On The Gracefulness of The Digraphs n — Crn
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Abstract
A digraph D(V, E) is said to be graceful if there exists an
injection f : V(D) —=+4{0,1, :--, |E|} such that the in-
duced function f : E(D)—{1,2, ---,|E|} which is defined

by f (u,v) = [f(v) — f(u)] (mod (|E| + 1)) for every directed
edge (u,v) is a bijection. Here, f is called a graceful label-
ing(graceful numbering) of digraph D(V, E), while f' is called
the induced edge’s graceful labeling of digraph D(V, E). In
this paper, we discuss the gracefulness of the digraph n — Cn
and prove the digraph n — Ci7 is graceful for even n.
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1 Introduction

A graph G(V, E) is said to be graceful if there exists an injec-
tion f : V(G) = {0,1,---,|E|} such that the induced function f' :
E(G) = {1,2,---,|E|} which is defined by f'(u,v) = |f(u) — f(v)|
for every edge (u,v) is a bijection. Here, f is called a graceful label-
ing (graceful numbering) of G, while f' is called the induced edge’s
graceful labeling of G.

A digraph D(V, E) is said to be graceful if there exists an injec-
tion f : V(D) = {0,1,--+,|E|} such that the induced function [ :
E(D) = {1,2,---,|E|} which is defined by f'(u,v) = [f(v) — f(u)]
(mod |E| + 1) for every directed edge (u,v) is a bijection, where [v]

(mod n) denotes the least positive residue of » modulo n.

Let C,, denote the directed cycle on m vertices, n — C,. denotes
the graph obtained from any n copies of Cyn which have just one

common edge.

As to the gracefulness of n—Cp, we know the following results: Ma
has showed in (3] that n— Cs is a graceful graph. Xu, Jirimutu et al.
have proved that n — Cp, is a graceful digraph for m = 4, 6, 8,10,12
and even n in [5], and for m = 5,7,9,11,13,;m = 15 and even n
in [6],[7], respectively. In [?], Wei Feng and Jirimutu put forward a
conjecture and a problem as following:

Conjecture 1. For any positive even n and any integer m > 14,
the digraph n — C,, is graceful .

Problem 1. For any positive odd n and any integer m > 14,
whether the digraph n — Con is graceful ?

In this paper, we discuss the gracefulness of the digraph n — C,,
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and prove the digraph n — Chz is graceful for even n.

2 Main Results

Let C1,C2,--- ,Cn denote n directed cycles of digraph n — C.
Two vertices of common edge of Ci,’s are denoted by vy and vy,_1,
respectively. Other m — 2 vertices of Ci, are denoted by 'u; for j =
1,2,...,m—2and i = 1,2,...,n. For convenience, we put v} =
B=-=v] =, vk =vi | = =v%_| =vn_, and take
subscripts j’s modulo m. Obviously, |[E(n — C)| = (m - 1)n + 1.

Suppose that n— Cnis graceful, f and [ areits graceful labeling
and the induced edge’s graceful labeling, respectively. For every ¢, it

is easy to see that

m—1 m-1 m-1
3 (@) - i) =Y fH-D f(¥5) =0 (mod ((m—1)n+2)),
i=0 j=0 j=0
which means that there exists an integer k;, such that
m-—1
3@ - f@im)] =k((m=1)n+2), 1<i<n).  (21)
j=0

It implies that there exists an integer k, such that

n m—1
3> [f)) = F(@5-1)] = k((m = 1)n +2). (2.2)
i=1 j=0
On the other hand, put ¢ = |E(n — Cp)| = (m — 1)n + 1 and
d = [f(vo) — f(vm-1)], according to the definition
n m—l

3 () - £(vi-)] = (2= 1)d+ 3ala +1) = kg + 1)(23)

i=1 j=0
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We obtain the necessary condition of n — Gy, is graceful as follows:
(n—1)d=0 (mod @). (2.4)

Considering the range of n, we often let f(vw) = 0 and f(vpm—1) =
9{—1 in following discussion. So, d = [f(v) — f(Vm-1)] = [—1';'—1] =
%ﬂ (mod (g + 1)), it satisfies the condition of (2.4).

Putd = 9—*'2—1 into (2.3), then

(n—1)(L32) + (3a(a +1) = k(g +1),

and ) Dl
—_ - +
n + n(m - 1) _

2 2
namely, nm = 0 (mod 2). So, we obtain the following Lemmas.

k,

Lemma 1. For any positive integer n, and m > 3, the necessary
condition of the digraph n — C, is graceful is nm = 0 (mod2).
Lemma 2. If nm = 1(mod2), then n — Cp, is not graceful.
Lemma 3. If n — C,, is graceful and f(vo) = 0, then we have

f ('Um—l) = Q_;i
Theorem 1 For any positive even n, the digraph n—Cyy is graceful.

Proof. We define the vertex label f of n — 517 as follows:

f(v0) =0, f(vie) =8n+1.

f L;—l'n'!‘z, Jj=13:i=1,2, ... y
Yn+1-4, i=24i=12,---,n
f(v_é):{ (221_1)"'-‘-'-,%_1]'*'7:’ j=57i=1,2, ---,n
4(.7_5)n+.%4_7’? j=6181i=112’°"7n
5n+1—4, i=10,i=1,2,--- n
. 15n + 1 +1, _7=15,z=1,2,,n

424



m+1+1, i=9i=12 -+, %

12n+ 2 +1, j=9%i=%+1%4+2,---, n
12n + 1 + 14, j=1,i=1,2, ..., 2
F(oh) = < 10n +1 +7, i=14i=%+4+1,%+2---,n
! G-5m+2—i, j=12,14,i=1,2 ---, 2
(G-3n+2-4, j=12,14,i=3%+1, §+2,---, n
6n +1, j=13,i=1,2, ---, 2
13n+ 2 + 1, j=13,i=%+1,%+2,---, n

\

For any integers a < b, let [a,b] denote the set of all consecutive

integers from a to b.

