Generalized Padovan numbers, Perrin numbers and maximal k-independent sets in graphs

Iwona Włoch, Andrzej Włoch

Rzeszow University of Technology
Faculty of Mathematics and Applied Physics
ul. W.Pola 2,35-959 Rzeszów, Poland
email: iwloch@prz.edu.pl, awloch@prz.edu.pl

ABSTRACT: In this paper we give generalizations of Padovan numbers and Perrin numbers. We apply this generalizations for counting of special subsets of the set of n integers. Next we give their graph representations with respect to the number of maximal k-independent sets in graphs.

1 Introduction

Let G be a simple, undirected, connected graph with the vertex set V(G) and the edge set E(G). By $d_G(x,y)$ we denote the distance between vertices x and y in G. Let \mathbb{P}_n and \mathbb{C}_n denote a path and a cycle on n vertices, respectively. Let $k \geq 2$ be integer. A subset $S \subseteq V(G)$ is a k-independent set of G if for any two distinct vertices $x,y \in S$, $d_G(x,y) \geq k$. Moreover a subset containing only one vertex and the empty set also are k-independent. If k=2, then the definition reduces to the definition of an independent set in the classical sense. Let $NI_k(G)$ denote the number of k-independent sets in G and for k=2, $NI_2(G)=NI(G)$. The parameter NI(G) was studied by Prodinger and Tichy, see [5] and this paper gave an impetus for counting of independent sets in graphs. They proved that $NI(\mathbb{P}_n)=F_{n+1}$ and $NI(\mathbb{C}_n)=L_n$, where F_n and L_n are the Fibonacci and the Lucas numbers, respectively, defined recursively by $F_0=F_1=1$ and $F_n=F_{n-1}+F_{n-2}$, for $n\geq 2$ and $L_0=2$, $L_1=1$ and $L_n=L_{n-1}+L_{n-2}$, for $n\geq 2$.

In [3] more generalized concept was introduced, namely the generalized Fibonacci numbers and the generalized Lucas numbers which gives the numbers of all k-independent sets in special graphs. In [9] the generalizations of the Pell numbers, the Pell-Lucas numbers and the Tribonacci numbers with respect to the numbers of k-independent sets in graphs were given.

We say that the k-independent set S of the graph G is maximal if for any $x \in V(G) \setminus S$, $S \cup \{x\}$ is not k-independent. By $NMI_k(G)$ we will denote the total number of maximal k-independent sets S in the graph G, $NMI_2(G) = NMI(G)$.

The literature includes many papers dealing with the theory of counting of independent sets in graphs. In particular characterization of extremal trees with some independence properties has been considered in a number of papers for instance [2, 7, 8]. The problem of determining the maximum value of NMI(T) was solved by Wilf [7]. The numbers $NMI_k(G)$ for some graph products were studied in [6].

The Padovan numbers have different applications, also in several enumeration problems, see [4], where the authors present an interesting and special connections between Baxter permutations and the Padovan numbers. Also in [1] enumeration of independent sets of some classes of regular graphs is studied. These papers motivate the study of maximal k-independent sets and their connections with the Padovan numbers and the Perrin numbers.

The Padovan numbers PV(n) are defined by the recurrence relation PV(0) = PV(1) = PV(2) = 1 and for $n \ge 3$, PV(n) = PV(n-2) + PV(n-3). The Perrin numbers Pr(n) are defined by the recurrence relations Pr(0) = 3, Pr(1) = 0, Pr(2) = 2 and for $n \ge 3$, Pr(n) = Pr(n-2) + Pr(n-3).

The Padovan numbers have the graph interpretation with respect to the number of maximal independent sets in graphs. Let $NMI_L(G)$ be the number of maximal independent sets including the set of pendant vertices. It has been proved

Theorem 1 [8] Let T be an n-vertex tree with $n \geq 3$. Then $NMI_L(T) \leq PV(n-3)$. Moreover the equality occurs if $T = P_n$.

In this paper we give the generalizations of the Padovan numbers, the Perrin numbers and next we give the graph interpretation with respect to the numbers of maximal k-independent sets including the set of pendant vertices as a subset.

2 Generalizations

Let $X = \{1, 2, ..., n\}$, $n \ge 3$ be the set of n integers. Let $k \ge 2$. Let $Y \subset X$ such that $\{1, n\} \subseteq Y$ and

- (i) |Y| = t, for fixed $t \ge 2$ and
- (ii) for each $i, j \in Y$, $|i j| \ge k$ and
- (iii) for each $i \notin Y$ there is $j \in Y$ such that |i j| < k.

A subset Y we will call a maximal k-subset of X, for an arbitrary $t \geq 2$. By pv(n,k,t) we denote the number of all maximal k-subset Y having exactly t elements and further let $PV(n,k) = \sum_{t \geq 2} pv(n,k,t)$. For k=2 we put pv(n,k,t) = pv(n,t) and PV(n,2) = PV(n).

