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Abstract

Candelabra quadruple systems, which are usually denoted by CQS(g™ :
s), can be used in recursive constructions to build Steiner quadruple systems.
In this paper, we introduce some necessary conditions for the existence of a
CQS(g" : s) and settle the existence when n = 4,5 and g is even. Finally,
we get that foranyn € {n > 3 : n # 2,6 (mod 12) and n # 8},
there exists a CQS(g" : s) forallg =0 (mod 6),s=0 (mod 2) and
0<s<yg.

Keywords: Candelabra system, Transverse quadruple system, s-fan de-
sign.

1 Introduction

Let v be a non-negative integer, let ¢ be a positive integer and K be a set of
positive integers. A candelabra t-system (or t-CS) of order v, and block sizes
from K denoted by CS(¢, K, v) is a quadruple (X, S, G, A) that satisfies the fol-

lowing properties:
1. X is a set of v elements (called points);
2. S is a subset (called the stem of the candelabra) of X of size s;

3. G =(G1,Gy,...) is a set of non-empty subsets (called groups or branches)
of X\S, which partition X\S;

4. Ais family of subsets (called blocks) of X, each of cardinality from K;
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5. every t-subset T of X with |T N (S U G;)| < ¢t for all i is contained in a
unique block and no ¢-subset of S U G; for all 7 is contained in any block.

By the group type (or type) of a t-CS(X, S, G, A) we mean the list (|G||G €
G : |S|) of group sizes and stem size. The stem size is separated from the group
sizes by a colon, If a t-C'S has n; groups of size g;, 1 < ¢ < r and stem size s,
then we use the notation (g7 g3 - - - g7~ : s) to denote group type. A candelabra
system is called uniform if all groups have the same size. A CS(3, K, v) of type
T is denoted by K-CS(T). When K = {k}, we simply write k for K. A
candelabra system with ¢ = 3 and K = {4} is called a candelabra quadruple
system and denoted by CQS(g7'* 932 -+ - g7 : 8).

Example 1.1 It is known that for any prime power g, there is an S(3,q+1, ¢>+1)
which contains q blocks intersecting in a fixed point and pairwise disjoint else-
where [4]. This is indeed a {q + 1}-CS(q? : 1) if we remove the blocks intersect-
ing in the fixed point. In particular for g = 3, there exists a CQS(33 : 1).

Candelabra systems were first introduced by Hanani (see Definition 2 of [7])
who used quite different terminology, in Hanani’s notation, a CQS(g" : s) would
be denoted by P, [4,1,ng + s].

A candelabra system CS(t, K,v) of type (1Y : 0) (X, S,G, A) is usually
called a r-wise balanced design and briefly denoted by S(t, K,v). As well, the
stem and the group set are often omitted and we write a pair (X, .4) instead of
a quadruple (X, S,G, A). An S(3,4,v) is called a Steiner quadruple system and
denoted by SQ.S(v). Itis well known that an SQS(v) exists if and only if v = 2,4
(mod 6) [6].

In this paper, we concentrate on uniform candelabra quadruple systems. The

known results of CQS(g™ : s) are concluded as below:
In [15], Lenz stated an infinite class of CQS with three groups, with which
he gave a new proof of the existence of a Steiner quadruple system.

Lemma 1.2 (Lenz [15]). A CQS(g® : s) exists for all even s and all g = 0, s
(mod 6) withs < g.

Lemma 1.3 (Phelps [18]). ACQS(g® : 1) exists forall g = 1,3 (mod 6).
Granville and Hartman [3) got an infinite class of CQS with four groups.

Lemma 1.4 (Granville and Hartman [3]). A CQS(g* : s) exists for all even g
and s withs < g.

Mills [16] also investigated the special case of candelabra systems with s = 0,
calling them G-designs.

Lemma 1.5 (Mills [16]). There exists a CQS(6™ : 0) foralln > 0.
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Recently, Zhuralev et al. [20] investigated the other cases of uniform G-
designs (called group divisible Steiner quadruple systems as in [20]) and gave
the following result:

Lemma 1.6 (Zhuralev, Keranen and Kreher [20]). There exists a CQS(g" : 0)
ifandonlyifg=1landn = 2,4 (mod 6), orgisevenand g(n—1)(n—2) =0
(mod 3).

We begin in Section 2 with background material and some necessary condi-
tions for the existence of a CQS(g™ : s). In Sections 3 and 4 we investigate CQS
with four and five groups respectively. Finally in Section 5, we get that for any
ne{n>3:n#26 (mod12)andn # 8}, there exists a CQS(g" : s) for
allg=0 (mod6),s=0 (mod2)and0<s<g.

2 Preliminaries and Background Material

Let v be a non-negative integer, let ¢ be a positive integer and K be a set of
positive integers. A group divisible t-design (or t-GDD) of order v and block sizes
from K denoted by GDD(t, K, v) is a triple (X, G, B) such that

1. X is a set of v elements (called points);

2. G = {Gy, Ga, ...} is aset of non-empty subsets (called groups) of X which
partition X;

3. B is a family of subsets of X (called blocks) each of cardinality from K
such that each block intersects any given group in at most one point;

4, each t-set of points from ¢ distinct groups is contained in exactly one block.

The rype of the GDD is defined to be the list (|G||G € G).

A GDD(3,4,v) of type (g7 932 - - - g7~) is usually called a transverse quadru-
ple system and denoted by TRQS(g7* 932 - - - g#). Mills [17] determined the ex-
istence of a TRQS(g™) (It is also called an H design as in [17]) except for n = 5.
Recently, Ji [10] improved these results for n = 5. The existence of a TRQS(g"™)
can be stated as:

Lemma 2.1 (Mills [17], Ji [10]). Forn > 3 and n # 5, an H(n, g, 4, 3) exists
if and only if ng is even and g(n — 1)(n — 2) is divisible by 3. Forn = 5, an
H(5,9,4,3) exists if g is even, g # 2and g # 10,26 (mod 48).

