main

result.

Theorem B. Let n,k,t be positive integers such that nk —k® —2k+1 <
t < nk—k? and 3 <k <n—3. An n-vertez graph is (k,t)-choosable if and
only if it is Ky41-free. Moreover, fork =2 and2n -6 <t <2n—4, an
n-vertez graph is (2,t)-choosable if and only if it is triangle-free.

Recall that if ¢t < k, G is always (k,t)-choosable. First, we present an
n-vertex graph which is not (k,t)-choosable for k <t < kn — k2.

Theorem 3.1. An n-vertex graph containing a (k + 1)-clique is not (k,t)-
choosable where k <t < kn — k2.

Proof. Let G be an n-vertex graph containing (k + 1)-clique K and k <
t < kn — k2. Consider a (k,t)-list assignment L of G such that L(v) =
{1,2,...,k} for each vertex v in K. Because t —k < k(n — k — 1), it is
possible to construct a (k, t)-list assignment L in which the union of lists for
the n—k—1 vertices outside K is {k+1,k+2,...,t}. However, since every
vertex in K receives the same list of size k, we cannot color all vertices in
this (k + 1)-clique. Therefore, G is not L-colorable. O

Theorem 3.1 shows the necessity of the first part in Theorem B. The
sufficiency will be held by Theorem 3.8. Furthermore, Theorems 3.9 and
3.10 are provided to claim the statement for the case k = 2 of the main
theorem. To simplify the proofs of our desired theorems, we prove a number
of lemmas along the way.
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Lemma 3.2. Let G be an n-vertex graph. Ifk > n—2 and G is Ky.1-free,
then G is (k,t)-choosable for any positive integer k.

Proof. Let G be a Ki,.1-free graph with n vertices where k > n —2. Let L
be a (k,t)-list assignment of G where ¢ > k. By Theorem 2.4, it suffices to
show that VS C V(G), if |L(S)| < |S| then G[S] is L|s-colorable.

Let S C V(G) such that |L(S)| < |S]. Recall that |L(S)| > k and
[S| <n<k+2; hence, [S|=k+1or|S|=k+2.
Case 1. |S| = k + 1. We obtain |L(S)| = k. Since G is Ki;-free, G[S] is
k-colorable. Therefore, G[S] is L|s-colorable.
Case 2. |S| =k +2. Then S = V(G), so [L(S)| =k or k+ 1. Let u,v be
nonadjacent vertices of G. If L(u)NL(v) = @ then 2k = |[L(x)UL(v)| <t <
k + 1. Hence k < 1, which is a trivial case. Suppose that ¢ € L(u) N L(v).
Case 2.1 G — {u,v} is not a complete graph. It is easy to check that a
k-vertex graph which is not a complete graph is always L’-colorable for
every (k — 1)-list assignment L’. Therefore, G — {u, v} is (L — ¢)-colorable.
Together with coloring v and v by ¢, we have that G is L-colorable.
Case 2.2. G — {u,v} is a complete graph. Since G — {u, v} has k vertices,
G - {u,v} is L|y(G—{u,v})-colorable. Since G does not contain K}, each
of vertices u, v is adjacent to at most k—1 vertices in G — {u,v}. Therefore,
u, v can be colored. ]

Corollary 3.3 follows from Lemma 3.2 which gives a characterization
of an upper bound on some graphs. It then suggests a simple proof to
n—1 ifey,e; € E(K,) are incident;

lude that x;(K, —e1 —e2) =
conclude that xi(Kn 1-é€2) n —2 otherwise.

Corollary 3.3. Let G be an n-verter graph. xi(G) < n — 2 if and only if
G contains two pairs of nonadjacent vertices or an independent set of size
3.
Proof. Let G be an n-vertex graph and k = |V(G)| — 2. Assume that G
contains two pairs of nonadjacent vertices or an independent set of size 3.
Since G has k + 2 vertices, it is Ki4-free. By Lemma 3.2, G is (k,t)-
choosable for every positive integer t > k, i.e. xi(G) <k=n-2.
Conversely, assume that x;(G) < k. Then G is k-colorable. Since
k = n —2, there exist three vertices assigned the same color or two pairs of
vertices such that each pair assigned the same color. ]

The join of graphs G and H, written GV H, is the graph obtained from
G and H by adding the edges between all vertices of G and all vertices of
H.
Lemma 3.4. Let G be a Kj41-free graph with k +3 vertices. G is isomor-
phic to either Kx_1V Sy or Ki_2V Cs if and only if G — {u, v} contains a
k-clique for every pair of nonadjacent vertices u,v.
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Figure 3.1: Examples of Kx—1V S or Ki—o V Cs

Proof. Let G be a Kj4-free graph with k + 3 vertices. It is easy to check
that the necessity is true. For sufficiency, assume that G — {u, v} contains
a k-clique for every pair of nonadjacent vertices u, v.

