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Abstract

We introduce the notion of fuzzy K-ideals of K-algebras and
investigate some of their properties. We characterize ascending and
descending chains of K-ideals by the corresponding fuzzy K-ideals.
We discuss some properties of characteristic fuzzy K-ideals of K-
algebras. We construct a quotient K-algebra via fuzzy K-ideal and
present the fuzzy isomorphism theorems.
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1 Introduction

The notion of a K-algebra (G,-,®,e) was first introduced by Dar and
Akram [3] in 2003 and published in 2005. A K-algebra is an algebra built
on a group (G, -, €) by adjoining an induced binary operation ® on G which
is attached to an abstract K-algebra (G, -, ®, e). This system is, in general
non-commutative and non-associative with a right identity e, if (G, -, e) is
non-commutative. For a given group G, the K-algebra is proper if G is
not an elementary abelian 2-group. Thus, whether a K-algebra is abelian
and non-abelian purely depends on the base group G. Dar and Akram
further renamed a K-algebra on a group G as a K(G)-algebra [4] due to
its structural basis G.
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It is well known that the notion of a fuzzy subset of a set was first intro-
duced by Zadeh [10] in 1965 as a method of representing uncertainty. Since
then, fuzzy set theory has been developed in many directions by many
scholars and has evoked great interest among mathematicians and com-
puter scientists working in different fields of mathematics and computer
science, including topological spaces, functional analysis, loops, groups,
rings, semirings, hemirings, nearrings, vector spaces, differential equations,
pattern recognition, robotics, computer networks, expert systems, decision
making theory, and automation. In 1971, Rosenfeld [9] used the concept
of a fuzzy subset of a set to introduce the notion of a fuzzy subgroup of a
group. Rosenfeld’s paper spearheaded the development of fuzzy abstract
algebra. The fuzzy structures of K-algebras was introduced in [1]. In this
paper, we introduce the notion of fuzzy K-ideals of K-algebras and inves-
tigate some of their properties. We characterize descending and ascending
chains of K-ideals by the corresponding fuzzy K-ideals. Some properties of
fuzzy characteristic K-ideals of K-algebras are investigated. Construction
of a quotient K-algebra via fuzzy K-ideal in a K-algebra is given. The
fuzzy isomorphism theorems are also established.

2 Preliminaries

In this section we cite some facts that are necessary for this paper.

Let (G, -, e) be a group in which each non-identity element is not of order
2. Then a K- algebra is a structure K = (G, -, ©, e} on a group G in which
induced binary operation ® : G x G — G is defined by O(z,y) =z 0y =
z.y~! and satisfies the following axioms:

(K1) (z0y)0(z02)=(z0((e®2)© (e ) Ox,
(K2) 20 (z0y) = (z0(c0Oy)) Oz,

(K3) z0z =e¢,

(K4) z0e==z,

(K5) e@z =z}

for all z, y, z € G. If the group (G, -, e) is abelian, then the above axioms
(K1) and (K2) can be replaced by:

(K1) (z0y)0(z02)=20y.
(K2) z0(z0y) =y.



In what follows, K is a K-algebra unless otherwise specified. A nonempty
subset H of a K-algebra K is called a subalgebra [3] of the K-algebra
Kifa®b e H for all a, b € H. Note that every subalgebra of a
K-algebra K contains the identity e of the group (G,-,e). A mapping
f: K = (G1,,0,e1) = K2 = (Ga,",0,e2) of K-algebras is called a
homomorphism [5] if f(z®y) = f(z) © f(y) for all z,y € K;. A nonempty
subset A of a K-algebra K is called K-ideal of K if it satisfies the following

conditions:

(a) e€ A,

(b) (Vz,9,2€G) (zO(yOz2) €A yO(y0z) €A = Oz € A).
Let u be a fuzzy seton G, i.e,, amap p: G — [0,1].

Definition 2.1. [9] A fuzzy set x in a group G is called a fuzzy subgroup*
of G if it satisfies:

e (Vz,y € G) (u(zy) 2 min{u(z), p(y)}).
o (Vz € G) (p(z™!) 2 u(z)).
Definition 2.2. [9] A fuzzy subgroup p of a group G is said to be normal

if it satisfies:
(Vz,y € G) (p(zy) = p(yz))-

Definition 2:3. [1] A fuzzy ideal of a K-algebra K is a mapping p2: G —
[0, 1] such that

(©) (Vo € G) (u(e) 2 u(a),
(@) (V2,5 € G) (u(e) = min{u(z ©), 4y © (y O T))}).

