Generalized Frobenius partitions and mock-theta functions

A.K. Agarwal¹ and G. Narang²
Centre for Advanced Studies in Mathematics,
Panjab University,
Chandigarh-160 014, India
E-mail: aka@pu.ac.in
geetika2narang@yahoo.com

Abstract

Four new combinatorial identities involving certain generalized F-partition functions and n-colour partition functions are proved bijectively. This leads to new combinatorial interpretations of four mock theta functions of S. Ramanujan.

1 Introduction, Definitions and the Main Results

Recently in [1], the first author gave n-colour partition theoretic interpretations of the following mock theta functions of S. Ramanujan:

$$\psi(q) = \sum_{m=1}^{\infty} \frac{q^{m^2}}{(q; q^2)_m},$$
(1.1.1)

$$F_0(q) = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q; q^2)_m},$$
(1.1.2)

$$\phi_0(q) = \sum_{m=0}^{\infty} q^{m^2} (-q; q^2)_m, \qquad (1.1.3)$$

¹Supported by CSIR Research Grant No.25(0128)/02/EMR-II

²Supported by CSIR Award No.F.No.9/135(468)/2k3-EMR-I AMS Subject Classifications (2000): 05A15, 05A17, 05A19

Keywords: n-colour partitions, F-partitions, mock theta functions, combinatorial identities, combinatorial interpretations.

and

$$\phi_1(q) = \sum_{m=0}^{\infty} q^{(m+1)^2} (-q; q^2)_m, \qquad (1.1.4)$$

where

$$(a;q)_n = \prod_{i=0}^{\infty} \frac{(1-aq^i)}{(1-aq^{n+i})}$$
, for any constant a .

We remark that $\psi(q)$ is of order 3 while the remaining three are of order 5. For the definitions of the mock theta functions and their order the reader is referred to [4].

In this paper we shall prove bijectively four new combinatorial identities involving certain F-partition functions and n-colour partition functions. This leads to new combinatorial interpretations of (1.1)-(1.4) in terms of F-partitions. Before we state our main results we recall the following definitions:

Definition 1 [3]. A two-rowed array of non-negative integers

$$\left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_r \\ b_1 & b_2 & \cdots & b_r \end{array}\right)$$

with each row arranged in non increasing order is called a generalized Frobenius partition or more simply an F-partition of ν if

$$\nu = r + \sum_{i=1}^{r} a_i + \sum_{i=1}^{r} b_i.$$

Definition 2 [2]. An *n*-colour partition (also called a partition with "n copies of n") of a positive integer ν is a partition in which a part of size n can come in n different colours denoted by subscripts: n_1, n_2, \dots, n_n and the parts satisfy the order

$$1_1 < 2_1 < 2_2 < 3_1 < 3_2 < 3_3 < 4_1 < 4_2 < 4_3 < 4_4 < 5_1 < 5_2 \cdots$$

Thus for example, the *n*-colour partitions of 3 are $3_1, 3_2, 3_3, 2_1 1_1, 2_2 1_1, 1_1 1_1 1_1$. **Definition 3 [2].** The weighted difference of two parts m_i , n_j , $m \ge n$ is defined by m - n - i - j and is denoted by $((m_i - n_j))$.

In our next section we shall prove the following combinatorial identities:

Theorem 1. For $\nu \geq 1$, let $B_1(\nu)$ denote the number of F-partitions of ν such that

$$(1.a) \ a_i \geq b_i, \ 1 \leq i \leq r,$$

$$(1.b) b_i = a_{i+1} + 1, \ 1 \le i \le r - 1,$$

(1.c) $b_r = 0$.

And let $A_1(\nu)$ denote the number of *n*-colour partitions of ν such that (1.d) even parts appear with even subscripts and odd with odd,

- (1.e) the weighted difference of any two consecutive parts is 0, and
- (1.f) for some k, k_k is a part.

Then $B_1(\nu) = A_1(\nu)$, for all ν .

Example. $B_1(8) = 3$, since the relevant F-partitions are $\begin{pmatrix} 7 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 5 & 0 \\ 1 & 0 \end{pmatrix}$,

$$\begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$$
; also $A_1(8) = 3$, since the relevant *n*-colour partitions are 8_8 , $7_5 + 1_1$, $6_2 + 2_2$.

Theorem 2. For $\nu \geq 0$, let $B_2(\nu)$ denote the number of F-partitions of ν such that

- (2.a) $a_i \geq b_i, \ 1 \leq i \leq r,$
- $(2.b) b_i = a_{i+1} + 1, \ 1 \le i \le r 1,$
- (2.c) $b_r = 0$,
- (2.d) $a_r \neq 0$.

And let $A_2(\nu)$ denote the number of n-colour partitions of ν such that

- (2.e) even parts appear with even subscripts and odd with odd greater than 1,
- (2.f) the weighted difference of any two consecutive parts is 0,
- (2.g) for some k, k_k is a part.

Then $B_2(\nu) = A_2(\nu)$, for all ν .

Theorem 3. For $\nu \geq 0$, let $B_3(\nu)$ denote the number of F-partitions of ν such that

- (3.a) $a_i = b_i$ or $a_i = b_i + 1$, $1 \le i \le r$,
- (3.b) $b_i = a_{i+1} + 1, \ 1 \le i \le r 1,$
- (3.c) $b_r = 0$.

And let $A_3(\nu)$ denote the number of n-colour partitions of ν such that

- (3.d) the parts are of the type $(2k+1)_1$ or $(2k)_2$,
- (3.e) the minimum part is 1_1 or 2_2 ,
- (3.f) the weighted difference of any two consecutive parts is 0,

Then $B_3(\nu) = A_3(\nu)$, for all ν .

