On Candelabra Quadruple Systems

Shaopu Zhang*
Department of Mathematics and Physics,
Shijiazhuang Tiedao University,
Shijiazhuang 050043, China
shaopuzhang@hotmail.com

Abstract

Candelabra quadruple systems, which are usually denoted by $CQS(g^n:s)$, can be used in recursive constructions to build Steiner quadruple systems. In this paper, we introduce some necessary conditions for the existence of a $CQS(g^n:s)$ and settle the existence when n=4, 5 and g is even. Finally, we get that for any $n \in \{n \geq 3 : n \not\equiv 2, 6 \pmod{12} \text{ and } n \not= 8\}$, there exists a $CQS(g^n:s)$ for all $g \equiv 0 \pmod{6}$, $s \equiv 0 \pmod{2}$ and $0 \leq s \leq g$.

Keywords: Candelabra system, Transverse quadruple system, s-fan design.

1 Introduction

Let v be a non-negative integer, let t be a positive integer and K be a set of positive integers. A candelabra t-system (or t-CS) of order v, and block sizes from K denoted by CS(t, K, v) is a quadruple $(X, S, \mathcal{G}, \mathcal{A})$ that satisfies the following properties:

- 1. X is a set of v elements (called *points*);
- 2. S is a subset (called the *stem* of the candelabra) of X of size s;
- 3. $\mathcal{G} = (G_1, G_2, ...)$ is a set of non-empty subsets (called groups or branches) of $X \setminus S$, which partition $X \setminus S$;
- 4. A is family of subsets (called *blocks*) of X, each of cardinality from K;

^{*}Research supported by the NSFC Grant 10771051 and 11001182.

5. every t-subset T of X with $|T \cap (S \cup G_i)| < t$ for all i is contained in a unique block and no t-subset of $S \cup G_i$ for all i is contained in any block.

By the group type (or type) of a t- $CS(X, S, \mathcal{G}, \mathcal{A})$ we mean the list $(|G||G \in \mathcal{G}: |S|)$ of group sizes and stem size. The stem size is separated from the group sizes by a colon. If a t-CS has n_i groups of size g_i , $1 \le i \le r$ and stem size s, then we use the notation $(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r}:s)$ to denote group type. A candelabra system is called *uniform* if all groups have the same size. A CS(3, K, v) of type T is denoted by K-CS(T). When $K = \{k\}$, we simply write k for K. A candelabra system with t = 3 and $K = \{4\}$ is called a candelabra quadruple system and denoted by $CQS(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r}:s)$.

Example 1.1 It is known that for any prime power q, there is an $S(3, q+1, q^2+1)$ which contains q blocks intersecting in a fixed point and pairwise disjoint elsewhere [4]. This is indeed a $\{q+1\}$ - $CS(q^q:1)$ if we remove the blocks intersecting in the fixed point. In particular for q=3, there exists a $CQS(3^3:1)$.

Candelabra systems were first introduced by Hanani (see Definition 2 of [7]) who used quite different terminology, in Hanani's notation, a $CQS(g^n:s)$ would be denoted by $P_q[4,1,ng+s]$.

A candelabra system CS(t,K,v) of type $(1^v:0)$ $(X,S,\mathcal{G},\mathcal{A})$ is usually called a *t-wise balanced design* and briefly denoted by S(t,K,v). As well, the stem and the group set are often omitted and we write a pair (X,\mathcal{A}) instead of a quadruple $(X,S,\mathcal{G},\mathcal{A})$. An S(3,4,v) is called a *Steiner quadruple system* and denoted by SQS(v). It is well known that an SQS(v) exists if and only if $v\equiv 2,4\pmod{6}$ [6].

In this paper, we concentrate on uniform candelabra quadruple systems. The known results of $CQS(g^n:s)$ are concluded as below:

In [15], Lenz stated an infinite class of CQS with three groups, with which he gave a new proof of the existence of a Steiner quadruple system.

Lemma 1.2 (Lenz [15]). A $CQS(g^3:s)$ exists for all even s and all $g \equiv 0, s \pmod{6}$ with $s \leq g$.

Lemma 1.3 (Phelps [18]). A $CQS(g^3:1)$ exists for all $g \equiv 1,3 \pmod{6}$.

Granville and Hartman [3] got an infinite class of CQS with four groups.

Lemma 1.4 (Granville and Hartman [3]). A $CQS(g^4:s)$ exists for all even g and s with $s \leq g$.

Mills [16] also investigated the special case of candelabra systems with s=0, calling them *G-designs*.

Lemma 1.5 (Mills [16]). There exists a $CQS(6^n : 0)$ for all $n \ge 0$.

Recently, Zhuralev et al. [20] investigated the other cases of uniform G-designs (called group divisible Steiner quadruple systems as in [20]) and gave the following result:

Lemma 1.6 (Zhuralev, Keranen and Kreher [20]). There exists a $CQS(g^n : 0)$ if and only if g = 1 and $n \equiv 2, 4 \pmod{6}$, or g is even and $g(n-1)(n-2) \equiv 0 \pmod{3}$.

We begin in Section 2 with background material and some necessary conditions for the existence of a $CQS(g^n:s)$. In Sections 3 and 4 we investigate CQS with four and five groups respectively. Finally in Section 5, we get that for any $n \in \{n \geq 3 : n \not\equiv 2, 6 \pmod{12} \text{ and } n \neq 8\}$, there exists a $CQS(g^n:s)$ for all $g \equiv 0 \pmod{6}$, $s \equiv 0 \pmod{2}$ and $0 \leq s \leq g$.

2 Preliminaries and Background Material

Let v be a non-negative integer, let t be a positive integer and K be a set of positive integers. A group divisible t-design (or t-GDD) of order v and block sizes from K denoted by GDD(t, K, v) is a triple $(X, \mathcal{G}, \mathcal{B})$ such that

- 1. X is a set of v elements (called *points*);
- 2. $G = \{G_1, G_2, \ldots\}$ is a set of non-empty subsets (called *groups*) of X which partition X;
- 3. \mathcal{B} is a family of subsets of X (called *blocks*) each of cardinality from K such that each block intersects any given group in at most one point;
- 4. each t-set of points from t distinct groups is contained in exactly one block.

The type of the GDD is defined to be the list $(|G||G \in \mathcal{G})$.

A GDD(3,4,v) of type $(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r})$ is usually called a transverse quadruple system and denoted by $TRQS(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r})$. Mills [17] determined the existence of a $TRQS(g^n)$ (It is also called an H design as in [17]) except for n=5. Recently, Ji [10] improved these results for n=5. The existence of a $TRQS(g^n)$ can be stated as:

Lemma 2.1 (Mills [17], Ji [10]). For n > 3 and $n \ne 5$, an H(n, g, 4, 3) exists if and only if ng is even and g(n-1)(n-2) is divisible by 3. For n = 5, an H(5, g, 4, 3) exists if g is even, $g \ne 2$ and $g \not\equiv 10, 26 \pmod{48}$.

More results on TRQS can be found in [13] and [14].

Lemma 2.2 (Lauinger, Kreher, Rees and Stinson [14]). There exists a $TRQS(g^n((n-2)g)^1)$ if and only if $n(n-1)g^2 \equiv 0 \pmod 6$, $(n-1)g \equiv 0 \pmod 2$, and $(g,n) \neq (1,7)$.

Lemma 2.3 (Hanani [4]). There exists a $GDD(3, q+1, q^2+q)$ of type q^{q+1} for prime power q.

Lemma 2.4 (Hanani [4]). If $q = 2^r$, r a non-negative integer. Then there exists a $GDD(3, q + 2, q^2 + 2q)$ of type q^{q+2} .

Lemma 2.5 (Ji and Yin [12]). There exists a GDD(3, 5, 5g) of type g^5 for any integer $g \ge 4$, $g \not\equiv 2 \pmod{4}$, and a GDD(3, 6, 6g) of type g^6 for any positive integer g satisfying $gcd(g, 4) \ne 2$ and $gcd(g, 18) \ne 3$.