More results on T RQS can be found in [13] and [14].

Lemma 2.2 (Lauinger, Kreher, Rees and Stinson [14]). There exists a TRQS(g™
((n - 2)g)!) ifand only if n(n — 1)g? =0 (mod 6), (n—1)g=0 (mod 2),
and (g,n) # (1,7).
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Lemma 2.3 (Hanani [4]). There existsa GDD(3,q+ 1, ¢% + q) of type q** for
prime power g.

Lemma 2.4 (Hanani [4]). If g = 27, T a non-negative integer. Then there exists
aGDD(3,q + 2,4% + 2q) of type ¢9*2.

Lemma 2.5 (Ji and Yin [12]). There exists a GDD(3,5,5g) of type g° for any
integer g > 4, g # 2 (mod 4), and a GDD(3, 6, 6g) of type g° for any positive
integer g satisfying ged(g, 4) # 2 and gcd(g, 18) # 3.

A candelabra 3-system is equivalent to the s-fan design defined by Hart-
man [9]. A (s + 3)-tuple (X,G,B,Bz,...,B,,Br) is an s-fan design if G =
{G1,Ga, ...} is a set of non-empty subsets of X which partition X, (X, G U B;)
is a 2-wise balanced design (which is usually called a PBD), foralli = 1,2,...,s
and (X, G U J;_, B: U Br) is a 3-wise balanced design.

Now let (X, S,G, A)beaCS(3, K,v) of type (97952 - - - g7~ : s) withs > 0
andlet $ = {ooy,...,005}. For1 <i < s, let A; = {A\{o0s} : A€ A, o0; €
A}land A7 = {A € A: AnS = 0}. Then (X,G, A1, As,...,A,, AT) is
an s-fan design. If block sizes of A; and Ar are from K;(1 < ¢ < s) and K7,
respectively, then the s-fan design is denoted by s-F'G(3, (K,, Ka, ..., K,, KT),
3oi-q nigi) of type g g3? - - - g7=. On the contrary, if we add oo; to every block
of A; forall 1 < i < s, then we get a CS(3, K, v) of type (g7 g52 - -+ g7 : s).

A GDD(8, K,v) of type (g7*g3? - - - g7*r) is called s-fan if its block set BB can
be partitioned into disjoint subsets By, ..., B, and Br such that for each i, 1 <
i < 8, B; is the block set of a GDD(2, K;, v) of the same type. If block sizes of
Br are all from K, then it is denoted by s-fan GDD(3, (K, Ko, ..., K,, K1),

v) of type g7 g2% - - - g7
With the known results of GDD(3, K, v) we can get the following lemma:

Lemma 2.6 Let g = 23/ [ p}*, where py > 5 is a prime and ay is a non-
>

negative integer. If i > 2 and j > 2, then there exist a GDD(3, 5, 5g) of type g°
anda GDD(3,6,69) of type g°. And then there exists a g-fan GDD(3, (4, ... ,4),
4g) of type g* and a g-fan GDD(3, (5, - . -, 5), 59) of type g°.

Now we introduce two constructions for CQS which will be used frequently
in this paper. The following one is a special case of Hartman’s fundamental con-

struction [9].

Theorem 2.7 Suppose there is an e-FG(3,(K,,..., K¢, KT),9n) of type g"
with e > 1. Suppose there exists a CQS(m* : s1) forany k1 € Ky, a
TRQS(m*s}) forany k; € K; (2 < i < e), anda TRQS(m*) forany k € Kr.
Then there exists a CQS((mg)™ : 31 <;<. Si)-
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Lemma 2.8 (Stern and Lenz [19]). Let G be a graph with vertex set Zs. and let
L be a set of integers in the range 1,2, ..., k, such that {a,b} is an edge of G if
andonly if |b—a| € L, where |b—a| =b—aif0<b—a < kand|b—a|=a-b
ifk < b—a < 2k. Then G has a one-factorization if and only if 2k [gcd(j, 2k) is
even for some j € L.

Theorem 2.9 Suppose there is an e-fan GDD(3, (K}, ..., K., K1), gn) of type
g™ withe > 1 and g > 1. Suppose there exists a CQS(m* : s,) for any
ky € K1, a TRQS(mF:s}) foranyk; € K; 2 <i<e), anda TRQS(mk) for
any k € Kr. If gm is even, then there exists a CQS((mg)™ : 3, <;<. 8i)-

Proof: Suppose (X,G, A1, Az, ..., A, Ar) is the given e-fan GDD, where
G ={G1,...,Gn} Lets =), cic. 5 and § = {oo} x Z,, where SN (X x
Zm) = 0. We will constructa CQS({mg)™ : 3, ;<. %:) onpointset X’ = (X x
Zm) U S with group set G’ = {G},...,GL} and stem S, where G} = G; X Zp,
(1 < i < n). Block set F is stated blow.

For the simplicity of description, we let G, = {z} X Z, (z € X), S =
51US;U- - -US,, where §; = {00} x Zs,, S; = {(00, XIZ{ 1), (00, X321 s:+
1),...,(00, X7, 8- 1)} (2<j<e).

For every block A € A;, we construct a CQS(m!4! : s;) on point set (4 x
Z,) U S; with groups {G, : z € A} and stem S;. Such a design exists by
assumption. We denote its block set by D 4.

For every block A € A; (2 < j < e), construct a TRQS(m!4!s}) on point
set (A x Z,) U S; with group set Ty = {Gz : £ € A} U {S;}. Such a design
exists by assumption and we denote its block set by C_Z;.

