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Abstract

A near-perfect matching is a matching saturating all but one
vertex in a graph. In this note, it is proved that if a graph has a
near-perfect matching then it has at least two, moreover, a concise
structure construction for all graphs with exactly two near-perfect
matchings is given. We also prove that every connected claw-free
graph G of odd order n (n > 3) has at least 2}! near-perfect match-
ings which miss different vertices of G.
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1 Introduction

All graphs considered in this paper are simple connected graphs. Let G
be a graph with vertex set V(G) and edge set E(G). For S C V(G), G[S]
denotes the subgraph induced by S, and the neighbor set of S in G, denoted
by Ng(S), is the set of all vertices adjacent to vertices in S. A matching
of G is said to be perfect if it covers all vertices of G and near-perfect if it
covers all but one vertex of G. Clearly, a graph with a perfect matching
(resp. near-perfect matching) must have an even (resp. odd) number of
vertices. The number of perfect matchings or near-perfect matchings in a
graph G is denoted by pm(G) or npm(G). The deficiency of G, denoted
by def(G), is the number of vertices missed by a maximum matching of
G. A bipartite graph G(A, B) is said to have positive surplus (as viewed
from A) if [Ne(X)] > |X| for all § # X C A. A graph G is said to be
factor-critical if G — v has a perfect matching for every vertex v € V(G).
Other terminologies and notations not defined here can be found in [1] and
[5].
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Enumeration of perfect matchings in graphs is an active and important
subject in graph theory and combinatorial optimization since it has a wide
range of applications. But the enumeration problem for perfect matchings
in general graphs (even in bipartite graphs) is NP-hard [5]. Let G be a
graph with a perfect matching, and let v be any vertex of G. Suppose M is
any perfect matching of G. Let w be the vertex adjacent to-v in M. Then
M\ {vw} will be a near-perfect matching of G — v missing w. From this
fact, a perfect matching of G is relative to a near-perfect matching of G —v,
and hence pm(G) < npm(G — v). So it is deserved to study the number of
near-perfect matchings in graphs of odd order.

Pulleyblank [6] proved that every 2-connected factor-critical graph G
contains at least |E(G)| near-perfect matchings. For general factor-critical
graphs, Liu [3] proved that if G is a factor-critical graph, then G has at
least | E(G)| — c+1 near-perfect matchings, where c is the number of blocks

of G.
In this note, it is proved that if a graph has a near-perfect matching

then it has at least two, moreover, a concise structure construction for
all graphs with exactly two near-perfect matchings is given based on the
Gallai-Edmonds decomposition theory. We also prove that every connected
claw-free graph G of odd order n (n > 3) has at least %1 near-perfect
matchings which miss different vertices of G.

2 Main results

First we review some known results which will help to prove our main
results.

Theorem 1 (Hall’s Theorem [2]). Let G be a bipartite graph with bi-
partition (X,Y). Then G contains a matching that saturates every vertex
in X if and only if |[Ng(S)| 2 |S| for all S C X.

The following theorem gives a method for constructing all graphs having
exactly one perfect matching.

Theorem 2 ([5]). A graph G has a unique perfect matching if and only if
it can be constructed by iterating the following construction: Let G, and G,
be two vertez-disjoint graphs, each with a unique perfect matching. (Either
or both may be empty). Let z, and z; be two new vertices. Join at least
one vertex of G; to z; for i =1 and 2 and join z; to zs.

Some notations appeared in Gallai-Edmonds decomposition theory for
graphs in terms of maximum matchings are now recalled as follows [5].

For any graph G, let D(G) denote the set of vertices in G that are
not saturated by at least one maximum matching, A(G) the set of vertices
in V(G) — D(G) adjacent to at least one vertex in D(G) and C(G) =
V(G) — D(G) — A(G).

Theorem 3 (The Gallai-Edmonds Structure Theorem [5]). If G is
a graph and D(G), A(G), C(G) are defined as above, then
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(1) the components of the subgraph induced by D(G) are factor-critical,
(2) the subgraph induced by C(G) has a perfect matching,

(8) the bipartite graph obtained form G by deleting the vertices of C(G) and
the edges spanned by A(G) and by contracting each component of D(G) to
a single vertex has positive surplus (as viewed from A(G)),

(4) if M is any mazimum matching of G, it contains a near-perfect match-
ing of each component of D(G), a perfect matching of each component of
C(G) and matches all vertices of A(G) with vertices in distinct components

of D(G).
Now we can state the main result of this note.