A candelabra 3-system is equivalent to the s-fan design defined by Hartman [9]. A (s+3)-tuple $(X,\mathcal{G},\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_s,\mathcal{B}_T)$ is an s-fan design if $\mathcal{G}=\{G_1,G_2,\ldots\}$ is a set of non-empty subsets of X which partition $X,(X,\mathcal{G}\cup\mathcal{B}_i)$ is a 2-wise balanced design (which is usually called a PBD), for all $i=1,2,\ldots,s$ and $(X,\mathcal{G}\cup\bigcup_{i=1}^s\mathcal{B}_i\cup\mathcal{B}_T)$ is a 3-wise balanced design.

Now let $(X, \bar{S}, \mathcal{G}, \mathcal{A})$ be a CS(3, K, v) of type $(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r}:s)$ with s>0 and let $S=\{\infty_1,\ldots,\infty_s\}$. For $1\leq i\leq s$, let $\mathcal{A}_i=\{A\setminus\{\infty_i\}:A\in\mathcal{A},\infty_i\in A\}$ and $\mathcal{A}_T=\{A\in\mathcal{A}:A\cap S=\emptyset\}$. Then $(X,\mathcal{G},\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_s,\mathcal{A}_T)$ is an s-fan design. If block sizes of \mathcal{A}_i and \mathcal{A}_T are from $K_i(1\leq i\leq s)$ and K_T , respectively, then the s-fan design is denoted by s- $FG(3,(K_1,K_2,\ldots,K_s,K_T),\sum_{i=1}^r n_i g_i)$ of type $g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r}$. On the contrary, if we add ∞_i to every block of \mathcal{A}_i for all $1\leq i\leq s$, then we get a CS(3,K,v) of type $(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r}:s)$.

A GDD(3, K, v) of type $(g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r})$ is called s-fan if its block set $\mathcal B$ can be partitioned into disjoint subsets $\mathcal B_1,\ldots,\mathcal B_s$ and $\mathcal B_T$ such that for each $i,\ 1\leq i\leq s,\ \mathcal B_i$ is the block set of a $GDD(2,K_i,v)$ of the same type. If block sizes of $\mathcal B_T$ are all from K_T , then it is denoted by s-fan $GDD(3,(K_1,K_2,\ldots,K_s,K_T),v)$ of type $g_1^{n_1}g_2^{n_2}\cdots g_r^{n_r}$.

With the known results of GDD(3, K, v) we can get the following lemma:

Lemma 2.6 Let $g = 2^i 3^j \prod_k p_k^{a_k}$, where $p_k \ge 5$ is a prime and a_k is a nonnegative integer. If $i \ge 2$ and $j \ge 2$, then there exist a GDD(3, 5, 5g) of type g^5 and a GDD(3, 6, 6g) of type g^6 . And then there exists a g-fan GDD(3, (4, ..., 4), 4g) of type g^4 and a g-fan GDD(3, (5, ..., 5), 5g) of type g^5 .

Now we introduce two constructions for CQS which will be used frequently in this paper. The following one is a special case of Hartman's fundamental construction [9].

Theorem 2.7 Suppose there is an e-FG(3, (K_1, \ldots, K_e, K_T) , gn) of type g^n with $e \ge 1$. Suppose there exists a $CQS(m^{k_1}: s_1)$ for any $k_1 \in K_1$, a $TRQS(m^{k_i}s_i^1)$ for any $k_i \in K_i$ ($2 \le i \le e$), and a $TRQS(m^k)$ for any $k \in K_T$. Then there exists a $CQS((mg)^n: \sum_{1 \le i \le e} s_i)$.

Lemma 2.8 (Stern and Lenz [19]). Let G be a graph with vertex set Z_{2k} and let L be a set of integers in the range $1,2,\ldots,k$, such that $\{a,b\}$ is an edge of G if and only if $|b-a| \in L$, where |b-a| = b-a if $0 \le b-a \le k$ and |b-a| = a-b if k < b-a < 2k. Then G has a one-factorization if and only if $2k/\gcd(j,2k)$ is even for some $j \in L$.

Theorem 2.9 Suppose there is an e-fan $GDD(3, (K_1, ..., K_e, K_T), gn)$ of type g^n with $e \ge 1$ and g > 1. Suppose there exists a $CQS(m^{k_1} : s_1)$ for any $k_1 \in K_1$, a $TRQS(m^{k_i}s_i^1)$ for any $k_i \in K_i$ $(2 \le i \le e)$, and a $TRQS(m^k)$ for any $k \in K_T$. If gm is even, then there exists a $CQS((mg)^n : \sum_{1 \le i \le e} s_i)$.

Proof: Suppose $(X, \mathcal{G}, \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_e, \mathcal{A}_T)$ is the given e-fan GDD, where $\mathcal{G} = \{G_1, \dots, G_n\}$. Let $s = \sum_{1 \leq i \leq e} s_i$ and $S = \{\infty\} \times Z_s$, where $S \cap (X \times Z_m) = \emptyset$. We will construct a $CQS((mg)^n : \sum_{1 \leq i \leq e} s_i)$ on point set $X' = (X \times Z_m) \cup S$ with group set $\mathcal{G}' = \{G'_1, \dots, G'_n\}$ and stem S, where $G'_i = G_i \times Z_m$ $(1 \leq i \leq n)$. Block set \mathcal{F} is stated blow.

For the simplicity of description, we let $G_x = \{x\} \times Z_m \ (x \in X), S = S_1 \cup S_2 \cup \cdots \cup S_e$, where $S_1 = \{\infty\} \times Z_{s_1}, S_j = \{(\infty, \sum_{i=1}^{j-1} s_i), (\infty, \sum_{i=1}^{j-1} s_i + 1), \ldots, (\infty, \sum_{i=1}^{j} s_i - 1)\} \ (2 \le j \le e)$.

For every block $A \in \mathcal{A}_1$, we construct a $CQS(m^{|A|}:s_1)$ on point set $(A \times Z_m) \cup S_1$ with groups $\{G_x : x \in A\}$ and stem S_1 . Such a design exists by assumption. We denote its block set by \mathcal{D}_A .

For every block $A \in \mathcal{A}_j$ $(2 \leq j \leq e)$, construct a $TRQS(m^{|A|}s_j^1)$ on point set $(A \times Z_m) \cup S_j$ with group set $\Gamma_A = \{G_x : x \in A\} \cup \{S_j\}$. Such a design exists by assumption and we denote its block set by \mathcal{C}_A^j .

For every block $A \in \mathcal{A}_T$, construct a $TRQS(m^k)$ on point set $A \times Z_m$ with group set $\Gamma_A = \{G_x : x \in A\}$. Such a design exists by assumption and we denote its block set by \mathcal{B}_A .

For any $1 \leq i \leq n$, consider the complete g-partite graph $K_{m,m,...,m}$ on point set G_i' and we denote this graph by $\Gamma_{G_i'}$, which contains all the edges $\{(x,j),(y,k)\}, x \neq y$. Such a graph can also be considered as a graph on point set Z_{gm} which consists of edges $\{a,b\}$, where $|a-b| \in L = \{1,2,\ldots,gm/2\} \setminus \{g,2g,\ldots,g\lfloor m/2\rfloor\}$ (note that gm is even). Since g>1, there exists such a $1 \in L$ that gm/gcd(gm,1) is even. So by Lemma 2.8, $\Gamma_{G_i'}$ has a one-factorization $\{F_i^1,\ldots,F_i^{m(g-1)}\}$. For any $\{c,d\} \in F_i^k$ and any $\{c',d'\} \in F_j^k$, construct a block $\{c,d,c',d'\}$, where $1 \leq k \leq m(g-1), 1 \leq i < j \leq n$. Let $\mathcal{E} = \{\{c,d,c',d'\}:\{c,d\} \in F_i^k,\{c',d'\} \in F_j^k,1 \leq k \leq m(g-1),1 \leq i < j \leq n\}$.

Let
$$\mathcal{F} = (\bigcup_{A \in \mathcal{A}_1} \mathcal{D}_A) \bigcup (\bigcup_{2 \le j \le e} \bigcup_{A \in \mathcal{A}_j} \mathcal{C}_A^j) \bigcup (\bigcup_{A \in \mathcal{A}_T} \mathcal{B}_A) \bigcup \mathcal{E}$$
.
Then $(X', S, \mathcal{G}', \mathcal{F})$ is a $CQS((mg)^n : \sum_{1 \le i \le e} s_i)$.