Since G has k 4 3 vertices and does not contain any (k + 1)-clique,
G contains four distinct vertices u;, ug,v;,¥2 such that u; is not adjacent
to v; for i = 1,2. Let X = {uj,u2,v1,v2} and H = G — X. By the
assumption, G — {u;,v1} contains a k-clique. Since G — {u;,v1} hask +1
vertices, exactly one vertex among nonadjacent vertices ug,v2 must be in
such k-clique, say vz. That is, V(H)U {vz} is a k-clique. Similarly, we may
assume that V(H) U {v;} is a k-clique by considering G — {u3,v2}. Asa
consequence, v; is not adjacent to vz; otherwise, G contains a (k+1)-clique.
(See Figure 3.2.)
ug———oVv u,v are adjacent.
u®----0v u,v arenot adjacent.
uo ev  no information

Figure 3.2: V(H) U {v} and V(H) U {v2} are k-cliques while v; ¢ u,,
vy ¢ up and vy ¥ va.

Suppose both u; and uz are adjacent to every vertex in H. If X is not an
independent set, then G contains a (k + 1)-clique which is a contradiction.
If X is an independent set, then G is isomorphic to Kx_; V S4. Now, we
can suppose that there is w € V(H) such that w is not adjacent to ;.

We know that G — {u;,w} has k + 1 vertices and contains a k-clique.
Since vo is not adjacent to v; and ug, the vertex vp cannot be in the k-
clique. Therefore, V(H — w) U {v1,u2} forms a k-clique. Besides, u; is
not adjacent to w; otherwise, V(H) U {v1,uy} forms a (k + 1)-clique. (See
Figure 3.3.)

Similarly, considering G — {w, uz}, we obtain that V/(H — w) U {va,u,}
forms a k-clique.
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uo——oVv  u,v arc adjacent.
u®----0v  u,v are not adjacent.
uo ov  no information

Figure 3.3: G — {w,uy,v2} is a complete graph with k vertices.

Finally, we consider G — {v;,v2}. Then w cannot be in any k-clique of
G —{v1, v} because w is not adjacent to both u; and uz. Then V(H —w)U
{u1,uz} forms a k-clique. That is, u; is adjacent to uz. (See Figure 3.4.)
Therefore, {w, v, uz, u1,v2} forms a cycle of length 5 and H — w is a com-
plete graph with k — 2 vertices; moreover, all vertices of Cs are adjacent to
all vertices of H — w. a

uo——ov  u,v are adjacent.
ue----0v  u,v are not adjacent.

uo ov  no information

Figure 3.4: {w, v, ug,u1,v2} forms a cycle of length 5.

Lemma 3.5. If a (k + 3)-vertez graph is Kii1-free, then it is (k,t)-
choosable fort > k + 1.

Proof. Let G be a graph with k+3 vertices and L be a (k, t)-list assignment
of G. Assume that G does not contain Ky, as a subgraph and ¢ > k + 1.
Let S C V(G) be such that |L(S)| < |S]. It suffices to show by Theorem 2.4
that G[S] is L|g-colorable. If k = 1 then G has no edges. So, it is (1,¢)-
choosable for every positive integer t. If ¥ = 2, then G is triangle-free
and has five vertices which could be only Cg or a subgraph of K»3. By
Example 1.1, G is (2,t)-choosable for ¢t > 3. If |S| =k + 1 or k + 2, then
the statement holds by Lemma 3.2.
Now, assume that k£ > 3 and |S| = k + 3; that is, § = V(G).

