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Abstract

In [6], Cooperstein and Shult showed that the dual polar space
D@~ (2n+1,K), K = F;, admits a full projective embedding into the
projective space PG(2" — 1,K'), K' = F;2. They also showed that
this embedding is absolutely universal. The proof in [6] makes use of
counting arguments and group representation theory. Because of the
use of counting arguments, the proof cannot be extended automati-
cally to the infinite case. In this note, we shall give a different proof
of their results, thus showing that their conclusions remain valid for
infinite fields as well. We shall also show that the above-mentioned
embedding of DQ~ (2n + 1,K) into PG(2" — 1,K') is polarized.
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1 Introduction

1.1 Basic Definitions

Let I’ = (P, L,I) be a partial linear space, i.e. arank 2 geometry with point-
set P, line-set L and incidence relation I C P x L for which every line is
incident with at least two points and every two distinct points are incident
with at most 1 line. A subspace of I is a set of points which contains all
the points of a line as soon as it contains at least two points of it. If X
is a nonempty set of points, then (X)r denotes the smallest subspace of
T containing the set X. The minimal number gr(I') := min{|X| : X C
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P and (X)r = P} of points which are necessary to generate the whole
point-set P is called the generating rank of I'.

A full embedding e of T into a projective space I is an injective mapping
e from P to the point-set of ¥ satisfying: (i) (e(P))s = Z; (ii) e(L) :=
{e(z) |z € L} is a line of X for every line L of I'. The numbers dim(X) and
dim(X) + 1 are respectively called the projective dimension and the vector
dimension of the embedding e. The maximal dimension of a vector space
V for which T' has a full embedding into PG(V') is called the embedding
rank of I and is denoted by er(I'). Certainly, er(T’) is only defined when I'
admits a full embedding, in which case it holds that er(I') < gr(T). If e is
a full embedding of I into a projective space X, then for every hyperplane
a of T, e~1(e(P) N a) is a hyperplane of I'. We say that the hyperplane
e~ (e(P) N a) arises from the embedding e.

Twoembeddingse; : ' = X; and ey : I' = Xy of I" are called isomorphic
(e1 = ep).if there exists an isomorphism f : £; — X3 such that e; =
foei. Ife: T = X is a full embedding of I" and if U is a subspace of &
satisfying (C1): (U, e(p))z # U for every point p of ', (C2): (U,e(p1))x #
(U, e(p2))x for any two distinct points p; and pa of I, then there exists a
full embedding e/U of T into the quotient space £/U mapping each point
pofT to (U,e(p))s. Ife; : ' = X, and e : ' = I, are two embeddings,
then we say that e; > e if there exists a subspace U in X; satisfying
(C1), (C2) and ¢;/U = ey. If e: I' — X is a full embedding of T, then
by Ronan (11}, there exists a unique (up to isomorphism) full embedding
£:T — ¥ satisfying (i) € > e, (ii) if ¢’ > e for some embedding €’ of T,
then € > ¢'. We say that ¢ is universal relative to e. If € = ¢ for some
full embedding e of I, then we say that e is relatively universal A full
embedding e of I is called absolutely universal if it is universal relative to
any full embedding of I defined over the same division ring as e. Kasikova
and Shult [10] gave sufficient conditions for an embeddable geometry to
have an absolutely universal embedding.

The problem of determining generating sets of small size for a given
geometry I' is very important for embedding problems. Suppose X is a
finite generating set of a geometry I' such that there exists a full embedding
e of T into a projective space PG(V) with dim(V) = |X|. Then since
|X| = dim(V) < er(T") < gr(T") < |X|, we necessarily have er(T') = gr(T) =
|X|. It follows that e is a relatively universal embedding. If moreover the
conditions of Kasikova and Shult are satisfied, then we can conclude that
e is absolutely universal.

1.2 Dual polar spaces

Let IT be a non-degenerate polar space of rank n > 2. With II there is
associated a point-line geometry A whose points are the maximal singular
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subspaces of II, whose lines are the next-to-maximal singular subspaces of
IT and whose incidence relation is reverse containment. We call A a dual
polar space (Cameron [2]).

