On the structure of graphs with exactly two near-perfect matchings *

Hong Lin [†] School of Sciences, Jimei University, Xiamen, Fujian, 361021, P.R.China

Abstract

A near-perfect matching is a matching saturating all but one vertex in a graph. In this note, it is proved that if a graph has a near-perfect matching then it has at least two, moreover, a concise structure construction for all graphs with exactly two near-perfect matchings is given. We also prove that every connected claw-free graph G of odd order $n \ (n \ge 3)$ has at least $\frac{n+1}{2}$ near-perfect matchings which miss different vertices of G.

Keywords: Near-perfect matching; Maximal matching; Factor-critical graph

1 Introduction

All graphs considered in this paper are simple connected graphs. Let G be a graph with vertex set V(G) and edge set E(G). For $S \subseteq V(G)$, G[S] denotes the subgraph induced by S, and the neighbor set of S in G, denoted by $N_G(S)$, is the set of all vertices adjacent to vertices in S. A matching of G is said to be perfect if it covers all vertices of G and near-perfect if it covers all but one vertex of G. Clearly, a graph with a perfect matching (resp. near-perfect matching) must have an even (resp. odd) number of vertices. The number of perfect matchings or near-perfect matchings in a graph G is denoted by pm(G) or npm(G). The deficiency of G, denoted by def(G), is the number of vertices missed by a maximum matching of G. A bipartite graph G(A, B) is said to have positive surplus (as viewed from G) if |G(X)| > |G(G)| for all $0 \neq X \subseteq G$. A graph G is said to be factor-critical if G - v has a perfect matching for every vertex $v \in V(G)$. Other terminologies and notations not defined here can be found in [1] and [5].

^{*}This project is supported by the Natural Science Foundation of Fujian Province of China (No. 2010J01008) and the Huang Huizhen Science Foundation of Jimei University.

†Email: linhongjm@163.com

Enumeration of perfect matchings in graphs is an active and important subject in graph theory and combinatorial optimization since it has a wide range of applications. But the enumeration problem for perfect matchings in general graphs (even in bipartite graphs) is NP-hard [5]. Let G be a graph with a perfect matching, and let v be any vertex of G. Suppose M is any perfect matching of G. Let w be the vertex adjacent to v in M. Then $M \setminus \{vw\}$ will be a near-perfect matching of G - v missing w. From this fact, a perfect matching of G is relative to a near-perfect matching of G - v, and hence $pm(G) \leq npm(G - v)$. So it is deserved to study the number of near-perfect matchings in graphs of odd order.

Pulleyblank [6] proved that every 2-connected factor-critical graph G contains at least |E(G)| near-perfect matchings. For general factor-critical graphs, Liu [3] proved that if G is a factor-critical graph, then G has at least |E(G)| - c + 1 near-perfect matchings, where c is the number of blocks

of G.

In this note, it is proved that if a graph has a near-perfect matching then it has at least two, moreover, a concise structure construction for all graphs with exactly two near-perfect matchings is given based on the Gallai-Edmonds decomposition theory. We also prove that every connected claw-free graph G of odd order n ($n \ge 3$) has at least $\frac{n+1}{2}$ near-perfect matchings which miss different vertices of G.

2 Main results

First we review some known results which will help to prove our main results.

Theorem 1 (Hall's Theorem [2]). Let G be a bipartite graph with bipartition (X,Y). Then G contains a matching that saturates every vertex in X if and only if $|N_G(S)| \ge |S|$ for all $S \subseteq X$.

The following theorem gives a method for constructing all graphs having exactly one perfect matching.

Theorem 2 ([5]). A graph G has a unique perfect matching if and only if it can be constructed by iterating the following construction: Let G_1 and G_2 be two vertex-disjoint graphs, each with a unique perfect matching. (Either or both may be empty). Let x_1 and x_2 be two new vertices. Join at least one vertex of G_i to x_i for i = 1 and 2 and join x_1 to x_2 .

Some notations appeared in Gallai-Edmonds decomposition theory for graphs in terms of maximum matchings are now recalled as follows [5].

For any graph G, let D(G) denote the set of vertices in G that are not saturated by at least one maximum matching, A(G) the set of vertices in V(G) - D(G) adjacent to at least one vertex in D(G) and C(G) = V(G) - D(G) - A(G).

Theorem 3 (The Gallai-Edmonds Structure Theorem [5]). If G is a graph and D(G), A(G), C(G) are defined as above, then

(1) the components of the subgraph induced by D(G) are factor-critical,

(2) the subgraph induced by C(G) has a perfect matching,

(3) the bipartite graph obtained form G by deleting the vertices of C(G) and the edges spanned by A(G) and by contracting each component of D(G) to a single vertex has positive surplus (as viewed from A(G)),

(4) if M is any maximum matching of G, it contains a near-perfect matching of each component of D(G), a perfect matching of each component of C(G) and matches all vertices of A(G) with vertices in distinct components of D(G).

Now we can state the main result of this note.