Proposition 2.4. [1] Let K = (G,,®,¢€) be a K-algebra in which the
operation “®” is induced by the group operation. Then every fuzzy subgroup
of (G,-,e) is a fuzzy subalgebra of K and vice versa.

Proposition 2.5. [1] p is a fuzzy ideal of a K-algebra K if and only if p
is a fuzzy normal subgroup of G.
3 TFuzzy K-ideals of K-algebras

Definition 3.1. A fuzzy set p in a K-algebra K is called a fuzzy K-ideal
of K if it satisfies the following conditions:

(i) (vz € G) (u(e) 2 u(z)), |
(ii) (Vz,9,2 € G) (u(z © z) Z min{p(z © (y © 2)), u(y © (y © 2))})-
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Example 3.2. Consider the K-algebra K = (G,-,®,€e) on the Dihedral
group G = {e,a,u,v,b,z,y,2} where u = a%, v = a®, z = ab, y = a?b,
z = a®b, and @ is given by the following Cayley’s table:
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Let u be a fuzzy set in K defined by pu(e) = 0.8, u(t) = 0.06 for all ¢ # e.
Then p is a fuzzy K- ideal of K.

Putting z = e in Definition 3.1(ii) and using (K'4) induce that every
fuzzy K-ideal is a fuzzy ideal.

Theorem 3.3. Let u be a fuzzy set in a K-algebra K. Then p is a fuzzy
K- ideal of K if and only if the set py, :={z € G | u(z) > m}, m € [0,1],
is a K-ideal of K when it is nonempty.

Let p be a fuzzy set in a K-algebra K. For any w € G, we consider the
set Qy, := {z € G | pu(z) = p(w)}. Obviously, w € Q. If u is a fuzzy K-
ideal of K, then e € Q,,. The following question aries : For a fuzzy set u
in K satisfying p(e) 2 p(z © 2) for allz € G, is py, a K- ideal of K2 The
following example gives negative answer, that is, there exists w € G such
that 2, is not a K- ideal of K.

Example 3.4. Consider the K-algebra K = (S3,+,®, €) on the symmetric
group S3 = {e,a,b,z,y,2} where e = (1), a = (123), b = (132), z = (12),
y = (13), z = (23), and @ is given by the following Cayley’s table:

Ole z ¥y z a b
ele z y z b a
z|z e a b z y
y|ly b e a z =z
z|z a b e y =z
afla 2z z y e b
blb vy z =z a e

Let p be a fuzzy set in K defined by pu(e) = 0.8, u(a) = 0.6, u(b) = 0.5,
p(z) = 0.3, p(y) = 0.2, p(z) = 0.1. Then p is not a fuzzy K-ideal of K

402



because
p(b©y) Z min{u(d O (z O y)), u(z @ (z b))}

Note that Q, = {e, a,b, z,y} is not a K-ideal of K since @ (zOy) = b®a =
aeQandz@(z0b)=a€Q, butbOy=2¢Q,.

Theorem 3.5. Let u be a fuzzy set in a K-algebra K and let w € G.
(i) If Q. is a K- ideal of K, then p satisfies the following implicationé

(Vz,y, 2z € G)(p(w) < min{u(zO(¥O2)), u(yO(yOz))} = p(w) < (u()woz'))-
1

(ii) If u satisfies conditions Definition 3.1(i) and (1), then Q,, is a K-ideal
of K.

Theorem 3.6. Let u be a fuzzy set in G andIm(u) = {ax | k=0,1,2,--- ,n},
where qp > a1 > +++ > an. IfAp C Ay C -+ C Ax = G are K-ideals of K
such that p(Ai \ Ak-1) = ax fork=0,1,--- ,n where A_; = 0. Then u
is a fuzzy K-ideal of K.

Corollary 3.7. Let u be a fuzzy set in G andIm(u) = {ox | k=0,1,2,--- ,n},
where ag > ay > -+ > . If Ag C A1 C -+ C Ax = G are K-ideals of K
such that u(Ax) > ax for k=0,1,--- ,n. Then p is a fuzzy K-ideal of K.