In the following of this section, we consider the necessary conditions for a CQS to exist. First we state two important results of GDD(2,3,v). The neces-

sary and sufficient conditions for the existence of a GDD(2, 3, v) of type g^n were proved by Hanani in 1975.

Theorem 2.10 (Hanani [5]). Let g and n be positive integers. There exists a GDD(2,3,v) of type g^n if and only if $n \ge 3$ and the conditions in the following table are satisfied.

	g	n
1,5	(mod 6)	1,3 (mod 6)
2, 4	(mod 6)	$0,1 \pmod{3}$
3	(mod 6)	1 (mod 2)
0	(mod 6)	No constraint

The necessary and sufficient conditions for the existence of a GDD(2,3,v) of type $g^n s^1$ were established by Colbourn, Hoffman, and Rees in 1992.

Theorem 2.11 (Colbourn, Hoffman and Rees [2]). Let g, n and s be nonnegative integers. There exists a GDD(2,3,v) of type g^ns^1 if and only if the following conditions are satisfied:

- 1. if g > 0, then $n \ge 3$, or n = 2 and s = g, or n = 1 and s = 0, or n = 0;
- 2. $s \ge g(n-1)$ or gn = 0;
- 3. $g(n-1) + s \equiv 0 \pmod{2}$ or gn = 0;
- 4. $gn \equiv 0 \pmod{2}$ or s = 0;
- 5. $\frac{1}{2}g^2n(n-1) + gns \equiv 0 \pmod{3}$.

The following theorem establishes the necessary conditions for a $CQS(g^n:s)$ to exist. Note that a $CQS(g^1:s)$ exists if we let its block set be \emptyset and a $CQS(g^2:s)$ exists if and only if g is even and s=0. The construction of a $CQS(g^2:0)$, $g\equiv 0\pmod 2$, can be found in [6], which is actually the standard doubling construction for Steiner quadruple systems.

Theorem 2.12 (necessary conditions). Suppose $n \ge 3$ and g > 0. If a $CQS(g^n : s)$ exists, then the following hold:

- $I. (n-1)g \equiv 0 \pmod{2};$
- 2. $ng + s \equiv 0 \pmod{2}$;
- 3. If $g \equiv 0 \pmod{2}$, then $s \leq (n-2)g$, and if $g \equiv 1 \pmod{2}$, then s < (n-2)g:
- 4. $(n-1)g[(n+1)g+2s] \equiv 0 \pmod{3}$;

5.
$$\frac{n(n-1)g^2}{6}[(n+1)g+3(s-1)] \equiv 0 \pmod{4}$$
;

6. If s > 0, then g and n satisfy the following conditions:

g	n
1,5 (mod 6)	
$2,4 \pmod{6}$	$0,1\pmod{3}$
3 (mod 6)	1 (mod 2)
0 (mod 6)_	No constraint

Proof: Suppose a $CQS(g^n:s)$ $(X,S,\mathcal{G},\mathcal{B})$ exists, where $n\geq 3$ and g>0. Let $x,y\in X$ and suppose $x,y\in G\cup S$, where $G\in \mathcal{G}$. Consider the blocks which contains $\{x,y\}$, then we have $(n-1)g\equiv 0\pmod 2$. Suppose $x\in G_1$ and $y\in G_2$, where $G_1,G_2\in \mathcal{G}$ and $G_1\neq G_2$. Consider the blocks which contain $\{x,y\}$, then we have $2(g-1)+(n-2)g+s\equiv 0\pmod 2$, that is, $ng+s\equiv 0\pmod 2$.

Suppose $x \in G$, where $G \in \mathcal{G}$. Consider the set $\{B \setminus \{x\} : x \in B, B \in \mathcal{B}\}$. It is the block set of a GDD(2,3,v) of type $1^{g(n-1)}(g+s-1)^1$. Suppose $x \in S$ (that is, suppose s > 0). Consider the set $\{B \setminus \{x\} : x \in B, B \in \mathcal{B}\}$. It is the block set of a GDD(2,3,v) of type g^n . By Theorems 2.11 and 2.10, we get the necessary conditions of 3,4 and 6.

At last, the number of all the admissible 3-subsets of X must be divisible by 4, so we have $\binom{n}{3}g^3+s\binom{n}{2}g^2+\binom{n}{1}\binom{g}{2}(n-1)g\equiv 0\pmod 4$, that is, $\frac{n(n-1)g^2}{6}[(n+1)g+3(s-1)]\equiv 0\pmod 4$. The necessary conditions are concluded as above. Note that if a $CQS(g^n:s)$

The necessary conditions are concluded as above. Note that if a $CQS(g^n:s)$ exists with $g \equiv 1 \pmod{2}$ and s = (n-2)g, then a $CQS(g^2:0)$ exists. It is a contradiction. So if $g \equiv 1 \pmod{2}$, then s < (n-2)g.

For n = 3, the necessary conditions can be simplified as:

g		S		
0	(mod 6)	0.	$\pmod{2}$ and $s \le g$ $\pmod{12}$ and $s < g$	
1	(mod 6)	1	$\pmod{12}$ and $s < g$	
2	(mod 6)	2	$\pmod{6} \text{ and } s \leq g$	
3	(mod 6)	1	$\pmod{4}$ and $s < g$	
4	(mod 6)	4	(
5	(mod 6)	5	$\pmod{12}$ and $s < g$	

By Lemma 1.2, we have that for the case of n=3 and $g\equiv 0\pmod 2$, the necessary conditions are also sufficient. For n=4,5 and $g\equiv 0\pmod 2$, we will prove that the necessary conditions are also sufficient.

3 The Existence Spectrum for $CQS(q^4:s)$

The necessary conditions for the existence of a $CQS(g^4:s)$ can be simplified as: $g \equiv 0 \pmod{2}$, $s \equiv 0 \pmod{2}$ and $0 \le s \le 2g$. In this section, we will prove that the necessary conditions are also sufficient for $CQS(g^4:s)$.

Lemma 3.1 If a $CQS(g^4:s)$ exists for all g=2,4,6,12, $s\equiv 0\pmod 2$ and $0\leq s\leq 2g$, then a $CQS(g^4:s)$ exists for all $g\equiv 0\pmod 2$, $s\equiv 0\pmod 2$ and $0\leq s\leq 2g$.

Proof: Let $g \equiv 0 \pmod{2}$ and $g = 2 \times 2^i 3^j \prod_k p_k^{a_k}$, where i = 0, 1, j = 0, 1, p_k is a prime, and if $p_k = 2$ or 3, then $a_k \geq 2$. Let $g_1 = 2 \times 2^i 3^j$, $g_2 = \prod_k p_k^{a_k}$. Then g_1 must be one of 2, 4, 6, 12 and $g_2 \geq 1$. If $g_2 = 1$, then a $CQS(g_1^4 : s_1)$ exists by assumption, where $s_1 \equiv 0 \pmod{2}$ and $0 \leq s_1 \leq 2g_1$.

If $g_2>1$, then by Lemma 2.6, a g_2 -fan $GDD(3,(4,\ldots,4),4g_2)$ of type g_2^4 exists. We will prove that a $CQS(g^4:s)$ exists, where $s\equiv 0\pmod 2$ and $0\le s\le 2g$. Let $s=m\times (2g_1)+n$, where $0\le m\le g_2,\ 0\le n\le 2g_1$ and $n\equiv 0\pmod 2$. Then a $CQS(g_1^4:n)$ exists by assumption, a $TRQS(g_1^4)$ and a $TRQS(g_1^4(2g_1)^1)$ exist by Lemmas 2.1 and 2.2. Then by Theorem 2.9, let $CQS(g_1^4:n),\ m\ TRQS(g_1^4(2g_1)^1)$ s and $g_2-m\ TRQS(g_1^4)$ s be the input designs and we get a $CQS((g_1g_2)^4:m(2g_1)+n)$. That is, a $CQS(g_1^4:s)$ exists.

