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Abstract

Four new combinatorial identities involving certain generalized
F-partition functions and n-colour partition functions are proved
bijectively. This leads to new combinatorial interpretations of four
mock theta functions of S. Ramanujan.

1 Introduction, Definitions and the Main Re-

sults

Recently in [1], the first author gave n-colour partition theoretic interpre-
tations of the following mock theta functions of S. Ramanujan:
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_ o0 q2m2
FO(Q) = é(q; q2)m ’ (1.1.2)
$o(@) = 0™ (-2:¢*)m, (1.1.3)

m=0

1Supported by CSIR Research Grant No.25(0128)/02/EMR-I1

2Supported by CSIR Award No.F.No.9/135(468)/2k3-EMR-I
AMS Subject Classifications (2000): 05A15, 05A17, 05A19
Keywords: n-colour partitions, F-partitions, mock theta functions, combinatorial iden-
tities, combinatorial interpretations.

ARS COMBINATORIA 99(2011), pp. 439-444



and

$1(9) = Y4V (~g; ¢%)m, (1.1.4)

m=0

where

7 _(1—ad)

(2;9)n = g A=) , for any constant a.
We remark that 9(q) is of order 3 while the remaining three are of order 5.
For the definitions of the mock theta functions and their order the reader
is referred to [4].
In this paper we shall prove bijectively four new combinatorial identities
involving certain F-partition functions and n-colour partition functions.
This leads to new combinatorial interpretations of (1.1)-(1.4) in terms of
F-partitions. Before we state our main results we recall the following defi-
nitions:
Definition 1 [3]. A two-rowed array of non-negative integers

a; az - ar

bl b2 R br
with each row arranged in non increasing order is called a generalized Frobe-
nius partition or more simply an F-partition of v if

r r
V='I‘+Zai+zbi-
i=1 i=1

Definition 2 [2]. An n-colour partition (also called a partition with “n
copies of n”) of a positive integer v is a partition in which a part of size n
can come in n different colours denoted by subscripts : n1,n,:-- ,n,, and
the parts satisfy the order

1;€21<22<31<32<33<4; <42<43<44<5, <53~

Thus for example, the n-colour partitions of 3 are 3, 32, 33,2;17,221;,111;1;.
Definition 3 [2]. The weighted difference of two parts m;, nj, m > n is
defined by m — n — i — j and is denoted by ((m; — n;)).

In our next section we shall prove the following combinatorial identities:
Theorem 1. For v > 1, let B;(v) denote the number of F-partitions of v
such that

(l.a) a; 2 b.', 1<:<r,

(1b)bi=ais1+1, 1<i<r-1,

(1.c) b =0.

And let A;(v) denote the number of n-colour partitions of v such that
(1.d) even parts appear with even subscripts and odd with odd,



(1.e) the weighted difference of any two consecutive parts is 0, and
(1.f) for some k, kj is a part.
Then B;(v) = A1(v), for all v.

Example. B;(8) = 3, since the relevant F-partitions are ( g ) , ( ‘;’ g ) ,

20
1;, 62+ 2.
Theorem 2. For v > 0, let B2(v) denote the number of F-partitions of v
such that
(28)a;i 2b;, 1<i<r,
(21‘)) bi=aip1+1,1<i<r-1,
(2.c) b, =0,
(2.d) ar #0.
And let Ay(v) denote the number of n-colour partitions of  such that
(2.e) even parts appear with even subscripts and odd with odd greater than
1,
(2.f) the weighted difference of any two consecutive parts is 0,
(2.g) for some k, ki is a part.
Then By(v) = Aa(v), for all v.
Theorem 3. For v > 0, let B3(v) denote the number of F-partitions of v
such that
Ba)as=bjorai=b;+1, 1<i<r,
(3b) bi=ai1+1,1<51<r—-1,
(3.c) b =0.
And let A3(v) denote the number of n-colour partitions of v such that
(3.d) the parts are of the type (2k + 1); or (2k)q,
(3.€) the minimum part is 1; or 25,
(3.f) the weighted difference of any two consecutive parts is 0,
Then B3(v) = As(v), for all v.

( 3 1 ; also A;(8) = 3, since the relevant n-colour partitions are 8g, 75+

Example. B3(17) = 2, since the relevant F-partitions are ( Z g (1) )

and 4 210
3210

tions are 9; + 62 + 22 and 82 + 5; + 3; +1;.

Theorem 4. For v > 1, let B4(v) denote the number of F-partitions of v

such that

(48)a;=bijora;=b+1, 1<ir,

(4b) byj=aip1+1, 1<i<r—1,

(4.c) a, = b, =0.

And let A4(v) denote the number of n-colour partitions of v such that

(4.d) the parts are of the type (2k + 1); or (2k)a,

; also A3(17) = 2, since the relevant n-colour parti-
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(4.e) the minimum part is 1, and
(4.f) the weighted difference of any two consecutive parts is 0,
Then By(v) = A4(v), for all v.

It was proved in [1] that

¥(g) =Y _Ai(v)e", (1.1.5)
v=1

Fo(g) = Y _Az(v)¢", (1.1.6)
v=0

$o(g) = Y_As(v)¢", (1.1.7)
v=0

and

$1(g) =) _Aulv)e. (1.1.8)

v=1

Theorems 1-4 and Equations (1.5)-(1.8) lead to the following new combi-
natorial interpretations of the mock theta functions (1.1)-(1.4):

¥(@) =Y _Bi(v)e", (1.1.9)
v=1

Fo(q) = iBz(V)Q", (1.1.10)
v=0

¢o(g) = D _Bs(v)¢", (1.1.11)
v=0

and

$1(g) = Y _Ba(v)g". (1.1.12)

v=1
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2 Proofs

Proof of Theorem 1. We establish a 1-1 correspondence between the F-
partitions enumerated by B;(v) and n-colour partitions enumerated by

A;(v). We do this by mapping each column Z’ of the Frobenius symbol
to a single part m; of the n-colour partition . The mapping ¢ is:

b (g) = (@+b+1)assr, a2 b (2.21)

and the inverse mapping ¢! is given by

61 m; — ( ("(‘T:i;)%/ 2 ) (2.2.2)

Since (a+ b+ 1) and (a — b+ 1) have the same parity, (2.1) implies (1.d).
Now for any two adjacent columns ‘; ‘ci in the Frobenius symbol with ¢

(Z’):m;andd»(;):n,-,'weha.ve

(mi—n3)) =(@+db+1)—(a—-b+1)—(c+d+1)—(c—d+1)
=2b—2c—2
=0 (by (1.5)). (2.2.3)

Equation (2.3) implies (1.e). (1.c) and (2.1) imply (1.f).
To see the reverse implication, we note that

e (SR ()

and (n+3j—2)/2
-1, ., n+7j— = c
otem = (O TN )= ()
that is,
a=(m+1i—2)/2,
b= (m—1)/2,
c=(n+j—2)/2,
d=(n-3)/2
and so
a-b=i—1, (2.2.4)
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c—d=j-1, (2.2.5)

b—c= 2((mi— ns)) +1. (2.2.6)

clearly (2.4) and (2.5) imply (1.a). (1.e) and (2.6) imply (1.b). Finally, in
view of the fact that ki must be the smallest part of its partition (1.f) and
(2.2) imply (1.c). This completes the proofs of Theorem 1.

Proofs of Theorems 2-4 are similar to the proof of Theorem 1 and hence
are omitted.

Conclusion

It would be of interest to provide combinatorial interpretations for other
mock theta functions also by using the method of this paper.
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