If £ and y are two points of A, then d(z, y) denotes the distance between
z and y in the point or collinearity graph of A. Every convex subspace of
A consists of the maximal singular subspaces through a given subspace
of II. The maximal distance between two points of a convex subspace A
of A is called the diameter of A. The convex subspaces of diameter 2,
respectively n — 1, are called the gquads, respectively mazes, of A. Every
dual polar space is an example of a near polygon (Shult and Yanushka
[14]; De Bruyn [7]). This means that for every point z and every line L,
there exists a unique point 7 (z) on L nearest to x. More generally, the
following property holds in every dual polar space A: if z is a point and
A is a convex subspace, then A contains a unique point 74 () nearest to
z and d(z,y) = d(z,7a(z)) + d(ma(z),y) for every point y of A. We call
wa(z) the projection of x onto A. If M is a max of A, then d(z,M) <1
for every point z of A.

Since a dual polar space A is a near polygon, the set H; of points of
A at non-maximal distance from a given point z is a hyperplane of A.
We call H, the singular hyperplane of A with deepest point z. By Shult
(13, Lemma 6.1(ii)], every hyperplane of a thick dual polar space A is a
maximal subspace.

A full embedding of a dual polar space is called polarized if every singular
hyperplane arises from it. If e is a full polarized embedding of a thick dual
polar space A into a projective space L, then for every point z of A,
(e(H:))x is a hyperplane of T (recall that H, is a maximal subspace of A).
If e is a full embedding of a thick generalized quadrangle @ into a projective -
space X, then the underlying division ring of ¥ is uniquely determined by
Q by Tits [15, 8.6). In view of the existence of quads in dual polar spaces,
a similar conclusion holds for full embeddings of thick dual polar spaces of
rank at least 2. By Kasikova and Shult (10, 4.6], every full embedding of a
thick dual polar space admits the absolutely universal embedding. By the
above we know that the underlying division ring of this absolutely universal
embedding space is uniquely determined by A; in other words: A admits
essentially only one absolutely universal embedding.

1.3 The results

Let K and K' be fields such that K' is a quadratic Galois extension of K.
Let 8 denote the unique nontrivial element in the Galois group Gal(K'/K)
and let n € N\ {0,1}. Foralli,j € {0,...,2n 4+ 1} with i < j, let a;; € K
such that ¢(X) = Yocicjcont1 2i5XiX; 18 a quadratic form defining a
quadric @~ (2n + 1,K) of Witt-index » in PG(2n + 1,K) and a quadric
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Q*(2n + 1, K') of Witt-index n + 1 in PG(2n + 1,K'). Let M+ and M~
denote the two families of maximal subspaces of Q*(2n + 1,K'). Recall
that two maximal subspaces of @Q*(2n + 1,K') belong to the same family
if and only if they intersect in a subspace of even co-dimension.

Let DQ~(2n + 1,K) denote the dual polar space associated with the
quadric @~ (2n + 1,K) (regarded as a polar space of rank n). For every
€ € {+, -}, let S¢ denote the following point-line geometry:

e the points of S¢ are the elements of M¢;
o the lines of S¢ are the (n—2)-dimensional subspaces of Q*(2n+1,K');
¢ incidence is reverse containment.

The geometries ST and S~ are isomorphic and are called the half-spin ge-
ometries for @*(2n + 1,K'). The geometry St admits a full embedding e’
into the projective space PG(2" —1,K') which is called the spin-embedding
of S*. We refer to Chevalley [5] or Buekenhout & Cameron [1] for more
details about the construction of this embedding. For every maximal sub-
space a of Q~(2n + 1,K), there exists a unique element of M* containing
all points of a. We denote this element by ¢(a). Then e := &' 0 ¢ is
a map from the set of points of DQ~(2n + 1,K) to the set of points of
PG(2" - 1,K).

Cooperstein and Shult [6, Theorem 2.4] showed that if K and K' are
finite (so K = F, and K' = F;2 for some prime power g), then e realizes a
full projective embedding of DQ~(2n+1,K) into PG(2"—1,K'). The proof
in [6] makes use of counting arguments and group representation theory.
Because of the use of counting arguments, the proof cannot be extended
automatically to the infinite case. In Section 2 we shall give a different
proof of the fact that e is a full projective embedding. This proof does not
make use of counting arguments nor of group representation theory and is
valid for infinite fields as well.

Theorem 1.1 (Section 2) The map e realizes a full projective embedding
of DQ~(2n+1,K) into PG(2"—1,K'), regardiess of whether K, K' are finite
or not.

Definition. The full embedding e is called the spin-embedding of the dual
polar space DQ~(2n + 1, K).

Without the knowledge that the spin-embedding of DQ~(2n + 1,K) also
exists when K is infinite, one is a priori obliged to state any result regarding
this embedding for the finite case only, while it might very good be possible
that that particular result also holds in the infinite case (maybe even with
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the same proof). So, future results might benefit from our discussion here,
as it might be possible that these results can be stated in a more general
form.