Theorem 2 Let $n \geq 3$, $k \geq 2$, $t \geq 2$ be integers.

If $n \le k$ or n > t + (t-1)(2k-2) or n < 1 + (t-1)k, then for $k \ge 2$ pv(n, k, t) = 0.

If $k+1 \le n \le 2k$, then pv(n,k,2) = 1. For $t \ge 3$, pv(2k+1,k,3) = 1 and for $n \ge 2k+2$ we have pv(n,k,t) = pv(n-k,k,t-1) + pv(n-(k+1),k,t-1) + ... + pv(n-(2k-1),k,t-1).

PROOF: The initial conditions are obvious. It remains to consider the case that $n \geq 2k+2$ and $t \geq 3$. Let $Y \subset X$. We recall that $\{1,n\} \subset Y$ and Y is a maximal k-subset having t elements. Because $n \in Y$, then by $|i-j| \geq k$ it is obvious that $n-r \notin Y$, for $r=1,2,\ldots,k-1$. This means that others (t-1) integers (different from n) belonging to Y must be chosen among n-k integers from X. From the fact that Y satisfies (iii) immediately follows that exactly one vertex from the set $\{n-s; s=k,\ldots,2k-1\}$ belongs to Y. Hence $pv(n,k,t)=pv(n-k,k,t-1)+pv(n-(k+1),k,t-1)+\ldots+pv(n-(2k-1),k,t-1)$, which ends the proof.

Theorem 3 Let $n \ge 3$, $k \ge 2$ be integers. If n < k+1, then PV(n, k) = 0. If $k+1 \le n \le 2k$, then PV(n, k) = 1 and for $n \ge 2k+1$ we have the recurrence relation

$$PV(n,k) = PV(n-k,k) + PV(n-(k-1),k) + \dots + PV(n-(2k-1),k).$$

P R O O F: From Theorem 2 we have that if $k+1 \le n \le 2k$, then $PV(n,k) = \sum_{t\ge 2} pv(n,k,t) = pv(n,k,2) = 1$. If n=2k+1 then $Pv(n,k) = \sum_{t\ge 2} pv(n,k,t) = pv(n,k,2) + pv(n,k,3) = 1$.

Let $n \ge 2k+2$. Then Theorem 2 gives pv(n,k,2)=0. Hence $PV(n,k)=\sum_{t\ge 2} pv(n,k,t)=\sum_{t\ge 3} pv(n,k,t)=\sum_{t\ge 3} (pv(n-k,k,t-1)+pv(n-(k+1),k,t-1)+\dots+pv(n-(2k-1),k,t-1))=\sum_{t\ge 2} (pv(n-k,k,t)+pv(n-(k+1),k,t)+\dots+pv(n-(2k-1),k,t))=PV(n-k,k)+PV(n-(k+1),k)+\dots+PV(n-(2k-1),k).$

Thus the theorem is proved.

The numbers PV(n, k) we will called the generalized Padovan numbers. If k = 2 and $n \ge 3$, then numbers PV(n, 2) = PV(n) create the Padovan sequence $a_n = a_{n-2} + a_{n-3}$ for $n \ge 6$ with the initial conditions $a_3 = a_4 = a_5 = 1$.

The generalized Padovan numbers have the graph representations with respect to the number of maximal k-independent sets including the set of pendant vertices in graphs.

The set X can be regarded as the vertex set of the graph P_n where vertices from $V(P_n)$ are labeled by integers belonging to X. However

 $\{i,j\} \in E(P_n)$ if i and j are consecutive. Thus the number PV(n,k) for $n \geq 3$, $k \geq 2$ is equal to the total number of subset $S \subset V(G)$ such that S is a maximal k-independent set of P_n including end vertices as a subset.

Now we have applied the numbers PV(n,k) for counting of others special subsets of the set X.

Let $X = \{1, 2, ..., n\}, n \geq 3$ be the set of n integers. Let $k \geq 2$. Let $I \subset X$ such that

- (i) |I| = t, for fixed $t \ge 1$
- (ii) for each $i, j \in I$, $k \le |i j| \le n k$ and
- (iii) I is a maximal with respect to the set inclusion.

By pr(n, k, t) we denote the number of all subsets I having t elements and $Pr(n, k) = \sum_{t \ge 1} pr(n, k, t)$. For k = 2 we put Pr(n, 2) = Pr(n).

Theorem 4 Let $n \ge 3$, $k \ge 2$ be integers. If n < tk for t > 1 or n > t(2k+1) for $t \ge 2$, then pr(n,k,t) = 0. If $3 \le n \le 2k-1$, then pr(n,k,1) = n. Let $n \ge 2k$. Then pr(2k,k,2) = k and for $n \ge 2k+1$ pr(n,k,t) = pv(n-(2k-2),k,t)+(2k-2)pv(n+1,k,t+1)+(k-2)pv(n-(k-1),k,t)+(k-3)pv(n-k,k,t)+...+pv(n-(2k-4),k,t).