By Lemma 3.1, we only need to prove that a $CQS(g^4:s)$ exists for all $g=2,4,6,12,s\equiv 0\pmod 2$ and $0\leq s\leq 2g$.

Lemma 3.2 If there exists a $TRQS(g^ns^1)$, where $g \equiv 0 \pmod{2}$, then there exists a $CQS(g^n:s)$.

Proof: By assumption, a $TRQS(g^ns^1)$ $(X, \mathcal{G} \cup S, \mathcal{B})$ exists, where $g \equiv 0 \pmod{2}$ and |S| = s. Let $G_1, G_2 \in \mathcal{G}, G_1 \neq G_2$, construct a $CQS(g^2:0)$ on group set $\{G_1, G_2\}$ and denote its block set by \mathcal{A}_{G_1,G_2} . Let $\mathcal{F} = (\bigcup_{G_1,G_2 \in \mathcal{G},G_1 \neq G_2} \mathcal{A}_{G_1,G_2}) \bigcup \mathcal{B}$. Then $(X, S, \mathcal{G}, \mathcal{F})$ is a $CQS(g^n:s)$.

Corollary 3.3 There exists a $CQS(g^n:(n-2)g)$, where $n(n-1)g^2\equiv 0\pmod 6$, $(n-1)g\equiv 0\pmod 2$, and $(g,n)\neq (1,7)$.

Proof: By Lemmas 3.2 and 2.2.

Lemma 3.4 A $CQS(2^4:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 4$.

Proof: A $CQS(2^4:0)$ is the same thing as a SQS(8), so it exists. A $CQS(2^4:4)$ exists by Corollary 3.3. There exists a SQS(10), take two points as set S, All blocks containing S will partition the remaining points. Removing these blocks gives a $CQS(2^4:2)$.

Lemma 3.5 A $CQS(4^4:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 8$.

Proof: A $TRQS(4^4)$, a $TRQS(4^5)$ and a $TRQS(4^48^1)$ exist by Lemmas 2.1 and 2.2. A $TRQS(4^42^1)$ and a $TRQS(4^46^1)$ also exist [14]. Then by Lemma 3.2, the conclusion holds.

Lemma 3.6 A $CQS(6^4:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 12$.

Proof: By Lemma 1.4, a $CQS(6^4:s)$ exists for all s=0,2,4,6. There also exists a $CQS(6^4:12)$ by Corollary 3.3. By the known $CQS(2^4:4)$ we get a 4-FG(3,(3,3,3,3,4),8) of type 2^4 . Apply Theorem 2.7 with the known input designs $CQS(3^3:1)$ in Lemma 1.3 and $TRQS(3^4)$ in Lemma 2.1. We then get a $CQS(6^4:10)$.

We construct a $TRQS(6^48^1)$ on $Z_{24} \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7, \infty_8\}$ having groups $\{4i+j: 0 \le i \le 5\}$, $0 \le j \le 3$ and $\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7, \infty_8\}$. The list of base blocks is as follows and the automorphism group: $G = \langle (0, 2, 4, \dots, 22)(1, 3, 5, \dots, 23)(\infty_1, \infty_5)(\infty_2, \infty_6)(\infty_3, \infty_7)(\infty_4, \infty_8) \rangle$.

```
017\infty_2
                   0.16 \infty_1
                                                        0.110 \infty_{3}
                                                                          0.111 \infty_{4}
 0123
 0.114 \infty_{5}
                   0.115 \infty_{6}
                                      0.118 \infty_{7}
                                                        0.119 \infty_{8}
                                                                          025\infty_1
                   029\infty_5
                                      0\ 2\ 11\ \infty_3
                                                        0.213 \infty_{6}
                                                                          0.215 \infty_{4}
 02717
                   0.221 \infty_{8}
                                     0\ 2\ 23\ \infty_2
                                                       035\infty_4
                                                                          03617
 0.219 \infty_{7}
                                     0.313 \infty_{7}
                                                       0.314 \infty_{8}
                                                                          0.318 \infty_{6}
                   0.310 \infty_{2}
 039\infty_3
                                     057\infty_6
                                                       0.5 \ 10 \ \infty_5
                                                                          0.511 \infty_{8}
                   056\infty_7
 0.3\ 21\ \infty_{1}
                                                       0 6 13 19
                                     0.519 \infty_{3}
                                                                          0615\infty_5
 0 5 14 23
                   0.518 \infty_{2}
 0 6 21 ∞₄
                   0.623 \infty_8
                                     079\infty_8
                                                       0.710 \infty_{7}
                                                                          0.714 \infty_{4}
                   0 9 11 14
                                     0.919 \infty_{6}
                                                       0.923 \infty_{4}
                                                                          0.1023\infty_{6}
 0.7\ 21\ \infty_{5}
                                                       0.13\ 23\ \infty_1
                                                                          0.1517 \infty_{1}
                   0\ 11\ 17\ \infty_7
                                     0.1315 \infty_3
 0\ 11\ 13\ \infty_5
                                     0\ 17\ 23\ \infty_{5}
                                                       0.21\ 23\ \infty_{7}
                   0\ 17\ 19\ \infty_2
 0.15\ 21\ \infty_2
Then by Lemma 3.2, we get a CQS(6^4:8).
```

Lemma 3.7 A $CQS(12^4:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 24$.

Proof: By Lemma 1.4, a $CQS(12^4:s)$ exists for all s=0,2,4,6,8,10,12. There also exists a $CQS(12^4:24)$ by Corollary 3.3. There exists a $TRQS(12^418^1)$ ([13]), then a $CQS(12^4:18)$ exists by Lemma 3.2. Since there exist a $CQS(6^4:8)$ and a $CQS(6^4:10)$, apply Theorem 2.7 with the known input designs $CQS(2^3:2)$ in Lemma 1.2 and $TRQS(2^4)$ in Lemma 2.1, we then get a $CQS(12^4:16)$ and a $CQS(12^4:20)$. By the known $CQS(2^4:4)$ in Lemma 3.4, apply Theorem 2.7 with the known input designs $CQS(6^3:4)$ in Lemma 1.2 and $TRQS(6^4)$ in Lemma 2.1, we then get a $CQS(12^4:22)$.

By the known $CQS(2^4:4)$ we get a 4-FG(3, (3,3,3,3,4),8) $(X, \mathcal{G}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4, \mathcal{B}_T)$ of type 2^4 , where $\mathcal{G} = \{G_1, G_2, G_3, G_4\}$. Let $S = \{\infty\} \times Z_{14}$, where $S \cap (X \times Z_6) = \emptyset$. We will construct a $CQS(12^4:14)$ on point set

 $X' = (X \times Z_6) \cup S$ with group set $G' = \{G'_1, G'_2, G'_3, G'_4\}$ and stem S, where $G'_i = G_i \times Z_6$ $(1 \le i \le 4)$. Block set \mathcal{F} is stated blow.

If $B \in \mathcal{B}_1$, say $B = \{x_0, x_1, x_2\}$, construct a design with the following block set:

$$\mathcal{E}_B = \{\{(x_i, p), (x_i, p+1), (x_{i+1}, q), (x_{i+2}, r)\} : p, q, r \in Z_6, \\ p+q+r \equiv 2i \pmod{6}, i=0,1,2\}.$$

If $B \in \mathcal{B}_2$, say $B = \{x_0, x_1, x_2\}$, construct a design with the following block set:

$$\mathcal{D}_{B} = \{\{(x_{0}, p), (x_{1}, q), (x_{2}, r), \infty_{0}\} : p, q, r \in Z_{6}, p + q + r \equiv 0 \pmod{6}\} \bigcup \{\{(x_{0}, p), (x_{1}, q), (x_{2}, r), \infty_{1}\} : p, q, r \in Z_{6}, p + q + r \equiv 3 \pmod{6}\} \bigcup \{\{(x_{i}, p), (x_{i}, p + 2), (x_{i+1}, p + 3q + 1), (x_{i+2}, p + 3q + 1)\} : p \in Z_{6}, i \in Z_{3}, q = 0, 1\} \bigcup \{\{(x_{i}, p), (x_{i}, p + 2), (x_{i+q}, p + 3), (x_{i-q}, p + 5)\} : p \in Z_{6}, i \in Z_{3}, q = 1, 2\}.$$

If $B \in \mathcal{B}_3$, say $B = \{x_0, x_1, x_2\}$, construct a $TRQS(6^4)$ with groups $\{x_i \times Z_6\}$, $i \in Z_3$ and $\{\infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\}$. Denote its block set by \mathcal{C}_B .