Since I'm(u) is a bounded subset of [0, 1], we can consider Im(u) as a
sequence which is either increasing or decreasing.

Theorem 3.8. Let K be a K-algebra in which every descending chain
Gi1 D G2 D -++ of K-ideals of K terminates at finite step. If p is a fuzzy
K -ideal of K such that a sequence of elements of Im(p) is strictly increasing,
then u has finite number of values.

Theorem 3.9. Let p be o fuzzy K-ideal of a K-algebra with the finite
image. Then every descending chain of K-ideal of K terminates at finite

step.

Proof. Suppose that there exists a strictly descending chain 4p O A; D
Ay D -+ of K-ideals of K which does not terminate at finite step. Define
a fuzzy set y in G by

n s
o— n+l lszAn\An+1,n=0,1,2,---,
#(=) '—{ I i 2 e N2y Any
where Ag = G. We prove that p is a fuzzy K-ideal of K. Clearly p(e) > p(z)
for all z € K. Let z,y,2z € K. Assume that z©® (y © 2) € A, \ An41 and
YO (yOzx) € A\ Ak forn =0,1,2,---;k=0,1,2,--. . Without loss of
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generality, we may assume that n < k. Then obviously y © (y ® z) € A,,
and so £ ® z € A, because A, is a K-ideal of K. Thus

Kz ©2) 2 iy =min{u(z 0 (y© 2)), p(y © (y © 2))}.
Ifa:@ (y@z),yO (y@x) € n:?___oAna theu zOz€ n:;oAn' Thus
pwz®z2) =1=min{u(z O (y © 2)), s(y © (y ® z))}.

fzOWO2) ¢ NheoAn and y© (y © z) € 72y An, then there exists
k € N such that z® (y© z) € Ax\ Ag+1. It follows that 2 ® z € Ax so that

pw(z ©z) 2 giy = min{u(z O (y 0 2)), 4y © (y © 2))}.

Finally, suppose that 2@ (y ®2) € (fheoAn 2nd y O (y O z) ¢ Moy An-
Then y ® (y©® ) € A, \ Ar41 for some r € N. Hence z ® z € A, and so

wz © z) 2 7 =min{u(z 0 (y 0 2)), u(y © (y © 2))}.

Consequently, we conclude that p is a fuzzy K-ideal of K and u has infi-
nite number of different values. This is a contradiction, and the proof is
complete. O

Theorem 3.10. Every ascending chain of K -ideals of a K -algebra K ter-
minates at finite step if and only if for any K-fuzzy ideal 1 of K, Im(p) is
well-ordered subset of [0, 1].

Proof. Suppose that  is not well-ordered subset of [0, 1]. Then there exists
a strictly decreasing sequence {ay, } such that a,, = p(z,) for some z,, € K.
But in this case By, := {z € K| p(z) > a,} form a strictly ascending chain
of K-ideals of K which is not terminating. This is a contradiction. So,
Im(p) must be well-ordered subset of [0, 1].

Conversely, suppose that there exists a strictly ascending chain 4; C 45 C
A3 C ... of K-ideals of X which does not terminate at finite step. Then

A= U Ay, is a K-ideal of K. Define on G a fuzzy set p by putting
k=1

L for z€ Ax\A
_ J % for z € Ap\Ag-a,
u(z) = { for o & A.

It is easy to see that u(e) > u(z) for all z € K. Let z,y,2 € K. We consider
the case z,y,z € K. In this case there are m,n such that z® (y© 2) €

An\Ap—1, YO (¥ O z) € An\Am-1. Obvmusly TO2z € Ap\Ax_, C A,
where k < p = max{m,n}. So, p(z® ¥ ®2)) = %, p(yO(¥Oz)) = L and

(z@z):% 1 =min{u(z O (y© 2)), sy © (y © 7))}



Now we consider the case 20 (y®2) ¢ 4, y© (y©z) € A. In this case
YO (y@z) € An\Am—1 for some natural m. Hence u(z ® (y © 2)) = 0,
p(y © (y © x)) = &, consequently

p(z ©y) 2 0 =min{u(z® (y 0 2)),u(y © (y © z))}.