Almost no results are known which describe the structure of general full
embeddings of dual polar spaces. This situation drastically changes if one
assumes that the embeddings under consideration have to be polarized,
see e.g. the papers by Cardinali & De Bruyn (3], Cardinali, De Bruyn
& Pasini [4] and De Bruyn & Pasini [9]. In Section 2, we show that the
spin-embedding of DQ~(2n + 1,K) is polarized.

Theorem 1.2 (Section 2) The spin-embedding of DQ~(2n+1,K) is po-
larized.

Cooperstein and Shult [6, Theorem 2.3] showed that if K and K' are
finite, then the dual polar space DQ~(2n + 1,K) can be generated by 2"
points. Again the proof in [6] makes use of counting arguments. In Section
3, we shall give a different proof which shows that this result also holds for

infinite fields.

Theorem 1.3 (Section 3) The dual polar space DQ~(2n + 1,K) can be
generated by 2" points, regardless of whether K is finite or not.

Recall that er(DQ~(2n+1,K)) < gr(DQ~(2n+1,K)). Now, er(DQ~(2n+
1,K)) > 2" by Theorem 1.1 and gr(DQ~(2n + 1,K)) < 2" by Theorem
1.3. Hence, we can say the following:

Corollary 1.4 (1) The generating and embedding ranks of DQ~(2n+1,K)

are equal to 2™,
(2) The spin-embedding of DQ~(2n + 1,K) is the absolutely universal

embedding of DQ~(2n + 1,K).

De Bruyn and Pasini [9] showed that any full polarized embedding of a dual
polar space of rank n has vector dimension at least 2. Since the absolutely
universal embedding of DQ~(2n + 1,K) has vector dimension 2%, we can
say the following:

Corollary 1.5 Up to isomorphism, the spin-embedding of DQ~(2n+1,K)
is the unique full polarized embedding of DQ~(2n + 1,K).
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2 The spin-embedding of DQ~(2n + 1,K)

Let K and K' be fields such that K' is a quadratic Galois extension of K. Let
6 denote the unique nontrivial element in Gal(K' /K) and let » € N\ {0,1}.

Since K C K/, every point of the projective space PG(2n + 1, K) can be
regarded as a point of PG(2n + 1,K'). Every subspace a of PG(2n + 1,K)
then generates a subspace o' of PG(2n + 1,K') with the same dimension
as . The map 8 : (Xo, ..., Xon+1) — (X§, X¢,..., X5, ,,) is an automor-
phism of PG(2n +1,K'). For every subspace a of PG(2n+1,K'), we define

of == {p’|p€a}.

Lemma 2.1 If a is a subspace of PG(2n + 1,K'), then there exists a sub-
space B of PG(2n + 1,K) such that ana® = f'.

Proof. Suppose a is the subspace of PG(2n+1,K') described by the £ > 0
equations a((,)Xo + a&')xl +- +ag,2+1in+1 =0,1<i<k Let (1,¢)
be a basis of K' regarded as a two-dimensional vector space over K (so,
¢ # ¢) and let 5" and c{” be elements of K such that a{’ = b{" + ecf?
foralli € {1,...,k} and all j € {0,...,2n +1}. Then the subspace a Na’
is described by the following equations

BOXo 4+ 0 Xonpn = 0 (1<i<k), )
“’X0+ e Xy = 0 (1<i<k).

The system (1) also determines a subspace § of PG(2n + 1,K). Obviously,
ana® =g .

For all i,5 € {0,...,2n + 1} with i < j, let a;; € K such that ¢(X) =
20<i<i<2ntl a,,X,X ; is a quadratic form defining a quadric @~ (2n+1, K)
of Witt-index n in PG(2n + 1,K) and a quadric @*(2n + 1,K’) of Witt-
index n + 1 in PG(2n + 1,K'). Let M* and M~ denote the two families
of maximal subspaces of Q‘*’(2n +1,K'). The automorphism 8 of PG(2n +
1,K') fixes @*(2n + 1,K') setwise. So, either M+ = M M- = M-
or M¥* = M=, M~ = M*,

Lemma 2.2 We have M+% = M~ and M~? = M+,

Proof. With respect to a certain reference system in PG(2n + 1,K),
Q™ (2n + 1,K) has equation:

Y+ (0 +80)YoYi + 8P Y2+ VoY + -+ + YonYona =0

for some § € K'\KK Now, let M be the maximal subspace of Q*(2n+1,K')
with equation Yo +6Y; =Y, =Y, =-.- = Y2, = 0. Then M? has equation
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Yo+6°Y, =Ys =Yy =+ = Ya,. So, M N M? has co-dimension 1 in M.
Hence, M and M? belong to different families. The lemma now readily
follows. ]

In the sequel, we will denote by HS(2n + 1,K') the half-spin geometry for
Q+(2n + 1,K') defined on the set M*. Define the following map ¢ from
the points and lines of the dual polar space DQ~(2n + 1,K) to the points
and lines of HS(2n + 1,K').

e If a is a maximal subspace of @~ (2n + 1, K), then ¢(a) denotes the
unique element of M* through o'.

e If a is an (n—2)-dimensional subspace of @~ (2n+1, K), then ¢(a) :=
o

Lemma 2.3 The map ¢ defines an injection from the set of points of the
dual polar space DQ~(2n + 1,K) to the set of points of the half-spin geom-
etry HS(2n + 1,K').

Proof. Suppose a = ¢(8), where f is some point of DQ~(2n+1,K). Then
B Canaol since f' C aand B = B'° C of. If & = af, then by Lemma
2.1 a = anaf =+ for some subspace v of PG(2n + 1,K). This would
imply that + is a singular subspace of @~ (2n + 1,K) of dimension n which
is impossible. Hence, dim(aNaf) < n — 1. Together with ' C ana’ and
dim(8') = n — 1, this implies that 8’ = an of. Hence, 3 is completely
determined by «, proving the lemma. .

Lemma 2.4 ¢ maps lines of DQ~(2n+1,K) to full lines of HS(2n+1,K').

Proof. Let 8 be an (n — 2)-dimensional subspace of @~ (2n + 1,K) and let
#(B) = B’ denote the associated line of HS(2n + 1,K'). Let M denote an
arbitrary element of M* through f'. We must show that M = ¢(a) for
some maximal subspace a of @~ (2n+1, K) through 8. Since 8’ C M, g =
B' € M? and hence ' € M N M?. By Lemma 2.1, M N M? = o for some
subspace a of PG(2n + 1,K). Obviously, « is a subspace of @~ (2n + 1, K).
Since M € M+ and M?® € M~ (recall Lemma 2.2), o' = M N M? has odd
co-dimension in M. Since 8’ C o' and dim(f’') = n - 2, dim(a) = n -1,
i.e., a is a maximal subspace of @~ (2n + 1,K). Obviously, ¢(a) =M. =

Let e’ denote the spin-embedding of HS(2n + 1,K') into the projective
space PG(2" —1,K'). By Shult [12] (see also De Bruyn (8] for an alternative
proof), every hyperplane of HS(2n+1,K') arises from the embedding ¢’. By
Lemmas 2.3 and 2.4, the map e := e’ o¢ defines a full projective embedding
of the dual polar space DQ~(2n+1,K) into a subspace T of PG(2"-1,K').
This embedding is called the spin-embedding of A := DQ~(2n + 1,K).
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Lemma 2.5 Let o € M* ifn is odd and a € M~ if n is even. Then the
set H, of elements of Mt meeting a is a hyperplane of HS(2n + 1,K').

Proof. Notice first that independent of whether n is odd or even, every
element of Mt meets « in a subspace of odd dimension and every element
of M~ meets a in a subspace of even dimension.

Now, let 8 be an arbitrary line of HS(2n + 1,K'). So, 8 is an (n - 2)-
dimensional subspace of @*(2n + 1,K'). If 8 meets o, then every point of
HS(2n + 1,K') incident with the line § belongs to H,.

Suppose that 8 does not meet a. Then there exists a unique maximal
subspace v of @*(2n+1, K') through 8 meeting  in a line L. This maximal
subspace belongs to M and every other maximal subspace of M* through
B is disjoint from a. Hence, precisely one point of HS(2n + 1,K') incident
with the line § belongs to H,. -

The following proposition is precisely Theorem 1.2.

Proposition 2.8 The embedding e : A — T is polarized.

Proof. Let a denote an arbitrary maximal subspace of @~ (2n+ 1, K). Let
at, € € {+, —}, denote the unique element of M¢ through a.

Suppose n is odd. Then by Lemma 2.5 the set of elements of M+ meet-
ing ot is a hyperplane of HS(2n + 1,K') which arises from a hyperplane
7 of PG(2" — 1,K'). Now, a maximal subspace & of Q~(2n + 1,K) meets
a if and only if ¢(@) = at meets a* (two elements of M+ meet in a sub-
space of odd dimension). It readily follows that the singular hyperplane of
DQ~(2n + 1,K) with deepest point « arises from the hyperplane # N T of
z.