Theorem 4 Let G be a graph with a near-perfect matchings. Then $npm(G) \ge 2$. Moreover, if G is a connected graph with exactly two near-perfect matchings, then either |V(G)| = 3 and $G \cong K_{1,2}$, or $|V(G)| \ge 5$ and the Gallai-Edmonds structure of G is shown in Figure 1, that is

(a) $C(G) \neq \emptyset$, and let $G_1, ..., G_k$ $(k \geq 1)$ be the components of the subgraph induced by C(G). Then for each $i, 1 \leq i \leq k$, G_i contains exactly one perfect matching, and hence can be constructed by the iterating produce given in Theorem 2,

(b) A(G) contains exactly one vertex d, d is adjacent to some vertices of each G_i ,

(c) D(G) consists of two singletons.

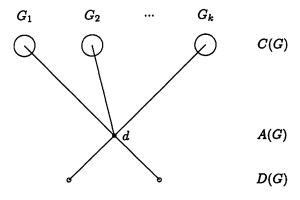


Figure 1.

Proof Let G be a graph with a near-perfect matching. Let x be a vertex missed by a near-perfect matching M of G, let y be a neighbour of x, and let yz be an edge of M. Then the matching obtained form M by removing the edge yz and adding xy is another near-perfect matching of G. This simple observation follows that $npm(G) \geq 2$.

Let G be a connected graph having exactly two near-perfect matchings. Obviously, every near-perfect matching of G is maximum and def(G) = 1. Let $\{D(G), A(G), C(G)\}\$ be the Gallai-Edmonds decomposition of G.

If |V(G)| = 3, it is easily checked that $G \cong K_{1,2}$. So in the following we may assume that $|V(G)| \geq 5$. Let $D_1, ..., D_t$ be the components of the subgraph induced by D(G). First we assert the following.

Claim 1. D_i is a singleton for all i.

Suppose to the contrary, there is a component D_i , without loss of generality, say D_t such that $|V(D_t)| \ge 3$. Since G has a near-perfect matching, def(G) = 1. On the other hand, by Theorem 3(4), def(G) = t - |A(G)|, thus |A(G)| = t - 1. Suppose $A(G) = \{u_1, ..., u_{t-1}\}$.

By Theorem 1 and Theorem 3(3), we can choose a perfect matching M_1 of the graph $G - C(G) - V(D_t)$, M_1 matches all $u_1, ..., u_{t-1}$ with vertices in distinct D_1 , ..., D_{t-1} and contains a near-perfect matching of each D_i for i=1,...,t-1. Let M_2 be a perfect matching of the subgraph induced by C(G), and let M_3 be any near-perfect matching of D_t . Clearly, by Theorem 3(4), $M_1 \cup M_2 \cup M_3$ is a near-perfect matching of G. This observation implies that $npm(G) \geq npm(D_t)$.

Let $V(D_t) = \{x_1, ..., x_r\}$, where $r \geq 3$. Since D_t is a factor-critical graph, it follows from the definition that, for each $i, 1 \leq i \leq r$, there exists a perfect matching F_i of $D_t - x_i$. Obviously, F_i is also a nearperfect matching in D_t and any two near-perfect matchings in $\{F_1, ..., F_n\}$ F_r are distinct. So D_t has at least $r \geq 3$ near-perfect matchings. Hence $npm(G) \geq npm(D_t) \geq 3$, a contradiction.

Claim 2. |A(G)| = 1.

Suppose to the contrary, $|A(G)| = p \ge 2$. Since def(G) = t - |A(G)| =1, t = p + 1. According to Claim 1, we may assume that D(G) = $\{v_1, ..., v_{p+1}\}$. By the definition of D(G), there exist near-perfect matchings $M_1, ..., M_{p+1}$ of G such that M_i misses v_i , for i = 1, ..., p+1. Clearly, any two near-perfect matchings in $\{M_1, ..., M_{p+1}\}$ are distinct. Thus $npm(G) \ge p+1 \ge 3$, a contradiction. This proves Claim 2 and (b).

Since def(G) = t - |A(G)| = 1, thus t = 2. Hence by Claim 1, D(G)

consists of two singletons, (c) is proved.

Now $|A(G) \cup D(G)| = 3$, recall that $|V(G)| \ge 5$, it follows that $C(G) \ne 1$ \emptyset . Let $G_1, ..., G_k$ $(k \ge 1)$ be the components of the subgraph induced by C(G). Since npm(G) = 2, by Theorem 3(4), it is easily seen that for each $i, 1 \leq i \leq k, pm(G_i) = 1$. This proves (a) and consequently, the theorem.

The above theorem and Theorem 2 actually gives a method for constructing all graphs with exactly two near-perfect matchings.

A claw is an induced subgraph isomorphic to the complete bipartite graph $K_{1,3}$. Junger, Pulleyblank and Reinelt [4] proved the following (see also [5], Chapter 3).

Theorem 5 ([4]). If a graph G has an odd number of vertices and is claw-free, then G contains a near-perfect matching.

In the following, we can give a lower bound on the number of nearperfect matchings of claw-free graphs of odd order.