Thecase @ (y©®2) € A, yO (y® ) ¢ A is analogous. The last case
2O(y0z2) ¢ A, yO(yOz) ¢ A. is obvious. Thus y is a fuzzy K-ideal of K.
This proves that p is a fuzzy K-ideal. Since the chain Ay C Ay C A3C...
is not terminating, u has a strictly descending sequence of values. This
contradicts that the value set of any fuzzy K-ideal is well-ordered. This

completes the proof. 0

We note that a set is well ordered if and only if it does not contain any
infinite descending sequence.

Theorem 3.11. Let K be a K -algebra and let S = {t; | i =1,2,3,--}Ju{0}
where {t,} is a strictly descending sequence in (0,1). Then the following
assertions are equivalent:

(i) For every ascending sequence A1 C A2 C A3 C ... of K-ideals of K
there exists a natural number n such that A; = A, for alli > n.

(ii) For each fuzzy K -ideal p of K, Im(u) C S implies that there ezists a
natural number ng such that Im(p) C {t; | i =1,2,3,--- ,np} U {0}.

Proof. If (i) holds, then from Theorem 4.1.14 follows that Im(u) is a well
ordered subset of [0, 1] and hence (ii) is valid. Suppose that (ii) is true. If
the condition (i) is not valid, then there exists a strictly ascending chain
A; C A; C Az C ... of K-ideals of K. Define a fuzzy set p in K-algebra

by

t, if z€ A,
p(z) ;== tn if € Ap\An-1,n=2,3,4,---
0 if ze G\Unz; An.

Since e € A1, u(e) =t; 2 p(z) for all z € G. Let z, y, z € G. If either
2O(y®2) or y©(yOx) belongs to G\ |J;Z; An, then either p(z0(y©z)) =0
or u(y © (y®z)) = 0. Thus

p(z ® 2) 2 min{u(z © (y © 2)), u(y © (y © 2)) }.
fzO(y02),y0(yOz) € A, then 2O 2z € 4; and so
p(z © 2) = t1 2 min{u(z © (y © 2)), u(y © (y © 2))}.
fzO(y02),y®(yOz) € Ax\An-1, then 20 2 € An. Thus
#(z © 2) 2 tn = min{u(z © (y © 2)), u(y © (y © 2))}.
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Assume that 2O (y©z) € A; and y©O(yOz) € Ap\Apn-1forn=2,3,4,-.-,
then z ® z € A, and hence

Bz © 2) 2 tn = min{t;, ta} = min{p(z © (y © 2)), 4(y © (y © 2))}.
Similarly for z® (y®2) € Ap\An-1 and yO (y©z) € A forn =2,3,4, .-,
we have

#z @ 2) 2 tn =min{u(z © (y © 2)), u(y © (y © 2))}.
Hence p is a fuzzy K-ideal of K-algebra. ]

3.1 Fuzzy Characteristic K-ideals

Definition 3.12. A K-ideal H of K-algebra is said to be characteristic
if f(H) = H, for all f € Aut(K), where Aut(K) is the set of all auto-
morphisms of a K-algebra K. A fuzzy K-ideal p of a K-algebra K is
called a fuzzy characteristic if uf(z) = p(f(z)) = p(z) for all z € G and
f € Aut(K).

Lemma 3.13. If {u;|¢ € I} is a family of fuzzy fully invariant K -ideals
of K, then \;c1 pa, is a fuzzy characteristic K -ideal of K, where

N\ pay(z) = inf{pa,(x)|i€ I, z € G}.

iel
Theorem 3.14. Let H be a nonempty subset of a K-algebra K and let p
be a fuzzy set defined by

u(z) = {
where 0 < oy < o < 1. If H is a fuzzy characteristic K-ideal of K, then
i i8 a fuzzy characteristic K-ideal of K.

Proof. Clearly, u(e) > p(x) forallz € G. Letz,y,2 € G. If z0(y02) ¢ H,
then p(z ® (y® 2)) =t; and so

wz©2) 2 ap =min{u(z O (y 0 2)), 4y © (y © ))}.

as ifzx€H,
a; otherwise,

Assume that z® (y© z) € H. If £ ® z € H then y © (y ® ) may or may
not be belong to H. In any case,

wz O z) = az 2 min{p(z O (y © 2)), u(y © (y O 2))}.
Ifz®2¢ H then y® (y ©z) ¢ H because H is a K-ideal. Thus
Hz©2) = a1 = min{u(z O (y © 2)), p(y © (y © z))}.