Suppose n is even. Then by Lemma 2.5 the set of elements of Mt
meeting o~ is a hyperplane of HS(2n + 1,K') which arises from a hyper-
plane = of PG(2" — 1,K'). Now, a maximal subspace & of Q~(2n + 1,K)
meets a if and only if ¢(&) = &+ meets o~ (an element of M+ meets an
element of M~ in a subspace of odd dimension). It readily follows that the
singular hyperplane of DQ~(2n + 1,KK) with deepest point a arises from a
hyperplane # N X of X. -

The following proposition completes the proof of Theorem 1.1.

Proposition 2.7 We have & = PG(2" - 1,K').

Proof. By De Bruyn and Pasini [9], every full polarized embedding of a
thick dual polar space of rank n has vector dimension at least 2". Hence,
dim(Z) > 2" — 1. On the other hand, we know that ¥ is a subspace of
PG(2" - 1,K'). The proposition follows. .
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3 The generating rank of DQ~(2n + 1,K)

Lemma 3.1 Let H denote a Hermitian variety of Witt-indez 2 in PG(3,K')
with associated involutory automorphism 6. Let H(3,K',8) denote the asso-
ciated Hermitian generalized quadrangle. Then H(3,K',8) can be generated

by 4 points.

Proof. Let V be a 4-dimensional vector space over K' equipped with a
skew-8-hermitian form (-,-) (which is linear in the first and semi-linear in
the second argument) giving rise to the Hermitian variety H of PG(3,K').

Choose four points z;, 2, z3 and 24 in H(3,K',6) such that z; ~
T2 ~ T3 ~ T4 ~ 1 and 7; % z3. Choose vectors @;, ¢ € {1,2,3,4}, in
V such that z; = (a;), (81,82) = (@2,83) = (@3,84) = (G4,81) = 0 and
(@1,a3) = (@2,84) = 1. Consider the following lines:

M1 = 2172
"My = x314
L* = =z124
Ly = (A&]_ + ao, G3 — /\0(34), leK.

Notice that the points (\@; + @2) € M) and (a3 — A\%a4) € M, are collinear
in H(3,K',8). Now, let S denote the smallest subspace of H(3,K',6) con-
taining the points ;, 2, 3 and 4. Then the lines M;, M;, L* and L,
(X € K') are contained in S.

We now show that every line L through z* := (@, +a,) € L* is contained
in S. We may suppose that L # L*. Then there exists a k € K such that

L =(a, +dq4,02 + 083 + k(’i4).

In order to show that L is contained in S, it suffices to show that L meets
at least one line L), A € K'. Now, L meets L, if and only if

1 00 1
011 &%k
x10 o |=9
0 01 =)

i.e., if and only if
A+ X +E=0.

This equation is satisfied if we take A equal to ;gk'_‘—u, where u is an arbitrary
element of K’ \ K This proves that L C S.

So, S contains the singular hyperplane of H(3,K',8) with deepest point
z*. This singular hyperplane is a maximal subspace of H(3,K,8) (recall
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Shult [13, Lemma 6.1]). Since also zz € S, it follows that S coincides with
the whole point-set of H(3,K, ). n

The following proposition is precisely Theorem 1.3.

Proposition 3.2 The dual polar space DQ~(2n + 1,K), n > 2, can be
generated by 2" points.

Proof. We will prove the proposition by induction on n. The case n = 2
has been treated in Lemma 3.1. Suppose therefore that n > 3.

Let M; and M, be two disjoint maxes of DQ~(2n + 1,K), Since M; =
DQ~(2n—1,K), there exists a set X; of 2*~! points in M; which generates
M;. Let S denote the smallest subspace of DQ~(2n + 1,K) containing
XU Xs.

Now, let z be an arbitrary point of DQ~(2n + 1,K). If z is on a line
connecting a point of M; with a point of M,, then £ € S. Suppose z
is not on such a line. Let z; be the unique point of M; collinear with
z and let z2 be the unique point of M; collinear with z,. Since z, z;
and z» are not on a line, they are contained in a unique quad @ which
intersects My and M in the respective lines Ly and L,. Since L,,L; C S
and Q = DQ~(5,K) = H(3,K,0), it follows from Lemma 3.1 that Q C S.
In particular, z € S.

Hence, the dual polar space DQ~(2n + 1,K) can be generated by the
set X7 U X of size 2™. .
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