Theorem 6 Let n be an odd integer with $n \geq 3$. Then every connected claw-free graph of order n has at least $\frac{n+1}{2}$ near-perfect matchings which miss different vertices of G.

Proof Let G be a connected claw-free graph of order n. Let $\{D(G), A(G), C(G)\}$ be the Gallai-Edmonds decomposition of G, and let $D_1, ..., D_t$ be the components of the subgraph induced by D(G). First we assert the following.

Claim 1. $C(G) = \emptyset$.

Suppose $C(G) \neq \emptyset$ and thus there is an edge xy in G with $x \in C(G)$ and $y \in A(G)$. By Theorem 3(3), there exist two vertices z_1 and z_2 in distinct components of the subgraph induced by D(G) such that y is adjacent to z_1 and z_2 . But $G[\{x, y, z_1, z_2\}]$ is isomorphic to a claw, a contradiction. This proves Claim 1.

Claim 2. G has at least |D(G)| near-perfect matchings which miss

different vertices of D(G).

By Theorem 5, G has a near-perfect matching. So def(G) = 1. By Theorem 3(4), def(G) = t - |A(G)|, thus |A(G)| = t - 1. Suppose $A(G) = \{u_1, ..., u_{t-1}\}$. Let $x \in D(G)$. Without loss of generality, we may assume $x \in V(D_t)$. By Theorem 3(1), there is a near-perfect matching M_1 of D_t which miss x. By Theorem 3(3) and Theorem 1, there is a perfect matching M_2 of the graph $G - V(D_t)$, M_2 matches all $u_1, ..., u_{t-1}$ with vertices in distinct $D_1, ..., D_{t-1}$ and contains a near-perfect matching of each D_i for i = 1, ..., t-1. Then $F_x = M_1 \cup M_2$ is a near-perfect matching of G which miss G. Now G is a set of G in a near-perfect matchings which miss different vertices of G. Claim 2 thus follows.

By Claim 1, $C(G) = \emptyset$. Thus |A(G)| + |D(G)| = n. On the other hand, By Theorem 3(3), |D(G)| > |A(G)|. It follows that $|D(G)| \ge \frac{n+1}{2}$. So by Claim 2, G has at least $\frac{n+1}{2}$ near-perfect matchings which miss different vertices of G.

Obviously, for each odd integer n with $n \geq 3$, the path P_n on n vertices serves to show the bound in Theorem 6 is sharp. But the extremal graphs

realizing this bound are not unique.

For example, if n = 7, the graph H shown in Figure 2 and the path P_7 are two connected claw-free graphs with exactly $\frac{n+1}{2} = 4$ near-perfect matchings.

Figure 2.

Based on Theorem 3, some structural properties of these extremal graphs can be deduced. For a vertex $v \in V(G)$, let $deg_G(v)$ denote its degree in the graph G.

Theorem 7 Let n be an odd integer with $n \geq 3$. Let G be a connected claw-free graph of order n with exactly $\frac{n+1}{2}$ near-perfect matchings. If $\{D(G), A(G), C(G)\}$ is the Gallai-Edmonds decomposition of G, then (a) $C(G) = \emptyset$,

(b) the subgraph induced by D(G) consists of $\frac{n+1}{2}$ singletons,

(c) Suppose G' is the bipartite graph obtained form G by deleting the edges spanned by A(G), then for each $v \in A(G)$, $deg_{G'}(v) = 2$.

Proof (a) follows directly from the proof of Theorem 6.

The proof of Theorem 6 also gives that $npm(G) \ge |D(G)| \ge \frac{n+1}{2}$. It is evident that equality in above relations will hold if and only if D(G) consists of $\frac{n+1}{2}$ singletons. This proves (b).

Suppose \bar{v} is an arbitrary vertex in A(G). By Theorem 3(3), $deg_{G'}(v) \geq 2$. Suppose $deg_{G'}(v) = r \geq 3$. Let $u_1,...,u_r$ be the neighbors of v in G'. Since the subgraph induced by D(G) consists of $\frac{n+1}{2}$ singletons, $G[\{v,u_1,u_2,u_3\}]$ is isomorphic to a claw, a contradiction. Hence $deg_{G'}(v) = 2$. This proves (c).

3 Acknowledgements

The author would like to thank the anonymous referee for his detailed comments and valuable suggestions.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph theory with applications, MacMillan Press, London, 1976.
- [2] P.Hall, On representatives of subsets, J. London. Math. Soc., 10 (1935) 26-30.
- [3] Y. Liu, J. Hao, The enumeration of near-perfect matchings of factor-critical graphs, Discrete Math. 243 (2002) 259-266.
- [4] M. Junger, W.R. Pulleyblank, G. Reinelt, On partitioning the edges of graphs into connected subgraphs, Univ. of Waterloo, Dept. of Combinatorics and Optimization, Research Report CORR 83-8, March, 1983.
- [5] L. Lovász, M. D. Plummer, Matching theory, Elesiver, North Holland, Amsterdam, 1986.
- [6] W.R. Pulleyblank, Faces of matching polyhedra, Ph.D. Thesis. Dept. Combinatorics and Optimization. Univ. of Waterloo, 1973.