Example. $B_3(17) = 2$, since the relevant F-partitions are $\begin{pmatrix} 4 & 3 & 1 \\ 4 & 2 & 0 \end{pmatrix}$

and
$$\begin{pmatrix} 4 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}$$
; also $A_3(17) = 2$, since the relevant *n*-colour partitions are $9_1 + 6_2 + 2_2$ and $8_2 + 5_1 + 3_1 + 1_1$.

Theorem 4. For $\nu \geq 1$, let $B_4(\nu)$ denote the number of F-partitions of ν such that

- (4.a) $a_i = b_i$ or $a_i = b_i + 1$, $1 \le i \le r$,
- $(4.b) b_i = a_{i+1} + 1, \ 1 \le i \le r 1,$
- (4.c) $a_r = b_r = 0$.

And let $A_4(\nu)$ denote the number of n-colour partitions of ν such that

(4.d) the parts are of the type $(2k+1)_1$ or $(2k)_2$,

(4.e) the minimum part is 1_1 , and (4.f) the weighted difference of any two consecutive parts is 0, Then $B_4(\nu) = A_4(\nu)$, for all ν .

It was proved in [1] that

$$\psi(q) = \sum_{\nu=1}^{\infty} A_1(\nu) q^{\nu}, \tag{1.1.5}$$

$$F_0(q) = \sum_{\nu=0}^{\infty} A_2(\nu) q^{\nu}, \tag{1.1.6}$$

$$\phi_0(q) = \sum_{\nu=0}^{\infty} A_3(\nu) q^{\nu}, \tag{1.1.7}$$

and

$$\phi_1(q) = \sum_{\nu=1}^{\infty} A_4(\nu) q^{\nu}. \tag{1.1.8}$$

Theorems 1-4 and Equations (1.5)-(1.8) lead to the following new combinatorial interpretations of the mock theta functions (1.1)-(1.4):

$$\psi(q) = \sum_{\nu=1}^{\infty} B_1(\nu) q^{\nu}, \tag{1.1.9}$$

$$F_0(q) = \sum_{\nu=0}^{\infty} B_2(\nu) q^{\nu}, \qquad (1.1.10)$$

$$\phi_0(q) = \sum_{\nu=0}^{\infty} B_3(\nu) q^{\nu}, \qquad (1.1.11)$$

and

$$\phi_1(q) = \sum_{\nu=1}^{\infty} B_4(\nu) q^{\nu}. \tag{1.1.12}$$

2 Proofs

Proof of Theorem 1. We establish a 1-1 correspondence between the F-partitions enumerated by $B_1(\nu)$ and n-colour partitions enumerated by $A_1(\nu)$. We do this by mapping each column $\begin{array}{c} a \\ b \end{array}$ of the Frobenius symbol to a single part m_i of the n-colour partition. The mapping ϕ is:

$$\phi : \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow (a+b+1)_{a-b+1}, \ a \ge b \tag{2.2.1}$$

and the inverse mapping ϕ^{-1} is given by

$$\phi^{-1}: m_i \to \left(\begin{array}{c} (m+i-2)/2\\ (m-i)/2 \end{array}\right).$$
 (2.2.2)

Since (a+b+1) and (a-b+1) have the same parity, (2.1) implies (1.d).

$$\begin{pmatrix} a \\ b \end{pmatrix} = m_i \text{ and } \phi \begin{pmatrix} c \\ d \end{pmatrix} = n_j, \text{ we have}$$

$$((m_i - n_j)) = (a + b + 1) - (a - b + 1) - (c + d + 1) - (c - d + 1)$$

$$= 2b - 2c - 2$$

$$= 0 \text{ (by (1.b))}. \tag{2.2.3}$$

Equation (2.3) implies (1.e). (1.c) and (2.1) imply (1.f). To see the reverse implication, we note that

$$\phi^{-1}: m_i \to \left(\begin{array}{c} (m+i-2)/2\\ (m-i)/2 \end{array}\right) = \left(\begin{array}{c} a\\ b \end{array}\right)$$

and

$$\phi^{-1}: n_j \to \left(\begin{array}{c} (n+j-2)/2\\ (n-j)/2 \end{array}\right) = \left(\begin{array}{c} c\\ d \end{array}\right)$$

that is,

$$a = (m + i - 2)/2,$$

 $b = (m - i)/2,$
 $c = (n + j - 2)/2,$
 $d = (n - j)/2,$

and so

$$a - b = i - 1, (2.2.4)$$

$$c - d = j - 1, (2.2.5)$$

$$b - c = \frac{1}{2}((m_i - n_j)) + 1. \tag{2.2.6}$$

clearly (2.4) and (2.5) imply (1.a). (1.e) and (2.6) imply (1.b). Finally, in view of the fact that k_k must be the smallest part of its partition (1.f) and (2.2) imply (1.c). This completes the proofs of Theorem 1.

Proofs of Theorems 2-4 are similar to the proof of Theorem 1 and hence are omitted.

Conclusion

It would be of interest to provide combinatorial interpretations for other mock theta functions also by using the method of this paper.

REFERENCES

- [1] A.K. Agarwal, n-colour partition theoretic interpretations of some mock theta functions, Electron. J. Combin. 11 (2004), no.1, Note 14, 6pp.
- [2] A.K. Agarwal and G.E. Andrews, Rogers-Ramanujan identities for partitions with "N copies of N", J. Combin. Theory Ser. A, 45 (1) (1987), 40-49.
- [3] G.E. Andrews, Generalized Frobenius Partitions, Mem. Amer. Math. Soc. 49 (1984), No. 301, IV+44 pp.
- [4] G.H. Hardy, P.V. Seshu Aiyar and B.M. Wilson, Collected papers of Srinivasa Ramanujan, Cambridge University Press, 1927.