Generalized Padovan numbers, Perrin numbers
and maximal k-independent sets in graphs

Iwona Wioch, Andrzej Wioch

Rzeszow University of Technology
Faculty of Mathematics and Applied Physics
ul. W.Pola 2,35-959 Rzeszéw, Poland
email: iwloch@prz.edu.pl, awloch@prz.edu.pl

ABSTRACT: In this paper we give generalizations of Padovan numbers
and Perrin numbers. We apply this generalizations for counting of special
subsets of the set of n integers. Next we give their graph representations
with respect to the number of maximal k-independent sets in graphs.

1 Introduction

Let G be a simple, undirected, connected graph with the vertex set V(G)
and the edge set E(G). By dg(z,y) we denote the distance between vertices
z and y in G. Let P, and C,, denote a path and a cycle on n vertices,
respectively. Let k > 2 be integer. A subset S C V(G) is a k-independent
set of G if for any two distinct vertices z,y € S, dg(z,y) > k. Moreover a
subset containing only one vertex and the empty set also are k-independent.
If k = 2, then the definition reduces to the definition of an independent set
in the classical sense. Let NI;(G) denote the number of k-independent sets
in G and for k = 2, NI;(G) = NI(G). The parameter NI(G) was studied
by Prodinger and Tichy, see [5] and this paper gave an impetus for counting
of independent sets in graphs. They proved that NI(P,) = F,4+; and
NI(C,) = Ly, where F,, and Ly, are the Fibonacci and the Lucas numbers,
respectively, defined recursively by Fo = Fy = 1 and F,, = Fy_y + Fp,_,
forn>2and Ly=2,Ly=1and Ly, =Ln_1+ L, forn>2

In [3] more generalized concept was introduced, namely the general-
ized Fibonacci numbers and the generalized Lucas numbers which gives
the numbers of all k-independent sets in special graphs. In [9] the gener-
alizations of the Pell numbers, the Pell-Lucas numbers and the Tribonacci
numbers with respect to the numbers of k-independent sets in graphs were
given.

We say that the k-independent set S of the graph G is maximal if for
any £ € V(G)\ S, SU {z} is not k-independent. By NMI(G) we will
denote the total number of maximal k-independent sets S in the graph G,
NMI;(G) = NMI(G).

The literature includes many papers dealing with the theory of counting
of independent sets in graphs. In particular characterization of extremal

ARS COMBINATORIA 99(2011), pp. 359-364



trees with some independence properties has been considered in a number
of papers for instance [2, 7, 8]. The problem of determining the maximum
value of NMI(T) was solved by Wilf [7]. The numbers NMI}(G) for some
graph products were studied in [6].

The Padovan numbers have different applications, also in several enu-
meration problems, see [4], where the authors present an interesting and
special connections between Baxter permutations and the Padovan num-
bers. Also in [1] enumeration of independent sets of some classes of reg-
ular graphs is studied. These papers motivate the study of maximal k-
independent sets and their connections with the Padovan numbers and the
Perrin numbers.

The Padovan numbers PV (n) are defined by the recurrence relation
PV(0) = PV(1) = PV(2) = 1and forn > 3, PV(n) = PV(n—2)+PV(n—
3). The Perrin numbers Pr(n) are defined by the recurrence relations
Pr(0) = 3, Pr(1) =0, Pr(2) = 2 and for n > 3, Pr(n) = Pr(n - 2) +
Pr(n—3).

The Padovan numbers have the graph interpretation with respect to
the number of maximal independent sets in graphs. Let NMI.(G) be the
number of maximal independent sets including the set of pendant vertices.
It has been proved

Theorem 1 [8] Let T be an n-vertez tree with n > 3. Then NMIL(T) <
PV (n — 3). Moreover the equality occurs if T = Pp.

In this paper we give the generalizations of the Padovan numbers, the
Perrin numbers and next we give the graph interpretation with respect to
the numbers of maximal k-independent sets including the set of pendant
vertices as a subset.