For every block A € Ar, construct a TRQS(m*) on point set A x Z,,, with
group set Ty = {G; : = € A}. Such a design exists by assumption and we
denote its block set by B4.

For any 1 < ¢ < m, consider the complete g-partite graph Ky, m,....m OR
point set G} and we denote this graph by I‘G:, which contains all the edges
{(z,3), (¥, k)}, = # y. Such a graph can also be considered as a graph on point set
Z 4 which consists of edges {a, b}, where o — b| € L = {1,2,...,gm/2}\{g,
2g,...,9|m/2]} (note that gm is even). Since g > 1, there exists suchal € L
that gm/ged(gm, 1) is even. So by Lemma 2.8, I'g; has a one-factorization

{F},...,F™~V}, Forany {c,d} € FF and any {¢,d'} € FF, construct a
block {c,d,c’,d'}, where 1 < k < m(g—1),1 < i< j<n Letf =
{{c,d,¢,d'} : {c,d} € FF,{c,d'} € FF,1< k<m(g—1),1<i<j<n}
Let F = (UAGA: Da) U(Uzgjgc UAe.A, cit) U(UAGAT Ba)UE.
Then (X', S,G', F) isa CQS((mg)™ : Elsise ;). 1]
In the following of this section, we consider the necessary conditions for a
CQS to exist. First we state two important results of GDD(2, 3, v). The neces-
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sary and sufficient conditions for the existence of a GDD(2, 3, v) of type g™ were
proved by Hanani in 1975.

Theorem 2.10 (Hanani [5]). Let g and n be positive integers. There exists a
GDD(2,3,v) of type g" if and only if n > 3 and the conditions in the following
table are satisfied.

g n

1,5 (mod6) | 1,3 (mod 6)

2,4 (mod 6) | 0,1 (mod 3)
3 (mod 6) 1 (mod 2)
0 (mod 6) | No constraint

The necessary and sufficient conditions for the existence of a GDD(2, 3, v)
of type g"s! were established by Colbourn, Hoffman, and Rees in 1992.

Theorem 2.11 (Colbourn, Hoffman and Rees [2]). Let g, n and 8 be nonnegative
integers. There exists a GDD(2,3,v) of type g"s! if and only if the Jollowing
conditions are satisfied:

1. ifg>0,thenn >3, orn=2ands=g,orn=1ands=0,orn=0;
2.s2g(n—1)orgn=0;

3. gn—1)+s=0 (mod2)orgn=0;

4. gn=0 (mod2)ors=0;

5. 3g°n(n—1)+gns=0 (mod 3).

The following theorem establishes the necessary conditions for a CQS(g™ :
8) to exist. Note that a CQS(g? : s) exists if we let its block set be @ and a
CQS(g? : s) exists if and only if g is even and s = 0. The construction of
aCQS(g? : 0), g = 0 (mod 2), can be found in [6], which is actually the
standard doubling construction for Steiner quadruple systems.

Theorem 2.12 (necessary conditions). Supposen. > 3andg > 0. Ifa CQS(g" :
8) exists, then the following hold:

I. (n=1)g=0 (mod 2);
2. ng+s=0 (mod2);

3.Ifg=0 (mod?2),thens < (n—2)g andifg =1 (mod 2), then
s< (n—2)g;

4 (n-1)g[(n+1)g+2s]=0 (mod 3);
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5 n!n—slzgi’ [(n + 1)9 + 3(8 - 1)] = () (mOd 4),'

6. If s > 0, then g and n satisfy the following conditions:

g n

1,5 (mod6) | 1,3 (mod 6)

2,4 (mod 6) | 0,1 (mod 3)
3 (mod 6) 1 (meod 2)
0 (mod 6) | Noconstraint

Proof: Suppose a CQS(g™ : s) (X, S,G, B) exists, where n > 3 and g > 0. Let
z,y € X and suppose z,y € G U S, where G € G. Consider the blocks which
contains {z,y}, then we have (n — 1)g = 0 (mod 2). Suppose z € G, and
y € Gy, where G1,G2 € G and G; # Ga. Consider the blocks which contain
{z,y}, thenwe have 2(g — 1) + (n —2)g+s=0 (mod 2), thatis,ng+s=0
(mod 2).

Suppose z € G, where G € G. Consider the set {B\{z} : z € B,B € B}. It
is the block set of a GDD(2,3,v) of type 19>~1)(g + s — 1), Suppose z € §
(that is, suppose s > 0). Consider the set {B\{z} : = € B,B € B}. Itis the
block set of a GDD(2,3,v) of type g™. By Theorems 2.11 and 2.10, we get the

necessary conditions of 3,4 and 6.
At last, the number of all the admissible 3-subsets of X must be divisible

by 4, so we have (3)¢% + s(3)g* + (})()(n = 1)g = 0 (mod 4), that is,
21 ((n+ 1)g+3(s — 1)} =0 (mod 4).

The necessary conditions are concluded as above. Note that if a CQS(g" : s)
exists withg =1 (mod 2) and s = (n — 2)g, then a CQS(g? : 0) exists. Itis a
contradiction. Soif g=1 (mod 2), then s < (n — 2)g. 0

For n = 3, the necessary conditions can be simplified as:

g s
0 (mod6)| 0 (mod2)ands<g
1 (mod6) |1 (modl2)ands<g
2 (mod6) | 2 (mod6)ands<g
3 (mod6)| 1 (mod4)ands<g
4 (mod6) | 4 (mod6)ands<g
5 (mod6) |5 (mod12)ands<g

By Lemma 1.2, we have that for the case of n =3 and g =0 (mod 2), the
necessary conditions are also sufficient. Forn = 4,5and g =0 (mod 2), we
will prove that the necessary conditions are also sufficient.
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3 The Existence Spectrum for CQS(g* : 5)

The necessary conditions for the existence of a CQS(g* : s) can be simplified
as: g =0 (mod2),s=0 (mod2)and0 < s < 2g. In this section, we will
prove that the necessary conditions are also sufficient for CQS(g* : s).

