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Abstract

Wilson’s Theorem [8] guarantees that for any given graph G,
there exists an integer n such that the complete graph K, can be
decomposed into edge-disjoint isomorphic copies of G. The corre-
sponding result is not true for edge-coloured graph decompositions.
Let rK, denote the edge-coloured graph with n vertices, r colours,
and precisely one edge of each colour joining each pair of distinct
vertices. It is easy to give an example of an edge-coloured graph
G* such that there is no finite integer n for which it is possible
to decompose K, into edge-disjoint colour-identical copies of G*.
We investigate the problem of determining precisely when an edge-
coloured graph G* with r colours admits a G*-decomposition of K,
for some finite n. We also investigate conditions under which any

partial edge-coloured G”-decomposition of 7K, has a finite embed-

ding.

1 Introduction

We use the term graph for multigraph and say explicitly whenever we
mean a simple graph. All graphs are assumed finite and do not have loops.
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An edge-coloured graph G* is a graph G together with an assignment of
colours to its edges. Edge-coloured graphs will always be identified by a
superscript asterisk. The vertex set, edge set and the set of colours assigned
to the edges of an edge-coloured graph G* are denoted by V(G*), E(G*)
and C(G*) respectively, and |V(G*)|, |E(G*)| and |C(G*)| are referred to
as the order, size and indez of G*. Two edge-coloured graphs G* and H*
are colour-identical if there is bijection ¢ from V(G*) to V(H*) such that
ab is an edge of colour a in E(G*) if and only if ¢(a)$(b) is an edge of
colour a in E(H*).

We denote by rK; the edge-coloured graph with n vertices, r colours,
and precisely one edge of each colour joining each pair of distinct vertices.
A partial edge-coloured G*-decomposition is a set G* of edge-coloured sub-
graphs of 7K, each colour-identical to G*, such that for each colour a and
each pair a and b of distinct vertices of 7K}, there is at most one edge-
coloured subgraph G* € G* containing an edge ab of colour a. The index
of a partial edge-coloured G*-decomposition is the index of G*. Clearly,
if there exists an edge-coloured G*-decomposition then parallel edges in
G* have distinct colours. From here on, all edge-coloured graphs will be
assumed to have this property.

A partial edge-coloured G*-decomposition G* is an edge-coloured G*-
decomposition of H* if H* is the edge-coloured subgraph of 7K}, defined
by

VH)= |J V(G) ad E@H)= |J E@GY)
G*e g* G- g*
with the colours of edges being preserved. That is, for each colour o there
is an edge of colour a joining vertices a and b in H* if and only if there is
a G* € G* containing an edge of colour « joining a to b. A complete edge-

coloured G*-decomposition of order n and indez r is a G*-decomposition

of rK};. Edge-coloured G*-decompositions will often be referred to simply



as G*-decompositions as the asterisk identifies that the decomposition is
edge-coloured. Similarly, we may sometimes refer to the graph G* rather
than the edge-coloured graph G*. A partial G*-decomposition G* is said
to be embeddable, or to have an embedding, if it is a subset of a complete
G*-decomposition G'*, and G* is then said to be embedded in G'*.

The purpose of this paper is to examine the following two questions:
(1) For which G* does there exist a complete G*-decomposition?

(2) For which G* is it true that every partial G*-decomposition is em-

beddable?

We are interested only in determining, for a given G*, whether or not
there exists a complete G*-decomposition of some finite order, not in more
general asymptotic existence results. Similarly, for Question (2) we are
interested only in establishing for a given G* whether or not every par-
tial G*-decomposition is embeddable, and not in the orders for which the
embeddings exist.

There have been several articles written on edge-coloured graph de-
compositions and, in particular, some asymptotic existence results have
been established. In 2000, Lamken and Wilson [6] proved that for any
simple edge-coloured graph G*, there exist G*-decompositions of rK}; for
all sufficiently large integers satisfying simple numerical conditions. This
generalises Wilson’s well-known proof of the asymptotic existence of G-
decompositions for any simple non-edge-coloured graph G [8]. Recently,
Li Marzi et al [7] proved a sufficient condition for the existence of edge-
coloured G*-decompositions (where G* is not necessarily simple) for an
infinite family of sufficiently large integers, see Theorem 2.1. This result
was established in order to prove certain results on algebras associated with
m-cycle systems. Here, we use the result of Li Marzi et al and obtain nec-

essary and sufficient conditions for the existence of a G*-decomposition (of

447



some finite order).