2 Generalizations

Let X = {1,2,...,n}, n > 3 be the set of n integers. Let k > 2. Let Y C X
such that {1,n} CY and

(i) |Y| =t, for fixed t > 2 and

(ii) for each 4,5 €Y, [ — j| 2 k and

(iii) for each i ¢ Y there is j € Y such that |i — j| < k.

A subset Y we will call a maximal k-subset of X, for an arbitrary ¢ > 2.

By pv(n, k,t) we denote the number of all maximal k-subset Y having
exactly ¢ elements and further let PV(n,k) = 3 pv(n,k,t). For k = 2 we

£>2

put pu(n, k, ) = pu(n,t) and PV(n,2) = PV(n).
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Theorem 2 Letn >3, k > 2, t > 2 be integers.
Ifn<korn>t+({t—-1)(2k—-2) orn <14 (t- 1)k, then fork > 2
pv(n, k,t) =0.

Ifk+1<n <2k, then pu(n,k,2) = 1. Fort > 3, pv(2k+ 1,k,3) =1
and for n > 2k + 2 we have pv(n, k,t) = pv(n — k,k,t — 1) + pv(n — (k +
1)kt —1)+...+pv(n— (2k - 1), k,t = 1).

P R O O F: The initial conditions are obvious. It remains to consider the
casethatn > 2k+2andt > 3. Let Y C X. Werecall that {1,n} CY and Y
is a maximal k-subset having ¢ elements. Because n € Y, then by [i—j| > k
it is obvious that n—r ¢ Y, for r = 1,2,...,k — 1. This means that others
(t — 1) integers (different from n) belonging to Y must be chosen among
n — k integers from X. From the fact that Y satisfies (iii) immediately
follows that exactly one vertex from the set {n — s;s = k,...,2k — 1}
belongs to Y. Hence pv(n, k,t) = pv(n—k,k,t = 1) +pv(n — (k+1),k,t —
1) + ... + pv(n — (2k — 1), k,t — 1), which ends the proof. O

Theorem 3 Letn > 3, k > 2 be integers. Ifn < k+1, then PV(n,k) =0.
Ifk+1 < n < 2k, then PV(n,k) = 1 and for n > 2k + 1 we have the

recurrence relation
PV(n,k) = PV(n—k,k)+PV(n—(k—1),k) +...+ PV(n - (2k - 1), k).

P R O O F: From Theorem 2 we have that if k + 1 < n < 2k, then
PV(n,k) = ¥ pv(n,k,t) =pv(n,k,2) = 1. If n = 2k + 1 then Pv(n,k) =
t>2

Y pu(n,k,t) = pu(n, k,2) + pu(n, k,3) = 1.
22

Let n > 2k + 2. Then Theorem 2 gives pv(n, k,2) = 0. Hence PV (n,k) =
2 p”-’(nsk:t) = Z pv(n, k, t)= 2 (p'u(n—k, k, t—1)+pv(n— (k+1): k,t—
t>2 t>3 >3

1)+"'+pv(n— (2k- 1): k,t— 1)) = 22(}’”(”—’9, k, t) +p‘U(Tl-— (k+ 1): k, t)+

t2

wtpu(n—(2k—1),k,t)) = PV(n—k,k)+ PV(n—(k+1),k)+...+ PV(n—
(2k — 1),k).

Thus the theorem is proved. O

The numbers PV (n, k) we will called the generalized Padovan numbers.
If k = 2 and n > 3, then numbers PV(n,2) = PV (n) create the Padovan
sequence @n = Gn—2 + an3 for n > 6 with the initial conditions a3 = a4 =
as = 1.

The generalized Padovan numbers have the graph representations with
respect to the number of maximal k-independent sets including the set of
pendant vertices in graphs.

The set X can be regarded as the vertex set of the graph P, where
vertices from V(P,) are labeled by integers belonging to X. However
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{i,j} € E(P,) if i and j are consecutive. Thus the number PV (n,k)
for n > 3, k > 2 is equal to the total number of subset S C V(G) such that
S is a maximal k-independent set of P, including end vertices as a subset.

Now we have applied the numbers PV (n, k) for counting of others spe-
cial subsets of the set X.