Lemma 3.1 If a CQS(g* : s) exists forall g = 2,4,6,12, s = 0 (mod 2)
and 0 < s < 2g, then a CQS(g* : s) exists forallg = 0 (mod 2), s = 0
(mod 2) and 0 < s < 2g.

Proof: Letg=0 (mod 2)andg =2 x 2'37 []pp*, wherei =0,1,5 =0,1,
k

px is a prime, and if p; = 2 or 3, then ax > 2. Let g1 = 2 x 2137, g5 = [] pi.
Then g; must be one of 2,4,6,12 and g > 1. If go = 1, then a CQS(g? : 51)
exists by assumption, where s; =0 (mod 2)and 0 < 8; < 2g;.

If g > 1, then by Lemma 2.6, a go-fan GDD(3, (4,...,4),4g2) of type g}
exists. We will prove that a CQS(g* : s) exists, where s = 0 (mod 2) and
0<s5< 2 Lets =mx (2g1) +n,where0 < m < g2,0 < n <'2gy
andn =0 (mod 2). Thena CQS(g} : n) exists by assumption, a TRQS(g%)
and a TRQS(g%(2¢1)!) exist by Lemmas 2.1 and 2.2. Then by Theorem 2.9,
let CQS(g? : n), m TRQS(g%(2¢1)")s and g2 — m TRQS(g?)s be the input
designs and we get a CQS((g192)* : m(2¢1) +n). Thatis,a CQS(g* : s) exists.

0

By Lemma 3.1, we only need to prove that a CQS(g* : s) exists for all
9=2,4,6,12,5=0 (mod2)and0 < s < 2g.

Lemma 3.2 If there exists a TRQS(g"s'), where g = 0 (mod 2), then there
exists a CQS(g" : s).

Proof: By assumption, a TRQS(g"s') (X,G U S, B) exists, where g = 0
(mod 2) and |S| = s. Let G1,G2 € G, G1 # Gy, construct a CQS(g? : 0) on
group set {G, G2} and denote its block setby Ag, @, Let F = (Ug, ¢,¢0.6, 26,
Ag,,c,)UB. Then (X, S5,G,F)isa CQS(g" : s). i]

Corollary 3.3 There exists a CQS(g™ : (n — 2)g), where n(n — 1)g? = 0
(mod 6), (n —1)g =0 (mod 2), and (g,n) # (1,7).

Proof: By Lemmas 3.2 and 2.2. a

Lemma 3.4 A CQS(2* : s) existsforalls=0 (mod2)and0<s<4.

Proof: A CQS(24:0) is the same thing as a SQS(8), so it exists. A CQS(24 :
4) exists by Corollary 3.3. There exists a SQS(10), take two points as set S, All
blocks containing S will partition the remaining points. Removing these blocks
givesa CQS(24: 2). 0
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Lemma 3.5 A CQS(4*: s) existsforalls=0 (mod 2) and0 < s < 8.

Proof: A TRQS(4*), a TRQS(4%) and a TRQS(4%8?) exist by Lemmas 2.1
and 2.2. A TRQS(4%2!) and a TRQS(4%6!) also exist [14]. Then by Lemma
3.2, the conclusion holds. 0

Lemma 3.6 A CQS(6%: s) existsforalls=0 (mod 2)and0 < s < 12.

Proof: By Lemma 1.4, a CQS(6% : s) exists for all s = 0,2, 4,6. There also

exists a CQS(6% : 12) by Corollary 3.3. By the known CQS(2? : 4) we get a

4-FG(3,(3,3,3,3,4),8) of type 2*. Apply Theorem 2.7 with the known input

designs CQS(3% : 1) in Lemma 1.3 and TRQS(3%) in Lemma 2.1. We then get

a CQS(6* : 10).

We construct a T RQS(68!) on Z,4U{o01, 002, 003, 004, 005, 006, 007, 008 }
having groups {4i + 7 : 0 < i < 5},0 < j < 3 and {00y, 002,003, 004, 005, g,
o7, 0og }. The list of base blocks is as follows and the automorphism group:

G =((0,2,4,...,22)(1,3,5,...,23)(c01, 005)(002, 00g ) (003, 007 ) (004, 008)).
0123 01600 017002 0110003 0111004
0l1l14o0s5 011500 0118007 0119008 02500;

02717 029005 0211003 0213005 0215004
0219007 022100 0223002 035004 03617

039003 031000y 0313007 0314008 0318 00g
0321007 056007 057 o006 0510005 051100
051423 051800, 0519003 061319 0615 co5
0621co4 0623008 079008 0710007 0714004
0721005 091114 0919006 0923004 01023006
01113005 01117007 01315003 0132300; 01517 003
01521002 0171900, 01723005 02123007

Then by Lemma 3.2, we geta CQS(64 : 8). 0

Lemma 3.7 A CQS(12* : s) existsforall s=0 (mod 2)and0<s<24. -

Proof: By Lemma 1.4, a CQS(124 : s) exists for all s = 0,2,4,6,8,10,12.
There also exists a CQS(124 : 24) by Corollary 3.3. There exists a7 RQ.S(124181)
([13]), then a CQS(124 : 18) exists by Lemma 3.2. Since there exist a CQS(6* :
8) anda CQS(6* : 10), apply Theorem 2.7 with the known input designs CQS(23 :
2) in Lemma 1.2 and TRQS(2*) in Lemma 2.1, we then get a CQS(124 : 16)
and a CQS(124 : 20). By the known CQS(2* : 4) in Lemma 3.4, apply Theorem
2.7 with the known input designs CQS(62 : 4) in Lemma 1.2 and TRQS(6*) in
Lemma 2.1, we then get a CQS(124 : 22).