Hence p is a fuzzy K-ideal of K.
Let z € G and f € Aut(K). If z € H, then f(x) € f(H) C H. Thus

(@) = p(f(2)) = a2 = p(z),
Otherwise,
! (z) = p(f(2)) = o1 = ().
Hence p is a fuzzy characteristic K-ideal of K. a

Lemma 3.15. Let pu be a fuzzy K-ideal of a K-algebra K and let x € G.
Then p(z) =t ifand only if c € py and z & s , foralls >t .

Proof. Straightforward. |

Theorem 3.16. A fuzzy K-ideal is characteristic if and only if each its
level set is a characteristic K -ideal.

Proof. Suppose that 4 is fuzzy characteristic and let t € Im(y), f €Aut(K)
and z € p¢. Then

pf (z) = p(z) 2 t = p(f(z)) 2t = f(z) € pe.
Thus f(u:) C pe. Let = € p and y € G such that f(y) = z. Then
p@) =p (v) = (@) =pz) 2t =y € p

so that z = f(y) € u:. Consequently, p: C f(u:). Hence f(u:) = pu, i.e.,
¢ is characteristic.

Conversely, suppose that each level K-ideal of u is characteristic and let
z € G, f € Aut(K) and p(z) = t. Then, by virtue of Lemma 4.1.19, z € p,
and = ¢ p, , for all s > t. It follows from the assumption that f(z) €
f(ue) = e, so that pf (z) = p(f(z))) 2 ¢ Let s = pf(z) and assume that
s > t. Then f(z) € pus = f(us), which implies from the injectivity of f
that © € p,, a contradiction. Hence uf(z) = u(f(z)) = t = pu(z) showing
that u is fuzzy characteristic. O

Definition 3.17. Let x and A be fuzzy K-ideals of K. Then p issaid tobe a
fuzzy same type with A if there exists f € Aut(K) such that u(z) = A(f(z))
for all z € G.

Theorem 3.18. Let u and A be fuzzy K-ideals of K. Then the following
are equivalent:

(i) p is fuzzy same type with A,
(ii) po f =\ for some f € Aut(K),



(ili) g(p) = A for some g € Aut(K),
(iv) h()) = p for some h € Aut(K),
(v) there exist h € Aut(K) such that U(u;t) = h(U(A;t)) for allt € [0, 1].

Proof. (i) = (ii): Proof follows immediately from Definition 4.1.21.
(ii) = (iii): Suppose that po f = A for some f € Aut(K). Then u(f(z)) =
A(z) for all z € K. It follows that

) (=) = sup u(y) =p(f(z)) =X(z) forallx,y €G.
vef(z)
If g = f~1, then g € Aut(K) and g(p) = A
(iii) = (iv): Suppose that g(x) = A for some g € Aut(K) holds. Then

Mz)=g(p)= sup p(y)=p(g~'(z)) forallx, y €G.
yE€g—1(x)

Hence

g Hz) = sup Ay) = Mg(v)) = u(g™ (g(x))) = u(z), forall x, y €G.

If h = g~1, then h € Aut(K) and h()) = p.
(iv) = (v): If there exists h € Aut(K) such that A(A) = p, then

p(x) =h(A)z) = sup A(y) = AMh~(z)), forallx, y €G.
y€h—1(z)

Let ¢t € [0,1). We need to show that U(u;t) = h(U(At)). If z € U(y;t),
then Mh~1(z)) = p > t which implies that h=(z) € U();t), ie. = €
h(U(A;t)). This shows that U(u;t) € h(U(A;t)). On the other hand, let
T € h(U();t)). Then h~1(z) € U()t) and so p(z) = A(h~Y(z)) > ¢t. It
follows that = € U(p;t). Hence h(U(A;t)) C U(u;t) and (v) holds.