Other results on edge-coloured graph decompositions include Wilson’s
results on decomposing rK}, into edge-coloured copies of K, [9] and the
results of Colbourn and Stinson on decomposing complete edge-coloured
graphs into edge-coloured copies of K4 [5]. As described in [5] and [6], edge-
coloured graph decompositions, or the more general directed edge-coloured
graph decompositions which are studied in [6], are equivalent to other well-
known types of designs such as: resolvable and near-resolvable designs,
group divisible designs, grid designs, nested designs, self-complementary
designs, perpendicular arrays, K-perfect m-cycle systems etc. Also see

[1,2, 3, 4].

2 Existence

For Question (1) we ignore the trivial case of order 1 decompositions. For
a subgraph G* of index 1, the colour can be ignored and a simple graph G
(a subgraph of K,) results. Hence, Wilson’s Theorem [8] guarantees the
existence of a finite complete G*-decompositions in the case of index 1.

The same result is not true for G*-decompositions when G* is a simple
graph of index more than 1. Obviously, if there are more edges of one
colour than another in G* then no finite complete G*-decomposition ex-
ists. However, if G* is any simple edge-coloured graph in which the number
of edges of each colour is the same, then a result of Lamken and Wilson
[6] guarantees the existence of a finite complete G*-decomposition. These
above mentioned results of Wilson [8] and Lamken and Wilson [6] are much
stronger, actually guaranteeing the existence of complete G-decompositions
and G*-decompositions of all sufficiently large orders satisfying simple nu-
merical conditions.

Now consider arbitrary (non-simple) edge-coloured graphs. It is easy



to construct edge-coloured graphs where each colour occurs on the same
number of edges, but where no G*-decomposition of finite order exists. For

example, consider the graph T* shown in the figure below.

No complete T*-decomposition exists because (for example) it is impossible
to use up a single solid edge between @ and b. Denote by C(a1b;) the set of
colours occurring on the parallel edges joining two vertices a; and b of a
graph G* and say that C(a1b;) is complementable in G* when there exists
a partition
C(G*) = C(a1by) U C(agbz) U--- U C(ash;)

of C(G*) for some ay,b1,a2,bs,...,a:,by € V(G*). Then an obvious nec-
essary condition for the existence of a complete G*-decomposition is that
every colour set C(ab) of G* be complementable. The graph T* mentioned
above does not satisfy this condition.

We now examine some further necessary conditions for the existence
of a complete G*-decomposition. Consider the graph G* with vertex set
V(G*) = {a,b,¢,d, e, f}, colour set C(G*) = {, 8,7, 6} and edges defined
by

C(ab) = {a, 8} Clac) ={7,8} C(ad)={7,6}  C(ae) ={e,8}
C(af) ={aB,7} C(bc) ={e,6} C(bd)={e, 7,6}  C(be) = {B}

C(bf) = {6} Clcd)={B} Clce)={B,7} C(de)={e,B,7}.

It is easy to check that every set of parallel edges is complementable in G*.

However, there are only two possible partitions of C(G*) containing C(ab):
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namely C(ab) U C(ac) and C(ab) U C(ad). Since these are also the only
partitions of C(G*) containing C(ac) or C(ad), it follows that there is no
complete G*-decomposition (since any partial G*-decomposition contains
twice as many occurrences of {7, d} as {o, 8}).

The article [7] by Li Marzi et al gives sufficient conditions for the ex-
istence of a complete G*-decomposition (see Theorem 2.1 below), and it
is easy to see that any G* satisfying these conditions will also satisfy the
necessary conditions we have mentioned thus far. We find it convenient
to make the following definition. An eristence labeling or ez-labeling of a

graph G* is an assignment of labels from a set X to the edges of G* such
that

e parallel edges are assigned the same label; and

e for each colour a € C(G*), the edges of colour o are assigned distinct

labels.
Li Marzi et al proved the following theorem.

Theorem 2.1. Let G* be edge-coloured graph of size e and indexr. If £ is
an integer and there is an ez-labeling of G* with £ labels then there erists a
complete G*-decomposition of order q for all sufficiently large prime powers

g=1 (mod Z).

Dirichlet’s Theorem tells us that there are an infinite number of primes
g =1 (mod 28), so the theorem guarantees there are G*-decompositions of
order n for infinitely many values of n. It is natural then to ask whether the
existence of an ex-labeling of G* with £ labels is necessary for the existence
of a complete G*-decomposition. We now show that this is not the case.