Theorem 4 Let G be a graph with a near-perfect matchings. Then npm(G) >
2. Moreover, if G is a connected graph with exactly two near-perfect match-
ings, then either |V(G)| = 3 and G = K 3, or |V(G)| 2 5 and the Gallai-
Edmonds structure of G is shown in Figure 1, that is

(a) C(G) # 9, and let Gy, ..., Gi (k 2 1) be the components of the sub-
graph induced by C(G). Then for each i, 1 < i < k, G; contains ezactly
one perfect matching, and hence can be constructed by the iterating produce
given in Theorem 2,

(b) A(G) contains ezactly one vertez d, d is adjacent to some vertices of
each G;,

(c) D(G) consists of two singletons.

G1 Gs Gk
C(G)
d A(G)
D(G)
Figure 1.

Proof Let G be a graph with a near-perfect matching. Let = be a vertex
missed by a near-perfect matching M of G, let y be a neighbour of z, and
let yz be an edge of M. Then the matching obtained form M by removing
the edge yz and adding zy is another near-perfect matching of G. This
simple observation follows that npm(G) > 2.
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Let G be a connected graph having exactly two near-perfect matchings.
Obviously, every near-perfect matching of G is maximum and def(G) = 1.
Let {D(G), A(G), C(G)} be the Gallai-Edmonds decomposition of G.

If |V(G)| = 3, it is easily checked that G & Kj 3. So in the following
we may assume that |V(G)| > 5. Let Dy, ..., D; be the components of the
subgraph induced by D(G). First we assert the following.

Claim 1. D; is a singleton for all 7.

Suppose to the contrary, there is a component D;, without loss of gen-
erality, say D, such that |V (D,)| > 3. Since G has a near-perfect matching,
def(G) = 1. On the other hand, by Theorem 3(4), def(G) =t — |A(G)|,
thus |A(G)| =t — 1. Suppose A(G) = {v1,...,us—1}.

By Theorem 1 and Theorem 3(3), we can choose a perfect matching
M, of the graph G — C(G) — V(D,), M; matches all u;, ..., us—; with
vertices in distinct Dy, ..., D;—; and contains a near-perfect matching of
each D; for i = 1,...,t — 1. Let M, be a perfect matching of the subgraph
induced by C(G), and let M3 be any near-perfect matching of D;. Clearly,
by Theorem 3(4), M; U M2 U M3 is a near-perfect matching of G. This
observation implies that npm(G) > npm(D;).

Let V(D;) = {z1,...,z.}, where r > 3. Since D; is a factor-critical
graph, it follows from the definition that, for each 4, 1 < ¢ < r, there
exists a perfect matching F; of D; — z;. Obviously, F; is also a near-
perfect matching in D; and any two near-perfect matchings in {F, ...,
F.} are distinct. So D; has at least 7 > 3 near-perfect matchings. Hence
npm(G) 2 npm(D;) > 3, a contradiction.

Claim 2. |[A(G)| = 1.

Suppose to the contrary, |A(G)| =p > 2. Since def(G) =t - |A(G)| =
1, t = p+ 1. According to Claim 1, we may assume that D(G) =
{v1,...,vp+1}. By the definition of D(G), there exist near-perfect match-
ings My, ..., Mp41 of G such that M; misses v;, for i = 1,...,p+ 1. Clearly,
any two near-perfect matchings in {Mi, ..., Mp+1} are distinct. Thus
npm(G) 2 p+1 > 3, a contradiction. This proves Claim 2 and (b).

Since def(G) =t — |A(G)| = 1, thus ¢ = 2. Hence by Claim 1, D(G)
consists of two singletons, (c) is proved.

Now |A(G)U D(G)| = 8, recall that |V(G)| = 5, it follows that C(G) #
0. Let Gy, ..., Gk (k > 1) be the components of the subgraph induced by
C(G). Since npm(G) = 2, by Theorem 3(4), it is easily seen that for each
2 1 <i <k, pm(G;) = 1. This proves (a) and consequently, the theorem.