(v) = (i): Suppose that there exists » € Aut(K) such that U(y;t) =
h(U(X;t)) for all ¢ € [0,1]. Let z € K and p(z). Putting A(h~(z)) = s,
then h=!(z) € U(); s) and hence z € h(U();s)) = U(y; ). It follows that
w(zx) > s = A(h~1(z)). Hence u(z) = A(h~(z)) for all z € K. Indeed
h~! € Aut(K), then u is fuzzy same type with A. This completes the
proof. O

Theorem 3.19. Let p and A be K-fuzzy ideals of K. Then p is a fuzzy
K -ideal having the same type of A if and only if u is isomorphic to \.

Proof. We only need to prove the necessity part because the sufficiency
part is trivial. Since u is a fuzzy same type with A, there exists ¢ € Aut(K)

such that
u(z) = A(f(z)) for allx, y €G.



Let f : u(K) — A(K) be a mapping defined by f(u(z)) = A(¢(z)) for all
z € K. Clearly f is surjective. Next, f is injective because if f(u(z)) =
f(u(y)) for all 2, y € K, then A(¢(z)) = M$(y)) and hence u(z) = Afy) for
all z, y € K. Finally, f is homomorphism because for z, y € K,

f(u(z © ) = Mz ©9)) = Ad(z) © 6(¥)).

Hence p is isomorphic to A. O

3.2 Quotient K-algebras via fuzzy K-ideals

Definition 3.20. A quotient K-algebra is a K-algebra that is the quotient
of a K-algebra K and one of its ideal I, denoted X/I. Let I be a K-idea of
K, thenforallz, y € Kand 201, yOI € K/I, we define (z0I)O(yo0I) =
(zoy)ol.

Theorem 3.21. Let I be a K- ideal of a K-algebra K. If p is a fuzzy
K -ideal of K, then the fuzzy set p* of K/I defined by

p*(a©I) = supp(e © z)
zel

* is a fuzzy K -ideal of the quotient algebra K/I of K with respect to I.

Proof. Clearly, u* is well-defined. It is easy to see that u*(e) > u*(z© I)
forallz@IeK. Letz®I,y0 1,201 € K/I, then

p((zo)o(zel) = pi((e2)ol)
= sgl;n((wGZ)Gu)
= sup pzO2)O(sOt)
u=s@®tel

z sup min{u(z ® (y © 2)) ® 8), u((y © (y O 2)) O 1)}

= min{itelr;#(m O(y02)0s, stg?u((y o (yoz))ot)}
= min{p'(zOYO2)0Lp*'(yo (yoz)oI)}

Hence u* is a fuzzy K-ideal of K/I. [}

Theorem 3.22. Let I be a K-ideal of a K-algebra K. Then there is a
one-to-one correspondence between the set of fuzzy K-ideals pp of K such
that p(e) = u(s) for all s € I and the set of all fuzzy K-ideals p* of K/I.



Proof. Let p be a fuzzy K-ideal of K. Using Theorem 3.21, we prove that

u* defined by
peol)= sur;u(a © 1)
z€

is a fuzzy K-ideal of K/I. Since u(e) = u(s) for all s € I, by straightforward
verification, we have p(a®s) = p(a) for all s € I, that is, p*(a© I) = u(a).
Hence the correspondence y +— u* is one-to-one. Let u* be a fuzzy K-ideal
of K/I and define fuzzy set p in K by pu(a) = p*(a©I) for alla € I.

For z, y, z € K, we have

p((zoz)0l)

p((zol)o(z01))

min{g*(z O (y02) 0L, (0 (yoz))0I)}
min{x(z © (y © 2)), u(y © (y © 7))}

Thus p is a fuzzy K-ideal of K. Note that u(z) = p*(20I) = p*(I) for all
z € I, which shows that u(z) = p(e) for all z € I. This ends the proof. O

p(z O 2)

v

Theorem 3.23. Let u be a fuzzy K -ideal of a K-algebra K and let p(e) = t.
Then the fuzzy subset p* of K/U(u;t) defined by p*(z © U(p;t)) = p(z)
for all z € K is a fuzzy K-ideal of K/U(i;1).

Proof. u* is well-defined because

z0Uwt) = yoU(mt)Va,yed

tQyeU(yt)

uwz O y) = ple)

p(z) = p(y)

p*(z O U(p(z);t)) = p*(y © U(u(z); t)).
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Next we show that p* is a fuzzy K-ideal of K. Clearly, pu*(e) 2 u*(z ©
U(u(z);t)) for all z € K. For z, y, 2 € K,

U(z©2) 0T (u,t)) = plz©2) > min{p(z Oy O 2)),x(y® (¥ © )}
= min{U*(z© (y©2) @ T(u,t))
, U'yooz) +U(gt)}.