Let P be a copy of the Petersen graph on the vertex set {0,1,2,...,9}
and consider the edge-coloured graph P* of order 10, size 30 and in-
dex 10 constructed as follows. Let V(P*) = {0,1,2,...,9}, C(P*) =
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{co,c1,C2, .-, o} and define E(P*) by joining z to y by an edge of colour
c; and an edge of colour ¢, for each edge xy € P. Since P is 3-regular,
for each z € {0,1,2,...,9} there are three edges of colour ¢; in P* and
these are each incident with the vertex z. It follows that an ex-labeling
of P* with 3 labels induces a proper 3-edge colouring of P. Since no such
colouring exists, there is no ex-labeling of P* with 3 labels.

However, we now use Theorem 2.1 to prove the existence of complete
P*-decompositions. Let P™* be the union of two vertex disjoint copies of P*.
So P’* has order 20, size 60 and index 10. The following table gives an ex-
labeling of P™* with the 6 labels a,b,c,d,e and f. Hence by Theorem 2.1,
complete P'*-decompositions exist. In any such decomposition, splitting

each copy of P’* into two copies of P* yields a complete P*-decomposition.

label in | label in label in | label in
(edge, colour) | copy 1 | copy 2 (edge, colour) | copy 1l | copy 2
(01, ¢p), (01,¢4) a c (27,¢2), (27,¢7) a f
(12,¢1), (12,¢3) b d (38, ¢c3), (38, cs) f b
(23, c2), (23,c3) c e (49, ¢4), (49, c9) c f
(34, ¢c3), (34,c4) a d (57,¢cs), (57,¢7) c b
(04, ¢4), (04, co) b (79, ¢7), (79, ¢co) d e
(05, ¢s), (05, co) d f (69, co), (69, cs) b a
(16,¢1), (16, cs) f e (68, cs), (68, cs) d c
(58, ¢s), (58,cs) e a

It turns out, as the following theorem shows, this idea of examining
ex-labelings of disjoint copies of G* is all we need to give necessary and
sufficient conditions for the existence of a complete G*-decomposition. For

any positive integer ¢ and any graph G*, denote by t®G* the graph obtained
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by taking t vertex disjoint copies of G*.

Theorem 2.2. Let G* be an edge-coloured graph of size e and index r.
There erists a complete G*-decomposition of order n for some finite n if
and only if £ is an integer and there ezists a positive integer t such that

there is an ex-labeling of t ® G* with tZ labels.

Proof First suppose t ® G* has an ex-labeling with ¢£ labels for some
positive integer t. Then by Theorem 2.1 there exists a complete (¢t ® G*)-
decomposition. Decomposing each copy of ¢ ® G* into t copies of G*
yields a complete G*-decomposition. Conversely, suppose there exists a G*-
decomposition of order n for some finite n. Let 7 : {1,2,...,(3)} — E(Kn)
be a bijection, let ¢ = ﬂ,",‘e—_lz (the number of copies of G* in a G*-
decomposition of order n), and let {G},G3,...,G;} bea G‘-deéomposition
of order n. Now take ¢ vertex disjoint copies of G* and for ¢ = 1,2,...,¢,
label the edges of the i-th copy with the labels induced by 7 on the corre-
sponding edges of G}. The result is an ex-labeling of ¢ ® G* with ¢£ labels.

]

3 Embedding

If G is any simple non-edge coloured graph, then any partial G-decomposition
G is a G-decomposition of some simple graph K. Hence by Wilson’s The-
orem [8] there is a complete K-decomposition K of finite order, and so by
taking a G-decomposition of each copy of K € K we obtain an embedding
of g So we see that it is an immediate consequence of Wilson’s Theorem
[8] that if G is any simple non-edge coloured graph, then any partial G-
decomposition is embeddable. Since we have already seen examples where
an edge-coloured graph G* has no complete G*-decomposition, a similar

result cannot hold for edge-coloured graphs. However, an obvious question
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is whether the existence of complete G*-decompositions ensures that every
partial G*-decomposition is embeddable. The following example shows that

this is not the case. Consider the graph S* shown on the left in the figure

below.

A partial S*~decomposition

An ex-labeling of S* is shown in the figure, so complete S*-decompositions
exist by Theorem 2.1. However, the partial S*-decomposition shown on the
right is clearly not embeddable. To see this, observe that the solid edge of
3K, joining b and e can never be placed in a copy of S* (without having
two edges of one of the other colours joining b and e).

However, by imposing additional conditions on ex-labelings we are able
to prove a theorem, similar to Theorem 2.1, which provides us with suffi-
cient conditions for ensuring every partial G*-decomposition is embeddable.
Thus, we define an embedding labeling or an em-labeling of G* to be an ex-
labeling, with some set X say, along with the extra condition that for some

z € X, z is assigned to simple edges only.