Let X = {1,2,...,n}, n > 3 be the set of n integers. Let k > 2. Let
I C X such that
(i) {I| =t, for fixed £ > 1
(ii) for each i, € I, k < i — j| < n—k and
(iii) 7 is a maximal with respect to the set inclusion.

By pr(n, k,t) we denote the number of all subsets I having ¢ elements
and Pr(n,k) = Y pr(n,k,t). For k =2 we put Pr(n,2) = Pr(n).

t>1

Theorem 4 Letn > 3, k > 2 be integers. Ifn <tk fort > 1 orn > t(2k+
1) for t > 2, then pr(n,k,t) = 0. If 3 <n < 2k — 1, then pr(n,k,1) = n.
Let n > 2k. Then pr(2k,k,2) = k and for n > 2k + 1 pr(n,k,t) =
pv(n — (2k — 2),k,t) + (2k — 2)pv(n + 1,k,t + 1) + (k - 2)pv(n - (k —
1),k,t) + (k = 3)pv(n — k,k,t) + ... + pv(n ~ (2k — 4), k, 1).

P R O O F: The statement is easy to verified for n < 2k. Let n > 2k + 1.
Assume that I C X be a t elements subset of X which satisfies conditions

(ii) and (iii).
Let X D I* = {3;1,...,2k — 2}. We consider two cases:
LInr=0.

Then n € I and 2k — 1 € I, in otherwise I does not satisfy (iii). Moreover
for each p,q € X \ I*, |p — q| < n — k. This implies that I is ¢ elements
k-subset of the set X* = X \ {1,...,,(2k — 2)}. Hence there are exactly
pv(n — (2k — 2), k,t) subsets I such that INI* =0.

2.INnI*#0.

Clearly |I N I*| < 2. Hence we distinguish two possibilities

21 |INnI*|=1.

Let i € I, 1 < i < 2k — 2. Then counting of subsets I is equivalent to
counting of k-subsets of the set X’ = {1,...,n + 1} having ¢ + 1 elements.
By previous considerations the number of k-subsets of X' = {1,...,n + 1}
having ¢ + 1 elements is equal to pv(n + 1, k,t + 1). Since the integer i we
can choose on 2k — 2 ways, so we have (2k — 2)pv(n + 1,k,t + 1) subsets T
in this subcase.

22. |INnI*|=2,k=3.

Let 4,5 € I, where j # i and 1 <4,j < 2k—2. If ¢ = 1, then j can be
chosen from the set {k +1,...,2k — 2}. Consequently we have pv(n — (k —
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1), k,t)+pv(n—k, k,t)+...+pv(n—(2k —4), k, t) subsets I with ¢ elements.
If i = 2, then j can be chosen from the set {k + 2, ...,2k — 2} and we have
pv(n— (k—1),k,t) +...+pv(n — (k+ (2k — 3), k, t) subsets I. Considering
analogously step by step we obtain that if ¢ = k — 2, then j = 2k — 2 and
we have pv(n — (k — 1), k, t) subsets I.

Hence this case gives
(k=2)pv(n—(k—1),k,t)+ (k-3)pv(n—k,k,t) +...+ pv(n — (2k - 4), k, t).
Finally from the above cases we obtain that pr(n,k,t) = pv(n — (2k —

2),k,t) + (2k = 2)pv(n + 1,k,t + 1) + (k — 2)pv(n — (k — 1),k,t) + (k —
3)pv(n — k, k,t) + ... + pv(n — (2k — 4), k, t), which ends the proof. O

Using the same method as in Theorem 3 we can prove:

Theorem 5 Letn > 3, k > 2 be integers. Ifn < 2k—1, then Pr(n,k) = n.
If n = 2k, then Pr(2k,k) =k and for n > 2k + 1 we have

Pr(n,k) = PV(n—(2k—2),k)+(k~2)PV(n+1,k)+ (k- 2)PV(n— (k-
1),k) + (k- 3)PV(n—k,k) + ...+ PV(n — (2k — 4), k).

The numbers Pr(n, k) we will called the generalized Perrin numbers. If
k =2 and n > 3, then numbers Pr(n,2) create the Perrin sequence.

The generalized Perrin numbers have the graph representations with
respect to the number of maximal k-independent sets in a graph C,.
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