If $B \in \mathcal{B}_4$, say $B = \{x_0, x_1, x_2\}$, construct a $TRQS(6^4)$ with groups $\{x_i \times Z_6\}$, $i \in Z_3$ and $\{\infty_8, \infty_9, \infty_{10}, \infty_{11}, \infty_{12}, \infty_{13}\}$. Denote its block set by \mathcal{A}_B .

If $B \in \mathcal{B}_T$, say $B = \{x_0, x_1, x_2, x_3\}$, construct a $TRQS(6^4)$ with groups $\{x_i \times Z_6\}$, $i \in Z_4$. Denote its block set by \mathcal{H}_B .

Let
$$\mathcal{F} = (\bigcup_{B \in \mathcal{B}_1} \mathcal{E}_B) \bigcup (\bigcup_{B \in \mathcal{B}_2} \mathcal{D}_B) \bigcup (\bigcup_{B \in \mathcal{B}_3} \mathcal{C}_B) \bigcup (\bigcup_{B \in \mathcal{B}_4} \mathcal{A}_B) \bigcup (\bigcup_{B \in \mathcal{B}_4} \mathcal{A}_B)$$
. Then $(X', S, \mathcal{G}', \mathcal{F})$ is a $CQS(12^4: 14)$.

This section can be concluded as:

Theorem 3.8 There exists a $CQS(g^4:s)$ if and only if $g \equiv 0 \pmod{2}$, $s \equiv 0 \pmod{2}$ and $0 \le s \le 2g$.

4 The Existence of $CQS(g^5:s)$, $g \equiv 0 \pmod{6}$

The necessary conditions for the existence of a $CQS(g^5:s)$ can be simplified as:

\overline{g}	s		
0 (mod 6)	0 (mod 2) and $s \leq 3g$		
3 (mod 6)	1 (mod 2) and $s < 3g$		
$2,4\pmod{6}$	0		

For $g \equiv 2, 4 \pmod{6}$ and s = 0, we know that the necessary conditions are also sufficient by Lemma 1.6. In the following we discuss the case of $g \equiv 0 \pmod{6}$, $s \equiv 0 \pmod{2}$ and $0 \le s \le 3g$.

Lemma 4.1 If a $CQS(g^5:s)$ exists for all g=6,12,18,36, $s\equiv 0\pmod 2$ and $0\leq s\leq 3g$, then a $CQS(g^5:s)$ exists for all $g\equiv 0\pmod 6$, $s\equiv 0\pmod 2$ and $0\leq s\leq 3g$.

Proof: Let $g \equiv 0 \pmod{6}$ and $g = 6 \times 2^i 3^j \prod_k p_k^{a_k}$, where i = 0, 1, j = 0, 1, p_k is a prime, and if $p_k = 2$ or 3, then $a_k \geq 2$. Let $g_1 = 6 \times 2^i 3^j$, $g_2 = \prod_k p_k^{a_k}$. Then g_1 must be one of 6, 12, 18, 36 and $g_2 \geq 1$. If $g_2 = 1$, then a $CQS(g_1^5: s_1)$ exist by assumption, where $s_1 \equiv 0 \pmod{2}$ and $0 \leq s_1 \leq 3g_1$.

If $g_2>1$, then by Lemma 2.6, a g_2 -fan $GDD(3,(5,\ldots,5),5g_2)$ of type g_2^5 exists. We will prove that a $CQS(g^5:s)$ exists, where $s\equiv 0\pmod 2$ and $0\le s\le 3g$. Let $s=m\times (3g_1)+n$, where $0\le m\le g_2,\ 0\le n\le 3g_1$ and $n\equiv 0\pmod 2$. Then a $CQS(g_1^5:n)$ exists by assumption, a $TRQS(g_1^5)$ and a $TRQS(g_1^5(3g_1)^1)$ exist by Lemmas 2.1 and 2.2. Then by Theorem 2.9, let $CQS(g_1^5:n),\ m\ TRQS(g_1^5(3g_1)^1)$ s and $g_2-m\ TRQS(g_1^5)$ s be the input designs and we get a $CQS((g_1g_2)^5:m(3g_1)+n)$. That is, a $CQS(g_1^5:s)$ exists.

By Lemma 4.1, we only need to prove that a $CQS(g^5:s)$ exists for all $g=6,12,18,36,s\equiv 0\pmod 2$ and $0\leq s\leq 3g$.

For convenience, an (s+1)-FG(3, (3, ..., 3, 4, 4), gn) of type g^n is shortly denoted by $CQS^*(g^n:s)$, where CQS stands for candelabra quadruple system and the star "*" stands for the fan in which all blocks have size 4.

Lemma 4.2 There exists a $CQS^*(3^5:5)$.

Proof: We construct a $CQS^*(3^5:5)$ on $Z_{15} \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\}$ having groups $\{5i+j: 0 \le i \le 2\}$, $0 \le j \le 4$, and a stem $S = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\}$. The list of base blocks is as follows, developing them $(+5 \pmod{15})$ gives all the blocks. The underlined base blocks generate the set of a GDD(2, 4, 15) with the same groups.

0123	04612	0.7913	<u>081114</u>	18912
$014\infty_1$	$0\ 2\ 6\ \infty_1$	$0312\infty_1$	$0714\infty_1$	$089\infty_1$
$0\ 11\ 13\ \infty_1$	$1213\infty_1$	$179 \infty_1$	$1814 \infty_1$	$2314\infty_1$
$017\infty_2$	$0\ 2\ 13\ \infty_2$	$039\infty_2$	$0411\infty_2$	$068\infty_2$
$0\ 12\ 14\ \infty_2$	$1214\infty_2$	$148\infty_2$	$1\ 12\ 13\ \infty_2$	$289\infty_2$
018∞3	$0\ 2\ 11\ \infty_{3}$	$0\ 3\ 14\ \infty_{3}$	$047\infty_3$	$069\infty_3$
$0\ 12\ 13\ \infty_3$	$129\infty_3$	$1312\infty_3$	$1\ 13\ 14\ \infty_3$	$2413\infty_3$
$0\ 1\ 12\ \infty_4$	$024\infty_4$	$036\infty_4$	$078\infty_4$	$0911 \infty_{4}$
$0\ 13\ 14\ \infty_4$	$128\infty_4$	$139\infty_4$	$147\infty_4$	$2913\infty_4$
$0\ 1\ 13\ \infty_5$	$029\infty_5$	$037\infty_5$	$048\infty_5$	$0614\infty_5$
0 11 12 ∞5	$134\infty_5$	$178 \infty_5$	$1~12~14~\infty_5$	$2814\infty_5$
0156	0 1 9 14	$0\ 2\ 5\ 14$	02710	02812
0 3 4 13	03511	0 3 8 10	0459	06711
$1\ 2\ 4\ 12$	12711	1 3 6 14	1 3 7 13	13811

Lemma 4.3 There exists a $TRQS(3^57^1)$.

Proof: We construct a $TRQS(3^57^1)$ on $Z_{15} \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\}$ having groups $\{5i+j: 0 \le i \le 2\}, 0 \le j \le 4$, and $\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\}$. The list of base blocks is as follows, developing them $(+5 \pmod{15})$ gives all the blocks.