This completes the proof. O

Theorem 3.24. Let p be a fuzzy K-ideal of a K-algebra K and let f be
a fuzzy ideal of K/I such that f(x ® I) = f(I), then x € I there ezists a
fuzzy K -ideal p of L such that U(u;t) = I, where p(e) =t and f = u*.
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Proof. Define a fuzzy K-ideal p of K by u(z) = f(z ©I) forallz € K. It
is easy to see that p is fuzzy K-ideal of K such that U(u;t) = I because

& p(z) =t=pe)
& f(zol)=fI)
o zel.

We conclude that y* = f because
pr(zol)=p (z0Ut)) = pz) = fzoI).
This ends the proof. O

Theorem 3.25. (Puzzy correspondence theorem) Let f : Ky — Ky be a
homomorphism of K-algebras K, onto Kz. Then the following hold:

() If p is a fuzzy K-ideal of K1, then f(u) is o fuzzy K-ideal of K,
(ii) If X is a fuzzy K -ideal of K3, then f~1(}) is a fuzzy K-ideal of K.
Proof. Straightforward. |

Let u be a fuzzy K-ideal of a K-algebra K. For any z, y € K, define a
binary relation ~ on K by z ~ y if and only if u(z®y) = u(e). Then ~isa
congruence relation of K. We denote p[z] the equivalence class containing
z, and K/pu = {u[z] | = € K} the set of all equivalence classes of K. Then

K/u is a K-algebra under the following operation:
plr)Oply)=plzoy] foralx, y €G.

Theorem 3.26. (First fuzzy isomorphism theorem) Let f : Ky — K be
an epimorphism of K-algebras and let p be a fuzzy K-ideal of Ko. Then

Proof. Define a map 6 : #thsy — 2 by 8(f~'(u)[z]) = ulf(z)]. 6is
well-defined since
W) = F (W)
= i)z oy) = (1))
= p(f(z) © f(¥)) = p(f(e)
= p(f(z) © f(v)) = p(e),
i.e., p[f(z)] = ulf (¥)]-
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@ is one to one because
plf ()] = plf(¥)]

= u(f(2) © f(y)) = ule)
= u(f(z) © f(y)) = u(f(e))
= [~ u)(z0y) = f (u)(e)
= 7)) = fF~H))-

Since f is an onto, @ is an onto. Finally, 8 is a homomorphism because

6(f w0 T W) = 6 (wlzoy)
= plf(z0y)]
= plf(z) © f(y)]
= plf(@)]oplf)
= 6(f~'(1)[=z]) @ 6(F  (w)[y))-

Hence K K

i)~ o

IR

O

We state the following fuzzy isomorphism Theorems without proofs.

Theorem 3.27. ( Second fuzzy isomorphism theorem) Let p be a fuzzy
subalgebra of K -algebra and let A be a fuzzy K-ideal of a K -algebra. Then

(i) A is a fuzzy K-ideal of p® A,
(i) pN A is a fuzzy K-ideal of p,
(ili) £9* = Ay

Theorem 3.28. (Third fuzzy isomorphism theorem) Let ICy be a K -algebra
having fuzzy K -ideals p and X with u < X. Then
(i) g is fuzzy K -ideal of E;,
i Ky A K
(i) 2/ =3

Lemma 3.29. (Fuzzy Zassenhaus lemma ) Let i and X be fuzzy subalge-
bras of a K-algebra K and let 1y and A1 be fuzzy K-ideals of p and ),
respectively. Then

(a) 1 © (BN A) is a fuzzy K-ideal of 11 © (pN A),
(b) M ®© (1N A) is a fuzzy K-ideal of My © (pNA),

(c) 10(pNA ~ M O(pNA
#10(pNA1) ™ A1O(p1NA)°
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4 Conclusions

In the present paper, we have presented some properties of fuzzy K-ideals
of K-algebras. The obtained results can be used in various fields such as
artificial intelligence, signal processing, multiagent systems, pattern recog-
nition, robotics, computer networks, genetic algorithm, neural networks,
expert systems, decision making, automata theory and medical diagnosis.
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