Case 1. There exists a pair of nonadjacent vertices u,v € V(G) such that
G — {u,v} does not contain a k-clique. Since ¢t = [L(V(G))| < |V(G)| <
k + 3, we obtain ¢t < k + 2. Moreover, L(u) N L(v) # 0 since k > 3. Let
¢ € L(u) N L(v). By Lemma 3.2, G — {u,v} is (L — ¢)|v(G—{u,v})-colorable.
Extend this to an L-coloring of G by coloring vertices u, v with color c.
Case 2. G —{u, v} contains a k-clique for every pair of nonadjacent vertices
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u,v. Apply Lemma 3.4; G can be only two possible graphs. If G & K},_, Vv
S4, then we first color all vertices in Kx_1 and next choose a remaining color
in L(v) to color v for each v € Sy. Otherwise, G = Kj._5 V Cs. Begin with
coloring all vertices of Kj_o; each vertex of C; has at least two remaining
colors. The total number of the remaining colors is at least ¢t — (k—2) > 3.
So, by Example 1.1, every vertex of Cs can be colored. Therefore, G is

L-colorable. (|

In the next two following lemmas, we focus on 2-list assignments. Both
lemmas are prepared for Theorem 3.9.

Lemma 3.6. Graphs G, and G2 defined below are (2, 5)-choosable.

G2

Figure 3.5: (2, 5)-choosable graphs

Proof. Let L be a (2,5)-list assignment of G,. Since |L(V(G; — veg))| 2 3,
G — v has an L|y (g, —ve)-coloring, namely f;. Then f; can be extended
to be an L-coloring unless, without loss of generality, L(vs) = {1,2} and
fi(v2) =1, fi(vs) = 2. In such case, let f2 be a new coloring on of G} — vg
such that fa(v2) = a € L(vz) — {f1(v2)} and f2(v) = fi(v) for each of the
remaining vertices v. If f; is a proper coloring, then it is done. Otherwise,
suppose f2 is not proper. That is, f2(v1) = a or fa(v3) = a. We may assume
that fa(vs) = a. Again, we let f3 be a new coloring of G; — vg such that
fa(vs) = b € L(vs) — {f2(vs)} and f3(v) = fa(v) for each of the remaining
vertices v. If f3 is still not proper, we keep defining a new coloring of
G; — vg and so on. Finally, we either have a proper coloring or know the
list assignment L of G; shown in Figure 3.6. Since |L(V(G1))| = 5, it yields
{a,b,c} = {3,4,5}. Then we can easily obtain an L-coloring of G;.

Now for Ga, let L be a (2,5)-list assignment of G3. Since Cg is 2-
choosable, we obtain an L-coloring of G2 — e, namely f; where e is the
edge whose endpoints v3 and vg. The L-coloring f; is also an L-coloring
of G3 unless fi(v3) = fi(ve). Without loss of generality, suppose that
fi(vs) = fi(ve) = 1. In such case, let f2 be a new coloring of G, — e
such that f(v3) = a € L(vs) — {f1(vs)} and f2(v) = f1(v) for each of the
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Figure 3.6: A list assignment L of G;

other vertices v. If fy is proper, then it is done. Otherwise, we define a
new coloring of G2 — e similar to the proof of G;. Eventually, we obtain
an L-coloring of G2 or the list assignment L of G5 shown in Figure 3.7.
Since L have five colors, it forces that {a,b,c,d} = {2,3,4,5}. Therefore,
we easily obtain an L-coloring of Gs. a

Figure 3.7: A list assignment L of G;

Lemma 3.7. A triangle-free graph with siz vertices is (2,5)-choosable if
and only if it is neither K33 nor K33 —e.

Proof. The (2,5)-list assignments of K3 3 and K33 — e shown in Figure 3.8
do not have a proper coloring.

1,2 14 1,2 14
L3 LS L3 15
4,8 23 4.5 2,3

Figure 3.8: (2,5)-list assignments of K33 and K33 —e

Let G be a triangle-free graph with six vertices and L a (2, 5)-list assign-
ment of G. Assume that G is neither K33 nor K33 — e. If G has no cycle,
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then G can be easily colored. If G contains only one cycle, because there
are all together at least three available colors, then we can first color such
cycle. Then, the remaining vertices outside the cycle can be easily colored.
Now assume G contains at least two cycles. Since G is a triangle-free graph,
G is one of the graphs in Lemma 3.6. Therefore, G is L-colorable. O

We are now ready to prove our theorems.

Theorem 3.8. Let k > 3. A Kj1-free graph with n vertices is (k,t)-
choosable fort > kn — k® — 2k + 1.

Proof Let k > 3, t > kn—k* -2k + 1 and G be a Kj;-free graph
with n vertices. Let S C V(G) be such that |[L(S)| < |S|. We prove
that G[S] is L|s-colorable in order to utilize Theorem 2.4. By Lemma 2.5,
|S|k — k2 —2k+1 < |L(S)| < |S]. Hence |S| < k+3+ £25; ie. |S] < k+3.