0123	$0\ 4\ 6\ 12$	07913	0 8 11 14	18912
$014\infty_1$	$017\infty_2$	$018 \infty_3$	$019 \infty_{4}$	$0112\infty_5$
$0\ 1\ 13\ \infty_{6}$	$0.114 \infty_{7}$	$024\infty_2$	$026\infty_1$	$028\infty_5$
$029\infty_6$	$0211\infty_4$	$0\ 2\ 13\ \infty_7$	$0\ 2\ 14\ \infty_3$	$034\infty_6$
$036\infty_7$	$037\infty_1$	$039\infty_5$	$0311\infty_2$	$0312\infty_3$
$0314\infty_4$	$047\infty_4$	$048\infty_7$	$0411\infty_5$	$0413\infty_3$
067∞3	$068\infty_{4}$	$069\infty_2$	$0~6~13~\infty_5$	$0614\infty_6$
$078\infty_6$	$0.711.\infty_{7}$	$0714\infty_5$	$089\infty_1$	$0812\infty_2$
$0911\infty_3$	$0\ 9\ 12\ \infty_{7}$	$0\ 11\ 12\ \infty_6$	$0\ 11\ 13\ \infty_1$	$0\ 12\ 13\ \infty_4$
$0\ 12\ 14\ \infty_1$	$0\ 13\ 14\ \infty_2$	$124\infty_7$	$128 \infty_4$	$129\infty_1$
$1213\infty_5$	$1214\infty_2$	$134\infty_3$	$137\infty_6$	$139\infty_7$
$1312\infty_2$	$1314\infty_5$	$147\infty_5$	$148\infty_6$	$1412\infty_4$
$178\infty_7$	$179 \infty_3$	$1713\infty_1$	$1814 \infty_1$	$1913\infty_2$
$1\ 12\ 13\ \infty_3$	$1~12~14~\infty_6$	$1\ 13\ 14\ \infty_4$	$234\infty_{5}$	$239\infty_2$
$2314\infty_1$	$2413\infty_4$	$289\infty_7$	$2814\infty_6$	$2913\infty_3$

Lemma 4.4 A $CQS(6^5:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 18$.

Proof: There exist a $TRQS(6^5)$, a $TRQS(6^6)$ and a $TRQS(6^518^1)$ by Lemmas 2.1 and 2.2, then by Lemma 3.2, we get a $CQS(6^5:0)$, a $CQS(6^5:6)$ and a $CQS(6^5:18)$.

It is well known that there exists a 1-FG(3, (4,4), 16) $(X, \mathcal{G}, \mathcal{B}_1, \mathcal{B}_T)$ of type 1^{16} [1]. For a given point $x \in X$, let $X' = X \setminus \{x\}$, $\mathcal{G}' = \{B \setminus \{x\} : x \in B, B \in \mathcal{B}_1\}$, $\mathcal{A}_1 = \{B \setminus \{x\} : x \in B, B \in \mathcal{B}_T\}$, $\mathcal{A}_2 = \{B : B \in \mathcal{B}_1, x \notin B\}$, $\mathcal{A}_T = \{B : B \in \mathcal{B}_T, x \notin B\}$. Then $(X', \mathcal{G}', \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_T)$ is a 2-FG(3, (3, 4, 4), 15) of type 3^5 . Note that it can also be viewed as a 1-FG(3, (3, 4), 15) of type 3^5 (it is also a $CQS(3^5 : 1)$). Beginning with the 1-FG(3, (3, 4), 15) of type 3^5 , apply Theorem 2.7 with the known input designs $CQS(2^3 : 2)$ in Lemma 1.2 and $TRQS(2^4)$ in Lemma 2.1. We then get a $CQS(6^5 : 2)$. As well, beginning with the 2-FG(3, (3, 4, 4), 15) $(X', \mathcal{G}', \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_T)$ of type 3^5 apply Theorem 2.7: for every block in \mathcal{A}_2 construct a $CQS(2^4 : 2)$ (which is shown in Lemma 1.4) and for every other block of the 2-FG(3, (3, 4, 4), 15) construct a $TRQS(2^4)$

Π

0

(which is shown in Lemma 2.1, note that a $TRQS(2^4)$ can also be viewed as a $TRQS(2^32^1)$). We then get a $CQS(6^5:4)$.

There exists a $CQS^*(3^5:5)$ by Lemma 4.2. Apply Theorem 2.7 with the known input designs $CQS(2^3:2)$ in Lemma 1.2 and $TRQS(2^4)$ in Lemma 2.1, we then get a $CQS(6^5:10)$. As well, if we apply Theorem 2.7 with the known input designs $CQS(2^4:2)$ in Lemma 1.4 and $TRQS(2^4)$ in Lemma 2.1, we then get a $CQS(6^5:12)$.

We now construct a $CQS(6^5:8)$ on $Z_{30} \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7, \infty_8\}$ having groups $\{5i+j: 0 \le i \le 5\}$, $0 \le j \le 4$, and a stem $S = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7, \infty_8\}$. The list of base blocks is as follows, developing them $(+1 \pmod{30})$ gives all the blocks.

```
0.4.12 \infty_1 \quad 0.6.17 \infty_1
                                             0.716 \infty_{1}
013\infty_1
                                                            017\infty_2
                              0.422 \infty_2 \quad 0.18 \infty_3
0.211 \infty_{2}
               0.316 \infty_{2}
                                                            0.213 \infty_{3}
               0416 \infty_3 \quad 019 \infty_4
                                             026\infty_4
                                                            0.317 \infty_{4}
039\infty_3
                              0221\infty_{5} 037\infty_{5}
               0.113 \infty_{5}
                                                            0614\infty_5
0.718 \infty_{4}
                              0.321 \infty_{6}
                                             0411\infty_6
                                                            0.122 \infty_{7}
0114 \infty_6 \quad 028 \infty_6
                                             0.124 \infty_8
0214 \infty_7 \quad 0326 \infty_7
                              0.619 \infty_{7}
                                                            0.218 \infty_8
                              0125
                                             01610
                                                            0 1 11 25
0.3\ 22\ \infty_{8}
               0.421 \infty_8
0 1 12 20
               0 1 15 26
                              0 1 16 19
                                             0 1 17 27
                                                            0 1 18 21
0 1 23 28
               0249
                              0 2 10 17
                                             0 2 12 23
                                                            0 2 15 19
               0 2 20 27
                              0 2 22 26
                                             03611
                                                            031018
0 2 16 24
               0 4 13 18
                              0 4 14 23
                                             0 5 12 18
                                                            0 5 13 22
0 3 19 24
0 6 12 21
               0 6 13 20
```

Lemma 4.5 There exists a $CQS(3^5:3)$.

Proof: We construct a $CQS(3^5:3)$ on $Z_{15} \cup \{\infty_1, \infty_2, \infty_3\}$ having groups $\{5i+j:0\leq i\leq 2\}, 0\leq j\leq 4$, and a stem $S=\{\infty_1, \infty_2, \infty_3\}$. The list of base blocks is as follows, developing them $(+5\pmod{15})$ gives all the blocks. $0\ 1\ 2\ 3 \ 0\ 1\ 4\ 5 \ 0\ 1\ 6\ 9 \ 0\ 1\ 7\ 10 \ 0\ 1\ 8\ 11$

```
0.112 \infty_{1}
              0.113 \infty_{2}
                          0.114 \infty_{3}
                                       024\infty_2
                                                    0257
02611
              02813
                          029 \infty_3
                                       0.214 \infty_{1}
                                                    034\infty_3
0358
             036∞1
                          037\infty_2
                                       03911
                                                    0 3 12 14
             04814
                          04910
                                       0.411 \infty_{1}
                                                    0 4 12 13
0467
0 5 11 13
             0.613 \infty_{3}
                          0614\infty_2
                                       078\infty_1
                                                    07912
                                       0.812 \infty_{3}
                                                   0913∞1
0.711 \infty_{3}
             071314
                          089\infty_2
                                       128∞₁
                                                    12913
0 11 12 ∞₂
              124 \infty_3
                          1267
134∞1
              1368
                          13712
                                       139 \infty_3
                                                    1314 \infty_{2}
14614
             1479
                          14813
                                       1412\infty_2
                                                    178∞₂
1713 \infty_{3}
             1714∞1
                          18912
                                       1 12 13 14
                                                   2378
                          2 4 13 ∞₁
                                       2814\infty_2
                                                   3489
2314 \infty_{3}
             24912
```

Lemma 4.6 There exists a $CQS(3^5:7)$.

Proof: We construct a $CQS(3^5:7)$ on $Z_{15} \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\}$ having groups $\{5i+j: 0 \le i \le 2\}$, $0 \le j \le 4$, and a stem $S = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\}$. The list of base blocks is as follows, developing them (+5 (mod 15)) gives all the blocks.