Theorem 3.1. Let G* be edge-coloured graph of size e and indez r. If
£ is an integer and there is an em-labeling of G* with £ labels then every
partial G* -decomposition of order n, where n is finite, embeds in a complete

G*-decomposition of order n’ for some integer n'.

Proof Let G* be a partial G*-decomposition of finite order and let |G*| =

t. Now, G* is an edge-coloured G*-decomposition of some edge-coloured
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graph H* with size te and index r say. Find an ex-labeling of H* with
{1,2,..., M} where M is some sufficiently large integer (M > t£).

If M = t£ then we have an ex-labeling of H* with {1,...,t¢}. Thus
by Theorem 2.1, an H*-decomposition of finite order exists. Decomposing
each copy of H* into copies of G* yields an embedding of G*.

If M >telet H * be the graph resulting from the union of H* with ¢/
vertex disjoint copies of G*, {Gf,...,G}}, where t’ = M —t£. Now H™
is a graph of size (¢ + t')e and index r. If there is an ex-labeling of H"*
with (¢ + ¢')€ labels we can use Theorem 2.1 to prove the existence of an
H'*-decomposition. Decomposing each copy of H™ into copies of G* yields
an embedding of G*.

Thus, we need to find an ex-labeling of H"* with (t+¢')£ labels. Firstly,
ex-label the subgraph H* with integers 1,..., M. Then em-label each of
the subgraphs G} with integers M + (i — 1)€ + 1,...,M + i£ so that
M + i€ occurs only on simple edges. Now consider colour ¢ € C(G*). In
the subgraph H*, ¢ colours ¢£ edges so there are t'=M- t£ labels in the
set {1,..., M} which are not used on edges of colour c. Let these labels
be z;,..., . In each of the subgraphs G} there is a simple edge of colour
¢ with label M +i£. Replace each label M +i£ with z; fori =1,...,¢.
Repeat this for all of the colours in C(G*). It is easy to check that we have
an ex-labeling of H'* with {1,2,..., M+t/S\{M+£, M+2¢,... , M+t'E}

so M+t —t' = (t+t')2 labels are used. o

Corollary 3.1. If G* is a simple edge-coloured graph of size e and index
r such that £ is an integer and each of the colours C(G*) is assigned to
ezactly £ edges of G, then every partial G*-decomposition of finite order is
embeddable.

Proof For each colour @ € C(G*), arbitrarily assign the integers {1,..., £}

to the edges of colour a. Clearly this is an em-labeling of G* with £ labels
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and so the result follows by Theorem 3.1. o

Theorem 3.1 says that the existence of an em-labeling of an edge-
coloured graph G* is a sufficient condition for embeddability. However, it
is not a necessary condition. For example, it is easy to see that any partial
2K3-decomposition is embeddable, but clearly 2K3 has no em-labeling as
it has no simple edges. We now prove two further theorems on embedding
partial G*-decompositions. Unfortunately, neither gives a simple charac-
terisation of embeddability of partial G*-decompositions just in terms of
the properties of G*. Finding such properties seems an interesting problem.
Theorem 3.2 involves looking at particular partial G*-decompositions and
Theorem 3.3 involves looking at all possible ex-labelings of multiple copies
of G*.

Theorem 3.2. Let G* be an edge-coloured graph of size e and index r.
A partial G*-decomposition G* is embeddable if and only if there exists a
positive integer t such that G* U (t ® G*) can be ez-labeled with a set of

(IG*| +t)¢ labels.

Proof First suppose G*U(t®G*) has an ex-labeling with (|G*|+t)£ labels
for some positive integer ¢. Then by Theorem 2.1 there exists a complete
G* U (t ® G*)-decomposition. Decomposing each copy of G* U (t ® G*)
into |G*| + t copies of G* yields a complete G*-decomposition with G*
embedded in it. Conversely, suppose G* is embedded in a complete G*-
decomposition of order n. Let 7 : {1,2,...,(3)} — E(Kp,) be a bijection,
let t = 221 _ |G*| and let G* U {G},G3,...,G}} be the complete G*-
decomposition of order n. This induces an ex-labeling of G*. Furthermore,
take t vertex disjoint copies of G* and for i =1, 2,...,¢, label the edges of
the i-th copy with the labels induced by 7 on the corresponding edges of
G;. The result is an ex-labeling of G* U (¢ ® G*) with (|G*| +¢) £ labels. o
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Theorem 3.3. Let G* be an edge-coloured graph of size e and index r with
£ and integer. Every partial G*-decomposition is embeddable if and only if
for each t € N and each ez-labeling of t ® G* there is some integer t' such

that
e there is an ex-labeling t’' ® G*, and

o taking the ex-labelings of t ® G* and t' @ G* together we have an
ez-labeling of (t +1') ® G* with (t +t')% labels.