By the known CQS(2% : 4) we geta4-FG(3,(3,3,3,3,4),8) (X, G, By, B,
Bs, By, Br) of type 24, where G = {G1,G2,G3,G4}. Let § = {00} x Zyy,
where S N (X x Zg) = @. We will construct a CQS(12* : 14) on point set
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X' = (X x Zg) U S with group set ' = {G}, G5, G5, G} and stem S, where
G, = G; x Zg (1 < i < 4). Block set F is stated blow.

If B € By, say B = {z9,z), z2}, construct a design with the following block
set:

gB = {{(xi,P), (-’L'i,P"l‘ 1)1 (xi-f-l,Q)v (zi+2,7')} ‘pq,TE ZG:
p+q+r=2 (mod6),i=0,1,2).

If B € By, say B = {x0, 1,2}, construct a design with the following block
set:

Dp = {{(xo,p)y (311Q)v (12’7‘)’000} 1P, q,T € Zg,p+ g+r=0
(mod 6)}J
{{(anp)7 (xlaQ): (-7"2,7')1 001} :pq,T € Zﬁ’p+ q +r=3 (mOd 6)} U
{{(ziyp)’ (zi:p + 2)1 ($i+1,P +3g+ 1)’ (Zi+2,P +3q + 1)} :p€ Zg,i €
Z3,9 =0, 1} U
{{(xirp)) (xi,P + 2)7 (xi+qyp + 3), (zi—mp + 5)} ‘pE Zsyi € Z31 q= 11 2}-

If B € B, say B = {zq, 1, Z2}, construct a TRQS(6%) with groups {z; x
Zg}, i € Z3 and {002, 003, 004, 005, 006, 007 }. Denote its block set by Cpg.

If B € By, say B = {xo,z1, z2}, construct a TRQS(6*) with groups {z; x
Zg},1 € Z3 and {o0g, 009, 0010, 0011, 0012, 0013} Denote its block set by Ap.

If B € Br, say B = {zo, 1, 72,73}, construct a TRQS(6%) with groups
{z: x Zg¢}, i € Z4. Denote its block set by Hp.

Let 7 = (Uges, €8) U(Uges, P8) U(Uges, C8) U(Upes, As)U
(Upes, HB)- Then (X', S,G', F) is a CQS(12* : 14). a

This section can be concluded as:

Theorem 3.8 There exists a CQS(g* : s) ifandonlyifg=0 (mod 2),s=0
(mod 2) and 0 < s < 2g.

4 The Existence of CQS(g°: s),g=0 (mod 6)

The necessary conditions for the existence of a CQS(g® : s) can be simplified
as:

g s

0 (mod6) |0 (mod2)ands<3g

3 (mod6) |1 (mod2)ands< 3g
2,4 (mod 6) 0

For g = 2,4 (mod 6) and s = 0, we know that the necessary conditions
are also sufficient by Lemma 1.6. In the following we discuss the case of g = 0
(mod 6),s=0 (mod2)and0 < s < 3g.



Lemma 4.1 Ifa CQS(g® : s) exists for all g = 6,12,18,36, s =0 (mod 2)
and 0 < s < 3g, then a CQS(g® : s) exists forall g = 0 (mod 6), s = 0
(mod 2) and 0 < s < 3g.

Proof: Letg=0 (mod 6)andg =6 x 2:37 [ pf*, wherei = 0,1, =0, 1,
k

Pk is a prime, and if px = 2 or 3, then ax > 2. Let g; = 6 x 237, g5 = [] pi*.
Then g; must be one of 6,12,18,36 and g» > 1. If g2 = 1, thena CQS(g? : ;)
exist by assumption, where s; =0 (mod 2) and 0 < s; < 3g;.

If go > 1, then by Lemma 2.6, a go-fan GDD(3, (5, ..., 5), 5g2) of type g3
exists. We will prove that a CQS(g® : s) exists, where s = 0 (mod 2) and
0<s<3g Lets =mx(3g1)+n where0 <m < 9,0 <n < 3qg
andn =0 (mod 2). Then a CQS(g} : n) exists by assumption, a TRQS(g5)
and a TRQS(g3(3g1)") exist by Lemmas 2.1 and 2.2. Then by Theorem 2.9,
let CQS(g% : n), m TRQS(g$(3¢1)")s and go — m TRQS(g)s be the input
designs and we get a CQS((g192)° : m(391) +n). Thatis,a CQS(g®° : s) exists.

g

By Lemma 4.1, we only need to prove that a CQS(g® : s) exists for all
g==6,12,18,36,s=0 (mod2)and0 <s < 3g.

For convenience, an (s + 1)-FG(3,(3,...,3,4,4), gn) of type g™ is shortly
denoted by CQS*(g™ : s), where CQS stands for candelabra quadruple system
and the star “x” stands for the fan in which all blocks have size 4.

Lemma 4.2 There exists a CQS*(3® : 5).