, , , ,				
$0\ 1\ 2\ \infty_1$	$034\infty_1$	$068\infty_1$	$079\infty_1$	$01114\infty_1$
$0\ 12\ 13\ \infty_1$	$1713\infty_1$	$1814 \infty_1$	$1912\infty_1$	$2913\infty_1$
$013\infty_2$	$026\infty_2$	$047\infty_2$	$0812\infty_2$	$0911\infty_2$
$0\ 13\ 14\ \infty_2$	$129\infty_2$	$1413\infty_2$	$178\infty_2$	$248\infty_2$
$017\infty_3$	$024\infty_3$	$0312\infty_3$	$0614 \infty_{3}$	$0.8 \ 11 \ \infty_3$
$0913\infty_3$	$1214 \infty_3$	$134\infty_3$	$1812 \infty_3$	$239\infty_3$
$018\infty_4$	$0\ 2\ 13\ \infty_4$	$039\infty_4$	$046\infty_{4}$	$0714 \infty_{4}$
$0\ 11\ 12\ \infty_4$	$1\ 3\ 12\ \infty_4$	$147\infty_4$	$1913 \infty_4$	$234\infty_4$
$019\infty_5$	$028\infty_5$	$0311\infty_5$	$0\ 4\ 13\ \infty_5$	$067\infty_5$
$0\ 12\ 14\ \infty_{5}$	$137\infty_5$	$1412\infty_5$	$1\ 13\ 14\ \infty_{5}$	$2\ 3\ 14\ \infty_5$
$0~1~12~\infty_6$	$0214\infty_6$	$036\infty_6$	$0411\infty_6$	$0.7 \ 13 \ \infty_6$
$089\infty_6$	$123\infty_6$	$148\infty_6$	$1714\infty_6$	$2\ 4\ 13\ \infty_6$
$0\ 1\ 13\ \infty_{7}$	$023\infty_7$	$0412\infty_7$	$069\infty_7$	$0.7 \ 11 \ \infty_7$
0814∞7	$128 \infty_7$	$1314 \infty_7$	$179\infty_7$	2 13 14 ∞ ₇
0 1 4 14	0156	$0\ 2\ 5\ 11$	0 2 7 10	$0\ 2\ 9\ 12$
0 3 5 13	0378	0 3 10 14	04910	0 6 11 13
1246	1 2 7 11	1 2 12 13	1 3 6 13	1389
14911	23812	2479	28914	34814

Note that by the proof of Lemma 4.4, beginning with the known 1-FG(3, (4, 4), 16) of type 1^{16} [1] we get a 2-FG(3, (3, 4, 4), 15) of type 3^5 . It can also be viewed as a 1-FG(3, (3, 4), 15) of type 3^5 , we then get a $CQS(3^5: 1)$. And by Lemmas 4.5, 4.2 and 4.6, we get that a $CQS(3^5: s)$ exists for all s = 1, 3, 5, 7.

Lemma 4.7 A $CQS(12^5:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 36$.

Proof: Firstly, a $CQS(12^5:36)$ exists by Corollary 3.3.

It is well known that there exists a S(3,5,17) (X,\mathcal{B}) [4]. For two given points $x,y\in X$, let $X'=X\backslash\{x,y\},\,\mathcal{G}=\{B\backslash\{x,y\}:x,y\in B,B\in\mathcal{B}\},\,\mathcal{A}_1=\{B\backslash\{x\}:x\in B,B\in\mathcal{B}\},\,\mathcal{A}_2=\{B\backslash\{y\}:y\in B,B\in\mathcal{B}\},\,\mathcal{A}_T=\{B:B\in\mathcal{B},x\notin B\ and\ y\notin B\}$. Then $(X',\mathcal{G},\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_T)$ is a 2-FG(3, (4,4,5),15) of type 3⁵. Apply Theorem 2.7 with the known input designs $CQS(4^4:s')$ in Lemma 3.5, $TRQS(4^4)$ and $TRQS(4^5)$ in Lemma 2.1, where s'=0,2,4,6,8. We then get a $CQS(12^5:s)$, where s=0,2,4,6,8. And if we apply Theorem 2.7 with the known input designs $CQS(4^4:s')$ in Lemma 2.5, $TRQS(4^48^1)$ in Lemma 2.2 and $TRQS(4^5)$ in Lemma 2.1, where s'=0,2,4,6,8, we then get a $CQS(12^5:s)$, where s=8,10,12,14,16.

There exists a 4-fan GDD(3, (5,5,5,5), 20) of type 4^5 by Lemma 2.6. Apply Theorem 2.9 with the known input designs $CQS(3^5:t)$ and $TRQS(3^5u^1)$, where t=1,3,5,7 and u=3,7,9 (by Lemmas 2.1, 4.3 and 2.2 respectively). We then get a $CQS(12^5:s)$ for all $s\equiv 0\pmod{2}$ and $10\leq s\leq 34$.

Lemma 4.8 A $CQS(18^5:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 54$.

Proof: There exists a 2-FG(3,(4,4,5),15) of type 3^5 by Lemma 4.7. Apply Theorem 2.7 with the known input designs $CQS(6^4:s')$ in Lemma 3.6, $TRQS(6^4)$ and $TRQS(6^5)$ in Lemma 2.1, where s'=0,2,4,6,8,10,12. We then get a $CQS(18^5:s)$, where s=0,2,4,6,8,10,12. And if we apply Theorem 2.7 with the known input designs $CQS(6^4:s')$ in Lemma 3.6, $TRQS(6^412^1)$ in Lemma 2.2 and $TRQS(6^5)$ in Lemma 2.1, where s'=0,2,4,6,8,10,12, we then get a $CQS(18^5:s)$, where s=12,14,16,18,20,24.

There exists a $CQS^*(3^5:5)$ by Lemma 4.2. Apply Theorem 2.7 with the known input designs $CQS(6^3:s')$ in Lemma 1.2, $TRQS(6^4)$ in Lemma 2.1, where s'=0,2,4,6. We then get a $CQS(18^5:s)$, where s=24,26,28,30. And if we apply Theorem 2.7 with the known input designs $CQS(6^4:s')$ in Lemma 3.6, $TRQS(6^4)$ in Lemma 2.1, where s'=0,2,4,6,8,10,12, we then get a $CQS(18^5:s)$, where $s=30,32,\ldots,42$.

There exists a 8-fan GDD(3, (3, 3, 3, 3, 3, 3, 3, 3, 4), 15) of type 3^5 by Lemma 4.3. Apply Theorem 2.9 with the known input designs $CQS(6^4: s')$ in Lemma 3.6, $TRQS(6^4)$ in Lemma 2.1, where s' = 0, 2, 4, 6, 8, 10, 12. We then get a $CQS(18^5: s)$, where $s = 42, 44, \ldots, 54$.

Lemma 4.9 A $CQS(36^5:s)$ exists for all $s \equiv 0 \pmod{2}$ and $0 \le s \le 108$.

Proof: There exists a 2-FG(3,(4,4,5),15) of type 3^5 by Lemma 4.7. Apply Theorem 2.7 with the known input designs $CQS(12^4:s')$ in Lemma 3.7, $TRQS(12^4)$ and $TRQS(12^5)$ in Lemma 2.1, where $s'=0,2,\ldots,24$. We then

get a $CQS(36^5:s)$, where $s=0,2,\ldots,24$. And if we apply Theorem 2.7 with the known input designs $CQS(12^4:s')$ in Lemma 3.7, $TRQS(12^424^1)$ in Lemma 2.2 and $TRQS(12^5)$ in Lemma 2.1, where $s'=0,2,\ldots,24$, we then get a $CQS(36^5:s)$, where $s=24,26,\ldots,48$.

There exists a $CQS^*(3^5:5)$ by Lemma 4.2. Apply Theorem 2.7 with the known input designs $CQS(12^3:s')$ in Lemma 1.2, $TRQS(12^4)$ in Lemma 2.1, where $s'=0,2,\ldots,12$. We then get a $CQS(36^5:s)$, where $s=48,50,\ldots,60$. And if we apply Theorem 2.7 with the known input designs $CQS(12^4:s')$ in Lemma 3.7, $TRQS(12^4)$ in Lemma 2.1, where $s'=0,2,\ldots,24$, we then get a $CQS(36^5:s)$, where $s=60,62,\ldots,84$.