The above theorem and Theorem 2 actually gives a method for con-
structing all graphs with exactly two near-perfect matchings.

A claw is an induced subgraph isomorphic to the complete bipartite
graph K, 3. Junger, Pulleyblank and Reinelt [4] proved the following (see

also [5], Chapter 3).

Theorem 5 ([4]). If a graph G has an odd number of vertices and is
claw-free, then G contains a near-perfect matching.

In the following, we can give a lower bound on the number of near-
perfect matchings of claw-free graphs of odd order.
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Theorem 6 Let n be an odd integer with n > 3. Then every connected
claw-free graph of order n has at least 21 near-perfect matchings which
miss different vertices of G.

Proof Let G be a connected claw-free graph of order n. Let {D(G),A(G),
C(G)} be the Gallai-Edmonds decomposition of G, and let D,, ..., D; be
the components of the subgraph induced by D(G). First we assert the
following.

Claim 1. C(G) =0.

Suppose C(G) # @ and thus there is an edge zy in G with z € C(G) and
y € A(G). By Theorem 3(3), there exist two vertices z;) and 22 in distinct
components of the subgraph induced by D(G) such that y is adjacent to z
and 2. But G[{z,y, 21, z2}] is isomorphic to a claw, a contradiction. This
proves Claim 1.

Claim 2. G has at least |D(G)| near-perfect matchings which miss
different vertices of D(G).

By Theorem 5, G has a near-perfect matching. So def(G) = 1. By
Theorem 3(4), def(G) = t — |A(G)|, thus |A(G)| =t — 1. Suppose A(G) =
{u1,...,u¢—1}. Let z € D(G). Without loss of generality, we may assume
z € V(D;). By Theorem 3(1), there is a near-perfect matching M, of D,
which miss z. By Theorem 3(3) and Theorem 1, there is a perfect matching
M, of the graph G — V(D;), Mz matches all u3, ..., u;—; with vertices in
distinct Dy, ..., D;—1 and contains a near-perfect matching of each D; for
i=1,...,t — 1. Then F; = M; U M, is a near-perfect matching of G which
miss . Now {F; : £ € D(G)} is a set of |D(G)| near-perfect matchings
which miss different vertices of D(G). Claim 2 thus follows.

By Claim 1, C(G) = §. Thus |A(G)| + |D(G)| = n. On the other hand,
By Theorem 3(3), |D(G)| > |A(G)|. It follows that |D(G)| > 2. So by
Claim 2, G has at least %} near-perfect matchings which miss different

vertices of G. ) . ]
Obviously, for each odd integer n with n > 3, the path P, on n vertices

serves to show the bound in Theorem 6 is sharp. But the extremal graphs

realizing this bound are not unique.
For example, if n = 7, the graph H shown in Figure 2 and the path

P; are two connected claw-free graphs with exactly %‘ = 4 near-perfect

matchings.

H

Figure 2.

Based on Theorem 3, some structural properties of these extremal
graphs can be deduced. For a vertex v € V(G), let degc(v) denote its
degree in the graph G.
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Theorem 7 Let n be an odd integer with n > 3. Let G be a connected
claw-free graph of order n with ezactly %1 near-perfect matchings. If
{D(G), A(G),C(G)} is the Gallai-Edmonds decomposition of G, then

(a) C(G) =0,

(b) the subgraph induced by D(G) consists of 2L singletons,

(c) Suppose G’ is the bipartite graph obtained form G by deleting the edges
spanned by A(G), then for each v € A(G), deggr (v) = 2.

Proof (a) follows directly from the proof of Theorem 6.

The proof of Theorem 6 also gives that npm(G) > |D(G)| > 2. It
is evident that equality in above relations will hold if and only if D(G)
consists of 23 singletons. This proves (b).

Suppose v is an arbitrary vertex in A(G). By Theorem 3(3), degg(v) >
2. Suppose deggi(v) = r > 3. Let uy,...,u, be the neighbors of v in G'.
Since the subgraph induced by D(G) consists of I‘-':lz'—‘- singletons, G[{v,u ,us,
ug}] is isomorphic to a claw, a contradiction. Hence degg/(v) = 2. This
proves (c).
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