Proof (<«) Let G* = {Gj},...,G;} be a partial G*-decomposition. Then
G* is a G*-decomposition of some edge-coloured graph H*. Find some
ex-labeling of H* with a sufficiently large set X of labels. Take t vertex
disjoint copies of G* and for i = 1,2,...,t label the edges of the i-th copy
with the labels on the corresponding edges of G}. This is an ex-labeling of
t® G* with X.

Now assume we can find some integer t’ and an ex-labeling of t’ ® G* so
that taking the ex-labelings of t ® G* and t' @ G* together we have an ex-
labeling of (t+t')®G* with (¢+1')£ labels. Replace the ex-labeling of t® G
with the ex-labeling of H*. Then we have an ex-labeling of H* U (' ® G*)
(the vertex disjoint union of H* with ¢’ ® G*) with (¢ + ¢)£ labels. By
Theorem 2.1 an H* U (¢’ ® G*)-decomposition exists. By decomposing each
copy of H* U (t' ® G*) into copies of G* we have a G*-decomposition in
which G* is embedded.

(=>) We assume every partial G*-decomposition is embeddable. Sup-
pose we have an ex-labeling of t®G* with a set X oflabels. The graph tQG*
is a partial G*-decomposition. We will say the set of edges {e1,...,e;} un-
derlies G* if no two edges in {e1,...,e,} are parallel and for all e € E(G*),
e is parallel to or equal to e; for some ¢ € {1,2,...,3}. Suppose a set of
s edges underlies G*. Choose a set Y of labels so that X NY = 0 and
|Y] = st. Then ex-label st ® G* with Y so that two edges have the same
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label if and only if they are parallel. By considering the disjoint union of
t ® G* and st ® G* we have an ex-labeling of (s + 1)t ® G* with X uY.
Let the copies of G* in (s+1)t®G* be G}, G5 .. ., G{,41); and let the
vertex set of each G} be {v;1,...,vin} so that for all 4,5 € {1,2,...,st}
the map v;x — v for k € {1,...,n} is an isomorphism of G} and Gj.
Let G§,...,G! be labeled with X and G},,... ,Gza +1)¢ be labeled with

Y.
Now note that if we swap the labels on all the edges between v; x and

v;,; with the labels on all the edges between v; and v;, then we still have
an ex-labeling of (s + 1)t ® G* with X UY. Partition the copies of G* into
t classes Gy,...,G: where G; = {G},Gl4,...Gip} fori=1,2,...,¢. Let
{ei1,..-,eis} underlie G}. For each i € {1,...,t} and each j € {1,..., s}
switch the labels between edges parallel to e; ; and the corresponding edges
in G}, ;. This produces an ex-labeling of (s + 1)t ® G* with X UY such
that:

(a) if z and y label edges in the same copy of G* and z € X, then y ¢ X,
(b) if y € Y, the edges y labels are all parallel to each other.

Using this new ex-labeling of (s + 1)t ® G* identify vertices v; x and v;,
if and only if there exist k' and I’ satisfying either

e k'>kandl' >21;0r
ek <kandl <

and such that the edges between v; and v; s and the edges between v;,;
and v, are assigned the same label x € X. Properties (a) and (b) ensure
that parallel edges have distinct colours and are assigned the same label.
So we have a partial G*-decomposition G* labeled with X UY so that
edges have the same label if and only if they are parallel. Note that by
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decomposing G* into copies of G* we obtain the new ex-labeling of (s +
Dt® G* with X UY.

Now, because we are assuming every partial G*-decomposition em-
beds in a complete G*-decomposition, we can embed G* in a complete
G*-decomposition G’* of order n for some integer n. Choose a set Z of
labels so that (X UY)NZ =0 and | X UY UZ| = (7). Ex-label rK} with
XUY UZ so that G* has the same labeling as above. Now decompose 7K}
into copies of G* keeping the labels on the edges. This gives an ex-labeling
of ﬂ;‘e;ll ® G* with X UY U Z. Within this labeling we have our new
ex-labeling of (s + 1)t ® G* with X UY. Switch the labels back to the orig-
inal ex-labeling of (s + 1)t ® G*. This contains our original ex-labeling of
t®G* with X. If welet t' = ﬂ(.",‘e—'l)- —t then it is clear that we have found
an integer ¢’ and an ex-labeling of ¢’ ® G* so that taking the ex-labelings
of t ® G* and t' ® G* together we have an ex-labeling of (¢t + t') ® G* with
(t+1t')¢ labels. 0
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