There exists a 8-fan GDD(3, (3, 3, 3, 3, 3, 3, 3, 3, 4), 15) of type 3^5 by Lemma 4.3. Apply Theorem 2.9 with the known input designs $CQS(12^4:s')$ in Lemma 3.7, $TRQS(12^4)$ in Lemma 2.1, where $s'=0,2,\ldots,24$. We then get a $CQS(36^5:s)$, where $s=84,88,\ldots,108$.

This section can be concluded as:

Theorem 4.10 A $CQS(g^5:s)$ exists for all $g \equiv 0 \pmod{6}$, $s \equiv 0 \pmod{2}$ and $0 \le s \le 3g$.

5 $CQS(g^n:s)$ with $g \equiv 0 \pmod{6}$ and $s \leq g$

Theorem 5.1 For any $n \in \{n \ge 3 : n \ne 2, 6 \pmod{12} \text{ and } n \ne 8\}$, there exists a $CQS(g^n : s)$ for all $g \equiv 0 \pmod{6}$, $s \equiv 0 \pmod{2}$ and $0 \le s \le g$.

Proof: For n = 3, 4, 5, it is known that such a $CQS(g^n : s)$ exists by the above discussion.

Ji [11] has proved that there exists a $S(3,\{4,5,6\},v)$ for any $v \in \{v>0: v\equiv 0,1,2 \pmod 4$ and $v\neq 9,13\}$. Then there exists a 1-FG(3,({3,4,5},{4,5,6}),n) of type 1^n for any $n\in \{n\geq 3: n\equiv 0,1,3\pmod 4$ and $n\neq 8,12\}$. Apply Theorem 2.7 with the known input designs $CQS(g^3:s)$, $CQS(g^4:s)$, $CQS(g^5:s)$ and $TRQS(g^4)$, $TRQS(g^5)$, $TRQS(g^6)$ in Lemma 2.1, where $g\equiv 0\pmod 6$, $s\equiv 0\pmod 2$ and $0\leq s\leq g$. Then we get a $CQS(g^n:s)$ for any $n\in \{n\geq 3: n\equiv 0,1,3\pmod 4$ and $n\neq 8,12\}$, where $g\equiv 0\pmod 6$, $s\equiv 0\pmod 2$ and $0\leq s\leq g$.

For n=12, since $g\equiv 0\pmod 6$, $s\equiv 0\pmod 2$ and $0\leq s\leq g$, by Lemma 1.2 we know that there exists a $CQS((4g)^3:s)(X,S,\mathcal{G},\mathcal{A})$, where $\mathcal{G}=\{G_1,G_2,G_3\}$. For each $G_i,1\leq i\leq 3$, split it into four groups $G_{i1},G_{i2},G_{i3},G_{i4}$ with $|G_{i1}|=|G_{i2}|=|G_{i3}|=|G_{i4}|$, then we can construct a $CQS(g^4:s)(G_i\cup S,S,\{G_{i1},G_{i2},G_{i3},G_{i4}\},\mathcal{B}_i)$, it exists by Theorem 3.8. Let $\mathcal{G}'=\{G_{i1},G_{i2},G_{i3},G_{i4}:1\leq i\leq 3\}, T=\mathcal{A}\cup (\cup_{i=1}^3\mathcal{B}_i)$, then (X,S,\mathcal{G}',T) is a $CQS(g^{12}:s)$, where $g\equiv 0\pmod 6$, $s\equiv 0\pmod 2$ and $0\leq s\leq g$.

For $n \equiv 10 \pmod{12}$, let n = 12k+10. Hanani [8] proved that there exists an $S(3, \{4, 6\}, v)$ for all $v \equiv 0 \pmod{2}$. Then we can get a 1- $FG(3, (\{3, 5\}, v))$

 $\{4,6\}), 4k+3) \text{ of type } 1^{4k+3}. \text{ Apply Theorem 2.7 with the known input designs } CQS((3g)^i:g+s), \ i\in \{3,5\}, \text{ and } TRQS((3g)^4), TRQS((3g)^6), \text{ we get a } CQS((3g)^{4k+3}:g+s)(X,S,\mathcal{G},\mathcal{A}), \text{ where } \mathcal{G}=\{G_1,G_2,\cdots,G_{4k+3}\}. \text{ For each } G_i, 1\leq i\leq 4k+3, \text{ split it into three groups } G_{i1},G_{i2},G_{i3} \text{ with } |G_{i1}|=|G_{i2}|=|G_{i3}|. \text{ Let } G_0\subset S \text{ and } |G_0|=g, \text{ let } S'=S\backslash G_0, \text{ then } |S'|=s. \text{ Now we construct a } CQS(g^4:s)(G_{i1}\cup G_{i2}\cup G_{i3}\cup G_0\cup S',S',\{G_{i1},G_{i2},G_{i3},G_0\},\mathcal{B}_i), 1\leq i\leq 4k+3. \text{ Let } \mathcal{G}'=\{G_{i1},G_{i2},G_{i3},G_0:1\leq i\leq 4k+3\}, \ \mathcal{T}=\mathcal{A}\cup (\cup_{i=1}^{4k+3}\mathcal{B}_i), \text{ then } (X,S',\mathcal{G}',\mathcal{T}) \text{ is a } CQS(g^{12k+10}:s), \text{ where } g\equiv 0 \pmod 6, s\equiv 0 \pmod 2 \text{ and } 0\leq s\leq g.$

Acknowledgements

The author thank Professor L. Zhu and the referee for their very helpful suggestions on this paper.

References

- [1] R. D. Baker, Partitioning the planes of AG(2m, 2) into 2-designs, Discrete Math. 15 (1976), 205-211.
- [2] C. J. Colbourn, D. G. Hoffman, and R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory A 59 (1992), 73-89.
- [3] A. Granville, A. Hartman, Subdesigns in Steiner quadruple systems. J. Combin. Theory A 56 (1991), 239-270.
- [4] H. Hanani, A class of three designs, J. Combin. Theory A 26 (1979), 1-19.
- [5] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
- [6] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-157.
- [7] H. Hanani, On some tactical configurations, Canad. J. Math. 15 (1963), 702-722.
- [8] H. Hanani, Truncated finite planes, in "Combinatorics", 115-120, Proceedings of Symposia in Pure Mathematics, Vol. XIX, Amer. Math. Soc., Providence, R.I., 1971.
- [9] A. Hartman, The fundamental construction for 3-designs, Discrete Math. 124 (1994), 107-131.
- [10] L. Ji, An improvement on H design, J. Combin. Designs 17 (2009), 25-35.
- [11] L. Ji, On the 3BD-closed set $B_3(\{4,5,6\})$, J. Combin. Designs 12 (2004), 92-102.

- [12] L. Ji, J. Yin, Constructions of new orthogonal arrays and covering arrays of strength three, J. Combin. Theory A, 117 (2010), 236-247.
- [13] M. Keranen, D. Kreher, Transverse quadruple systems with five holes, J. Combin. Designs 15 (2007), 315-340.
- [14] K. Lauinger, D. Kreher, R. Rees, and D. Stinson, Computing transverse t-designs, J. Combin. Math. Combin. Comput. 54 (2005), 33-56.
- [15] H. Lenz, Tripling quadruple systems, Ars Combin. 20 (1985), 193-202.
- [16] W. H. Mills, On the covering of triples by quadruples, Congr. Numer. 10 (1974), 563-581.
- [17] W. H. Mills, On the existence of H designs, Congr. Number. 79 (1990), 129-141.
- [18] K. T. Phelps, Rotational Steiner quadruple systems, Ars Combin. 4 (1977), 177-185.
- [19] G. Stern, H. Lenz, Steiner triple systems with given subspaces, another proof of the Doyen-Wilson Theorem, Bull Un Mal Ital 5 (1980), 109-114.
- [20] A. A. Zhuralev, M. S. Keranen, D. L. Kreher, Small group divisible Steiner quadruple systems, Electron. J. Combin. 15 (2008), no. 1, Research paper 40, 14 pp.