Firstly, we show that f is an injective mapping from V(n — Cy7)
into [0, 16n + 1].

For j € [0,16], put S; = {f(v;)lz € [1,n]}, and set S;; =
(Ol € (131} 52 = {f@Dli € [§ +1,n]}. Then

So  ={f(v)}=1{0}

S1 ={f(})} ={1,2,--- ,n}

S3  ={f(§)}={n+1Ln+2,-,2n}

Sy ={f(¥)}={2n+1,---,3n-1,3n}

S¢  ={f(§)}={3n+1,---,4n~1,4n}

S0 ={f(vio)} ={4n+1,---,5n - 1,5n}

Sy ={f(v)}={5n+1,--- ,6n—1,6n}

S131 ={f(vis)} ={6n+1, - ,6n+3}

S12,1 ={f(v{2)}={6n+-2'5+2,---,7n+1}

Sop ={f(vd)}={Tm+2,--,Tn+ 3 +1}

Si6 = {f(vie)} ={8n+1}

S22 ={f(¥i2)} ={8n+2,8n+3,-- ,8n+ 3 +1}
Sy ={f(id)}={8n+%3+2,8n+3%+3,--- ,9n+1}
Ss  ={f(})} ={9m+2,9n+3,---,10n+1}
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Sz ={f(viy)}={10n+2,10n+3,---,10n + & + 1}
Sunz ={f(i{1)} ={10n+3+2,10n+ § +3,--- ,1ln+1}
Ss  ={f(v§)}={1in+2,11n+3,---,12n+ 1}
Sup ={f@i}={12n+2,12n+3,--- ,12n+ 2 +1}
So2 ={f(v§)}={12n+3+3,12n+3,--- ,13n + 2}
Srp ={f(v§)} ={13n+3,13n+4,--- ,13n+ % + 2}
Sis2 ={f(i3)} ={13n+ 2 +3,13n+ 3 +4,--- ,14n + 2}
Sr2 ={f(§)}={14n+3+2,14n+%+3,.-- ,15n +1}
Sis = {f(vis)} ={15n+2,15n+3,--- ,16n+ 1}
It is obvious that $;NS; = & for 4,5 € [0,m—1] and ¢ # 7, which
yields that f is an injection from V(n — Cy7) into [0, 16n + 1].
Secondly, we show the induced edges labeling f is a bijection from
E((n—Cy7) onto [1,16n+1]. Set [f(vi) — f(vi_;)] = f(v}) - f(vi_,)
(mod ((m — 1)n + 2)).

Denote B; = Bj,; U Bj2, where

Bj1 = {[f(v}) - f(v}_1)]li € [0,18], i € [1, 3]}
Bja = {[f(v;) — f(v;_1))l7 € [0,16], i € [§ +1,n]},

16
and let B = (J Bj. Then, in order to prove that f’ is a bijection, it
=0
suffices to show B = [1,16n + 1], or [1,16n + 1] C B equivalently.
(V)For j =1,i € [1,n], By ={1,2,---,n}=[1,n].

(2)For j=2,i€[l,njand j =9, i€ [F+1,n]Jand j =14, i €

(1,3}, we have
BaUBgaUBy ={n+1,n+2,---,3n} =[n+1,3n],
which and (1) imply [1,3n) C B.
(8) For j =4, i € [1,n] and j =5, i € [1,n], we have

ByUBs ={3n+1,3n+2,---,5n} = [3n+ 1, 5n],
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which and (2) imply [1,5n] C B.
(4) For j =15, i € [1,n] and j = 11,13, i € [§ + 1,n] , we have

BisUBj12UBy30 ={n+1,5n+2,.---,7n} = [5n + 1, 7n],

which and (3) imply [1,7n] C B.
(5)For j =10, i€ [1,%]and j =11, i € [1,}]] and j =0, i €
[1,n] and j = 16, ¢ € [1,n], we have
BoUByopUB11)UBg ={Tn+1,"m+2,..- ,9n+1}
=[Tn+1,9n+1],
which and (4) imply (1,97 + 1] C B.
(6) For j =6, i€ [1,n] and j = 7,12, i € [1, }], we have
BgUB71UBjp; ={9+2,9m+3,..-,1ln+1}
= [9n +2,11n + 1],
which and (5) imply [1,11n + 1] C B.
(7) For j=17,8,14, i€ [ +1,n}; i =9, i € [1,§], we have

By U 38,2 UBu2UBg: = {11n+2,11n+3,--- ,13n + 1}
= [11n +2,13n + 1],

which and (6) imply [1,13n + 1] C B.
(8) For j = 10,13, i € [1,3]; 7 =3, i € [L,nJand j = 12, i €
[ + 1, 7], we have

By, 1UB131UB3UBy32 = {13n +2,13n + 3,--- ,16n + 1}
= (13n + 2,16n + 1],
which and (7) imply [1,16n + 1] € B. So f’ is an bijection, which
completes the proof of n — Ci7 is graceful for even n. m]
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