Proof: We construct a CQS*(3% : 5) on Z15 U {001, 002, 003, 004, 005 } having
groups {5i+j : 0 < i < 2},0 < j < 4,andastem § = {oo;, 002, 003, 004, 005 }.
The list of base blocks is as follows, developing them (+5 (mod 15)) gives all
the blocks. The underlined base blocks generate the set of a GDD(2, 4, 15) with
the same groups.
0123 04612 07913 081114 18912
01400 026001y 0312007 071400; 08900,
01113001 1213001 179001 1814001 2314001
017002 021300; 039002 041100, 06800,
01214002 1214005 148002 11213002 28900,
018003 0211003 0314003 047003 069003
01213003 129003 1312003 11314003 2413003
0112004 024004 036004 078004 0911 o004
01314004 128004 139004 147004 2913 004
0113005 029005 037005 048005 06 14 oog
01112005 134005 178005 11214005 2814005
0156 01914 02514 02710 02812
03413 03511 03810 0459 06711
12412 12711 13614 13713 13811
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1469 2349 2378 24714 34814

Lemma 4.3 There exists a TRQS(3%7!).

Proof: We constructa TRQS(357!) on Z15U{00;1, 002, 003, 004, 005, 005, 007}
having groups {5i+j : 0 < i < 2},0 £ j < 4, and {001, 002, 003, 004, 005, 00g,
oo7}. The list of base blocks is as follows, developing them (+5 (mod 15))
gives all the blocks.
0123 04612 07913 081114 18912
01400 017009 018003 019004 0112005
0113006 0114007 024002 026001 028005
029 o00g 0211oc0g4 0213007 0214003 034006
036 co7 037001 039005 0311002 0312003
0314004 047004 048007 0411005 0413003
067 o003 068004 069 ooy 0613005 0614 00g
078006 0711007 0714005 08900; 081200,
091loco3 0912007 0111200 0111300; 01213004
01214007 01314000 124007 128 004 12900
1213005 1214002 134003 137 00g 139007
1312002 1314005 147005 14 800 1412004
178007 179003 1713007 1814003 191300,
11213003 1121400 11314004 234005 23900,
2314001 2413004 289007 2814005 2913003

Lemma 4.4 A CQS(6° : s) exists foralls=0 (mod 2)and0 < s< 18

Proof: There exista TRQS(6°), a TRQS(6°) and a TRQS(6%18') by Lemmas
2.1 and 2.2, then by Lemma 3.2, we get a CQS(6° : 0), a CQS(6° : 6) and a
CQS(6° : 18).

It is well known that there exists a 1-F'G(3, (4,4), 16) (X, G, By, Br) of type
116 [1). For a given point z € X, let X' = X\{z},G' = {B\{z} :z € B,B ¢
B}, A, = {B\{z} : 2 € B,B € Br}, Ay = {B: B By,z ¢ B}, Ap =
{B: B € Br,z ¢ B}. Then (X',G’, A1, A2, Ar) is a 2-FG(3, (3,4, 4), 15)
of type 3%. Note that it can also be viewed as a 1-FG(3, (3,4), 15) of type 3°
(it is also a CQS(3° : 1)). Beginning with the 1-FG(3, (3,4), 15) of type 3%,
apply Theorem 2.7 with the known input designs CQS(23 : 2) in Lemma 1.2
and TRQS(2%) in Lemma 2.1. We then get a CQS(6° : 2). As well, beginning
with the 2-FG(3, (3,4,4),15) (X',G’, A1, Az, Ar) of type 3% apply Theorem
2.7: for every block in A construct a CQS (2% : 2) (which is shown in Lemma
1.4) and for every other block of the 2-F'G(3, (3,4, 4), 15) construct a TRQS(24)
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(which is shown in Lemma 2.1, note that a TRQ.S(2%) can also be viewed as a
TRQS(2%2')). We then get a CQS(6° : 4).

There exists a CQS*(3% : 5) by Lemma 4.2. Apply Theorem 2.7 with the
known input designs CQS(23 : 2) in Lemma 1.2 and TRQS(2%) in Lemma 2.1,
we then get a CQS(65 : 10). As well, if we apply Theorem 2.7 with the known
input designs CQS(2* : 2) in Lemma 1.4 and TRQS(24) in Lemma 2.1, we then
geta CQS(65 : 12).

There exists a TRQS(3°7!) by Lemma 4.3, we then get a 8-fan GDD(3, (3, 3,
3,3,3,3,3,4),15) of type 3% by deleting 00y, 002, 003, 004, 005, 00g, 007. Ap-
ply Theorem 2.9. Arbitrarily choose a GDD(2,3,15) of type 3° from the 8-
fan GDD(3, (3,3, 3,3,3,3,3,4), 15) of type 3%, and then for every block of this
GDD(2,3,15), construct a CQS(2% : 2) (which is shown in Lemma 1.2) and
for every other block of the 8-fan GDD(3, (3,3, 3,3, 3,3, 3,4), 15), construct a
TRQS(2%) (which is shown in Lemma 2.1, note that a TRQS(24) can also be
viewed as a TRQS(2321)). We then get a CQS(6° : 14). As well, apply Theo-
rem 2.9. For every block of the GDD(2, 4, 15) in the 8-fan GDD(3, (3, 3, 3, 3, 3,
3,3, 4), 15), construct a CQS(2* : 2) (which is shown in Lemma 1.4) and for ev-
ery other block of the 8-fan GDD(3, (3,3, 3,3,3, 3, 3,4), 15), constructa TRQS
(24) (which is shown in Lemma 2.1). We then get a CQS(6° : 16).

We now construct a CQS(6° : 8) on Z3p U {001, 002, 003, 004, 005, 00g, 007,
oog} having groups {5i + j : 0 < i < 5},0 < j < 4,andastem S =
{001, 002, 003, 004, 005, 006, 007, 008 }. The list of base blocks is as follows, de-
veloping them (+1 (mod 30)) gives all the blocks.

01300; 0412007 0617001 0716003 01700,

0211002 0316002 0422002 018003 0213003
039003 0416003 019004 026004 0317004
0718004 0113005 022lcos 037005 0614005
0114006 02800 0321ocog 041100 0122007
0214 007 0326007 0619007 0124003 0218008
0322008 042100 0125 01610 011125

011220 011526 011619 011727 011821

012328 0249 021017 021223 021519

021624 022027 022226 03611 031018

031924 041318 041423 051218 051322

061221 061320

Lemma 4.5 There exists a CQS(3° : 3).