PROOF: The statement is easy to verified for $n \le 2k$. Let $n \ge 2k + 1$. Assume that $I \subset X$ be a t elements subset of X which satisfies conditions (ii) and (iii).

Let $X \supset I^* = \{i; 1, ..., 2k - 2\}$. We consider two cases:

1. $I \cap I^* = \emptyset$.

Then $n \in I$ and $2k-1 \in I$, in otherwise I does not satisfy (iii). Moreover for each $p,q \in X \setminus I^*$, $|p-q| \le n-k$. This implies that I is t elements k-subset of the set $X^* = X \setminus \{1,...,(2k-2)\}$. Hence there are exactly pv(n-(2k-2),k,t) subsets I such that $I \cap I^* = \emptyset$.

2. $I \cap I^* \neq \emptyset$.

Clearly $|I \cap I^*| \leq 2$. Hence we distinguish two possibilities

2.1. $|I \cap I^*| = 1$.

Let $i \in I$, $1 \le i \le 2k-2$. Then counting of subsets I is equivalent to counting of k-subsets of the set $X' = \{1, ..., n+1\}$ having t+1 elements. By previous considerations the number of k-subsets of $X' = \{1, ..., n+1\}$ having t+1 elements is equal to pv(n+1, k, t+1). Since the integer i we can choose on 2k-2 ways, so we have (2k-2)pv(n+1, k, t+1) subsets I in this subcase.

2.2. $|I \cap I^*| = 2, k \ge 3.$

Let $i, j \in I$, where $j \neq i$ and $1 \leq i, j \leq 2k - 2$. If i = 1, then j can be chosen from the set $\{k + 1, ..., 2k - 2\}$. Consequently we have pv(n - (k - 1))

1), k, t) +pv(n-k, k, t) +...+pv(n-(2k-4), k, t) subsets I with t elements. If i=2, then j can be chosen from the set $\{k+2,...,2k-2\}$ and we have pv(n-(k-1), k, t) +...+pv(n-(k+(2k-3), k, t) subsets I. Considering analogously step by step we obtain that if i=k-2, then j=2k-2 and we have pv(n-(k-1), k, t) subsets I.

Hence this case gives

$$(k-2)pv(n-(k-1),k,t)+(k-3)pv(n-k,k,t)+...+pv(n-(2k-4),k,t).$$
 Finally from the above cases we obtain that $pr(n,k,t)=pv(n-(2k-2),k,t)+(2k-2)pv(n+1,k,t+1)+(k-2)pv(n-(k-1),k,t)+(k-3)pv(n-k,k,t)+...+pv(n-(2k-4),k,t),$ which ends the proof.

Using the same method as in Theorem 3 we can prove:

Theorem 5 Let
$$n \ge 3$$
, $k \ge 2$ be integers. If $n \le 2k-1$, then $Pr(n,k) = n$. If $n = 2k$, then $Pr(2k,k) = k$ and for $n \ge 2k+1$ we have $Pr(n,k) = PV(n-(2k-2),k) + (k-2)PV(n+1,k) + (k-2)PV(n-(k-1),k) + (k-3)PV(n-k,k) + ... + PV(n-(2k-4),k)$.

The numbers Pr(n, k) we will called the generalized Perrin numbers. If k = 2 and $n \ge 3$, then numbers Pr(n, 2) create the Perrin sequence.

The generalized Perrin numbers have the graph representations with respect to the number of maximal k-independent sets in a graph C_n .

3 Acknowledgment

The authors wish to thank the referee for suggestions and comments.

References

- A. Burstein, S. Kitaev, T. Mansour, Counting independent sets in some classes of graphs, Pure Mathematics and Applications 19 2-3 (2008) 17-26.
- [2] I. Gutman, S. Wagner, Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques, http://www.math.tugraz.at/~ wagner/survey.pdf
- [3] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria 55(2000), 139-146.
- [4] T. Mansour, V. Vajnovszki, Restricted 123-Baxter permutations and Padovan numbers, Discrete Applied Mathematics 155:11 (2007) 1430-1440

- [5] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly 20 (1982), 16-21.
- [6] W. Szumny, A. Włoch, I. Włoch, On the existence and on the number of (k,l)-kernels in the lexicographic product of graphs, Discrete Mathematics 308 (2008), 4616-4624.
- [7] H. Wilf, The number of maximal independent sets in a tree, SIAM J.Alg. Discrete Math. Vol 7, No 1, January, (1986) 125-130.
- [8] I. Włoch, Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Mathematics 308 (2008) 4768-4772.
- [9] I. Włoch, A. Włoch, Generalized sequences and k-independent sets in graph, submitted.