If |S| < k + 2, then G[S] is L|s-colorable by Lemma 3.2. If |S|=k +3
and | L(S)| = k then by Lemma 2.5 we obtain ¢t = |L(V(G))| < kn—k? -2k,
a contradiction. Otherwise, |S| = k + 3 and |L(S)| > k + 1; hence G[S] is
also L|g-colorable by Lemma. 3.5. 0

It is worth mentioning that Theorem 3.8 is not true when k = 2. How-
ever, the statement is correct if the bound is slightly improved. This is
illustrated in Theorem 3.9. Furthermore, Theorem 3.10 reveals all graphs
forbidding the case for which Theorem 3.8 fails when & = 2.

Theorem 3.9. A triangle-free graph with n vertices is (2,t)-choosable
where t > 2n — 6.

Proof. Assume that G is a triangle-free graph with n vertices. Let § C
V(G) such that |L(S)| < |S|. Again, it suffices by Theorem 2.4 to show
that G[S) is L|s-colorable. By Lemma 2.5, 2|S| — 6 < |L(S)| < |S|. Hence
IS] < 6. If |S]| < 4 then G[S] is L|s-colorable by Lemma 3.2. Now assume
that |S| = 5. By Lemma 2.5, |L(S)| 2 2n — 6 — 2(n — |S|) = 4; therefore,
G|S] is L|s-colorable by Lemma 3.5. a

Theorem 3.10. A triangle-free graph with n vertices is (2, 2n—7)-choosable
if and only if it does not contain K33 — e as a subgraph.

Proof. Let G be a triangle-free graph with n vertices.

Necessity. Assume that G contains K33 — e as a subgraph. We will find a
(2,2n —7)-list assignment of G such that G is not L-colorable. First, assign
lists of colors for vertices in K33 — e shown in Figure 3.8. Assign disjoint
sets of colors to each of the remaining n — 6 vertices; this uses 2n — 12
colors. Thus we obtain (2,2n — 7)-list assignment L of G. Since K33 —e is
not L]y (ks s—e)-colorable, G is not L-colorable.

Sufficiency. Assume that G does not contain K33 —e as a subgraph. Let L
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be a (2,2n — 7)-list assignment of G. Let S C V(G) such that |L(S)| < |9].
By Theorem 2.4, it suffices to show that G[S] is L|g-colorable.

By Lemma 2.5, 2|S| - 7 < |L(S)] < |S|; therefore, |S| < 6. If |S| = 6,
then |L(S)| > 2-6—7 = 5; hence, the proof is done by Lemma 3.7. If |S] = 5,
then |L(S)| > 2-5—7 = 3, so the proof is done by Lemma 3.5. Otherwise,
|S] < 4. Since G[S] is triangle-free, it is a subgraph of K3 3; hence, it is
L-colorable by Example 1.1. Therefore, G[S] is L|s-colorable. (m]

In conclusion, Theorem 3.1 and Theorem 3.8 are the necessity and suf-
ficiency for the case k > 3 of Theorem B. Furthermore, Theorems 3.1, 3.9
and 3.10 prove the remaining case which complete our main theorem.

We next step further to the case k <t < nk — k2 — 2k. Some Kj,-free
graphs with n vertices are (k, t)-choosable. Theorem C gives us forbidden

graphs.

Theorem C. Let G be an n-vertex graph and k < t < nk — k2 — 2k
where k > 2. If G contains Cs V Ko then G is not (k,t)-choosable.

Proof. Let G be an n-vertex graph and k < ¢t < nk — k? — 2k where k > 2.
Suppose that G contains C;VK_3. Consider a (k, t)-list assignment L of G
such that L(v) = {1,2,...,k} for every vertex v in CsV Ki_5. It is possible
to construct such (k,t)-list assignment L because t — k < k(n — k — 3).
Notice that the union of lists for the n — k — 3 vertices outside Cs V K., is
{k+1,k+2,...,t}. However, since every vertex in Cs V Kj_, receives the
same list of size k, we cannot color all vertices in Cs V Ki_3. Therefore, G
is not L-colorable. g

As our result, an n-vertex graph containing Kix_o V C5 or Kiy is
not (k,t)-choosable for k < t < nk — k? — 2k, the next natural question
is whether these graphs are all graphs which are not (k,t)-choosable for
k <t < nk — k% — 2k. We propose the following conjecture.

Conjecture Let G be an n-vertex graph. If G contains neither KoV Cs
nor Kiy1, then it is (k,nk — k? — 2k)-choosable.
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