Proof: We construct 2 CQS(3% : 3) on Zj5 U {001,002, 003} having groups

{5i+7:0<i<2},0<j <4 andastemS = {oo1,002,003}. The list of

base blocks is as follows, developing them (+5 (mod 15)) gives all the blocks.
0123 0145 0169 01710 01811
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011200
02611
0358
0467
051113
0711003
01112 cop
134001
14614
1713003
2314 co3

0113002
02813
03600
04814
0613003
071314
124003
1368
1479
1714 009
24912

0114003
029003
03700
04910
06 14 ooz
089 c0p
1267
13712
14813
18912
2413 00y

Lemma 4.6 There exists a CQS(35 : 7).

02400,
0214 001
03911

0411007
07800
0812003
128001
139003
1412009
1121314
2814 002

0257

034003
031214
041213
07912
0913001
12913
1314 0o,
178002
2378

3489

Proof: We construct a CQS(3° : 7) on Z;5 U {001, 002, 003, 004, 005, 006, 007 }
having groups {5i + j : 0 <4 < 2},0 < j < 4,andastem S = {001, 002, 003,
004, 005, 006, 007}. The list of base blocks is as follows, developing them (+5

(mod 15)) gives all the blocks.

012001
01213 o0
013002
013 14 oo
017003
0913 ooz
018004
01112004
019005
012 14 o0
0112 o0
089006
0113007
0814 co7
01414
03513
1246
14911

03400
1713 00y
026009
129002
024003
1214 003
0213 004
1312 004
028005
137005
0214 o0
123 o00g
023007
128 co7
0156

0378

12711

23812

068o00;
1814 00y
047002
1413 ocog
0312003
134003
039004
147004
0311 ocs
1412005
036 00g
148005
0412 c07
1314007
02511

031014
121213
2479

079001
191200
0812002
178002
0614 o003
1812003
046004
1913004
0413 ocs
0411006
1714 o0g
069007
179007
02710

04910

13613

28914

0111400
2913001
0911 ooy
248002
0811 ocog
239003
0714 ooy
234 004
067005
2314005
0713006
2413005
0711007
213 14 oo7
02912
061113
1389
34814
0

Note that by the proof of Lemma 4.4, beginning with the known 1-FG(3, (4,
4),16) of type 1'® [1] we get a 2-FG(3, (3,4,4), 15) of type 3°. It can also be
viewed as a 1-FG(3, (3,4), 15) of type 35, we then geta CQS(3° : 1). And by
Lemmas 4.5, 4.2 and 4.6, we get that a CQS(3® : s) exists forall s = 1, 3,5, 7.
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Lemma 4.7 A CQS(12° : s) exists forall s =0 (mod 2) and 0 < s < 36.

Proof: Firstly, a CQS(125 : 36) exists by Corollary 3.3.

It is well known that there exists a S(3, 5, 17) (X, B) [4]. For two given points
z,y € X,let X' = X\{z,y}, 6 = {B\{z,y} : z,y € BB € B}, A =
{B\{z} :z€ B,BeB}, A, ={B\{y}:ye B,BeB},Ar={B:Be¢
B,z ¢ Bandy ¢ B}. Then (X',G, A1, A2, Ar) is a 2-FG(3, (4,4, 5), 15)
of type 3. Apply Theorem 2.7 with the known input designs CQS(4* : s') in
Lemma 3.5, TRQS(4%) and TRQS(4%) in Lemma 2.1, where s’ = 0,2,4,6,8.
We then get a CQS(12% : s), where s = 0,2,4,6,8. And if we apply Theorem
2.7 with the known input designs CQS(4* : ') in Lemma 3.5, TRQS(448!) in
Lemma 2.2 and TRQS(4%) in Lemma 2.1, where s’ = 0, 2,4, 6,8, we then get a
CQS(12° : s), where s = 8, 10,12, 14, 16.

There exists a 4-fan GDD(3, (5,5, 5, 5), 20) of type 4° by Lemma 2.6. Ap-
ply Theorem 2.9 with the known input designs CQS(35 : t) and TRQS(35x1),
where t = 1,3,5,7 and u = 3,7,9 (by Lemmas 2.1, 4.3 and 2.2 respectively).
We then geta CQS(12% : s) foralls =0 (mod 2)and 10 < s < 34. 1]

Lemma 4.8 A CQS(18° : s) existsforall s=0 (mod 2) and 0 < s < 54.

Proof: There exists a 2-FG(3,(4,4,5),15) of type 3° by Lemma 4.7. Ap-
ply Theorem 2.7 with the known input designs CQS(6* : s') in Lemma 3.6,
TRQS(64) and TRQS(6°%) in Lemma 2.1, where s’ = 0,2,4,6,8,10,12. We
then geta CQS(18° : s), where s = 0,2, 4, 6,8, 10, 12. And if we apply Theorem
2.7 with the known input designs CQS(6* : s') in Lemma 3.6, TRQS(6412!)
in Lemma 2.2 and TRQS(6%) in Lemma 2.1, where s’ = 0,2, 4, 6,8, 10,12, we
then get a CQS(185 : s), where s = 12,14, 16, 18, 20, 24.

There exists a CQS*(3% : 5) by Lemma 4.2. Apply Theorem 2.7 with the
known input designs CQS(6% : &) in Lemma 1.2, TRQS(6*) in Lemma 2.1,
where ' = 0,2,4,6. We then get a CQS(18° : s), where s = 24, 26, 28, 30.
And if we apply Theorem 2.7 with the known input designs CQS(6* : §') in
Lemma 3.6, TRQS(6%) in Lemma 2.1, where s’ = 0,2, 4, 6,8, 10,12, we then
geta CQS(18° : s), where s = 30,32,...,42.

There exists a 8-fan GDD(3, (3,3, 3,3, 3, 3,3,4), 15) of type 35 by Lemma
4.3. Apply Theorem 2.9 with the known input designs CQS(6* : s') in Lemma
3.6, TRQS(6%) in Lemma 2.1, where s’ = 0,2,4,6,8,10,12. We then get a
CQS(185 : s), where s = 42,44,...,54. o

Lemma 4.9 A CQS(36° : s) exists foralls=0 (mod 2)and0 < s < 108.
Proof: There exists a 2-FG(3, (4,4, 5),15) of type 3° by Lemma 4.7. Ap-

ply Theorem 2.7 with the known input designs CQS(12* : s’) in Lemma 3.7,
TRQS(12%) and TRQS(12°) in Lemma 2.1, where s’ = 0,2,...,24. We then

349



get a CQS(36% : s), where s = 0,2,...,24. And if we apply Theorem 2.7
with the known input designs CQS(12% : §') in Lemma 3.7, TRQS(12%24) in
Lemma 2.2 and TRQS(12%) in Lemma 2.1, where s’ = 0,2, ..., 24, we then get
aCQS(36° : s), where s = 24,26, ...,48.

There exists a CQS*(3% : 5) by Lemma 4.2. Apply Theorem 2.7 with the
known input designs CQS(122 : s’) in Lemma 1.2, TRQS(12*) in Lemma 2.1,
where s’ = 0,2,...,12. We then get a CQ.S(36° : s), where s = 48,50, .. ., 60.
And if we apply Theorem 2.7 with the known input designs CQS(12% : §) in
Lemma 3.7, TRQS(12%) in Lemma 2.1, where s’ = 0,2,...,24, we then get a
CQS(36° : s), where s = 60,62,...,84.

There exists a 8-fan GDD(3, (3,3, 3, 3,3, 3, 3,4), 15) of type 3° by Lemma
4.3. Apply Theorem 2.9 with the known input designs CQS(12¢4 : s') in Lemma
3.7, TRQS(12*%) inLemma 2.1, where s' = 0,2,...,24. We then geta CQS(36° :
s), where s = 84,88,...,108. 0

This section can be concluded as:

Theorem 4.10 A CQS(g° : s) exists forallg =0 (mod 6), s=0 (mod 2)
and0 < s < 3g.

5 CQS(g":s)withg=0 (mod6)ands<g

Theorem 5.1 Foranyn € {n > 3 :n # 2,6 (mod 12) and n # 8}, there
existsa CQS(g" : s) forallg=0 (mod6),s=0 (mod2)and0<s<g.

Proof: Forn = 3,4,5, it is known that such a CQS(g" : s) exists by the above
discussion.

Ji [11] has proved that there exists a S(3,{4,5,6},v) foranyv € {v > 0 :
v=0,1,2 (mod 4) and v # 9,13}. Then there exists a 1-FG(3, ({3, 4, 5},
{4,5,6}),n) of type 1" foranyn € {n > 3:n =0,1,3 (mod 4) and n #
8,12}. Apply Theorem 2.7 with the known input designs CQS(g® : s), CQS(¢* :
8), CQS(g® : s) and TRQS(g9*), TRQS(g°), TRQS(¢®) in Lemma 2.1, where
g=0 (mod6),s=0 (mod2)and0 < s < g.ThenwegetaCQS(g":s)
foranyn € {n 2 3:n=0,1,3 (mod 4) and n # 8,12}, where g = 0
(mod 6),s=0 (mod2)and0<s<g.

Forn = 12, sinceg = 0 (mod6), s =0 (mod2)and0 < s <
g, by Lemma 1.2 we know that there exists a CQS((49)® : s)(X,S,G, A),
where G = {G1,G2,Gs}. Foreach G;, 1 < ¢ < 3, split it into four groups
Gi1,Giz2, Gi3, Gig With |G| = |Gia| = |Gis| = |Gia|, then we can construct a
CQS(g* : 8)(G: U S, S, {Gi1, Giz, Gis, Gia}, B;), it exists by Theorem 3.8, Let
g’ = {Gi],Giz,Gis, Giuy:1<1< 3}, T=AU (U?lei), then (X, S, g,,T)
isaCQS(g*?:s),whereg=0 (mod6),s=0 (mod2)and0<s<g.

Forn =10 (mod 12),letn = 12k+ 10. Hanani [8] proved that there exists
an S(3,{4,6},v) forallv =0 (mod 2). Then we can geta 1-FG(3, ({3, 5},
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{4,6}), 4k + 3) of type 1%**3, Apply Theorem 2.7 with the known input designs
CQS((39)* : g+ s), ¢ € {3,5}, and TRQS((39)*), TRQS((Sg)G), we get a
CQS((39)** : g + 5)(X, 5,6, A), where G = {G1,Gy,--,Gary3}. For
each G;, 1 < i < 4k + 3, split it into three groups G,I,G,Q,G,s with |G| =
|Gi2| = |Gi3|- Let Go C Sand |Go| = g, let S = S’\G’o, then |S'| = s. Now we
constructa CQS(g* : 3)(Ga UGipUG3UGoUS', S, {Gi, Gig, Gis, Go}, B:),
1<i<4k+3. Letg —{G,l, Gi2,Gi3,Go ¢ 1<1<4k+3}T AU
(U“f"‘sB,) then (X,S,G',T) isa CQS(g*%*+1% ; 5), whereg =0 (mod 6),
s=0 (mod2)and0<s<g. 0
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