On the existence and embedding of edge-coloured graph decompositions

Robert Brier and Darryn Bryant Department of Mathematics University of Queensland Qld 4072, Australia

Abstract

Wilson's Theorem [8] guarantees that for any given graph G, there exists an integer n such that the complete graph K_n can be decomposed into edge-disjoint isomorphic copies of G. The corresponding result is not true for edge-coloured graph decompositions. Let rK_n^* denote the edge-coloured graph with n vertices, r colours, and precisely one edge of each colour joining each pair of distinct vertices. It is easy to give an example of an edge-coloured graph G^* such that there is no finite integer n for which it is possible to decompose rK_n^* into edge-disjoint colour-identical copies of G^* . We investigate the problem of determining precisely when an edge-coloured graph G^* with r colours admits a G^* -decomposition of rK_n^* for some finite n. We also investigate conditions under which any partial edge-coloured G^* -decomposition of rK_n^* has a finite embedding.

1 Introduction

We use the term graph for multigraph and say explicitly whenever we mean a simple graph. All graphs are assumed finite and do not have loops. An edge-coloured graph G^* is a graph G together with an assignment of colours to its edges. Edge-coloured graphs will always be identified by a superscript asterisk. The vertex set, edge set and the set of colours assigned to the edges of an edge-coloured graph G^* are denoted by $V(G^*)$, $E(G^*)$ and $C(G^*)$ respectively, and $|V(G^*)|$, $|E(G^*)|$ and $|C(G^*)|$ are referred to as the order, size and index of G^* . Two edge-coloured graphs G^* and H^* are colour-identical if there is bijection ϕ from $V(G^*)$ to $V(H^*)$ such that ab is an edge of colour α in $E(G^*)$ if and only if $\phi(a)\phi(b)$ is an edge of colour α in $E(H^*)$.

We denote by rK_n^* the edge-coloured graph with n vertices, r colours, and precisely one edge of each colour joining each pair of distinct vertices. A partial edge-coloured G^* -decomposition is a set \mathcal{G}^* of edge-coloured subgraphs of rK_n^* , each colour-identical to G^* , such that for each colour α and each pair a and b of distinct vertices of rK_n^* , there is at most one edge-coloured subgraph $G^* \in \mathcal{G}^*$ containing an edge ab of colour α . The index of a partial edge-coloured G^* -decomposition is the index of G^* . Clearly, if there exists an edge-coloured G^* -decomposition then parallel edges in G^* have distinct colours. From here on, all edge-coloured graphs will be assumed to have this property.

A partial edge-coloured G^* -decomposition \mathcal{G}^* is an edge-coloured G^* -decomposition of H^* if H^* is the edge-coloured subgraph of rK_n^* defined by

$$V(H^*) = \bigcup_{G^* \in \mathcal{G}^*} V(G^*) \qquad \text{and} \qquad E(H^*) = \bigcup_{G^* \in \mathcal{G}^*} E(G^*)$$

with the colours of edges being preserved. That is, for each colour α there is an edge of colour α joining vertices a and b in H^* if and only if there is a $G^* \in \mathcal{G}^*$ containing an edge of colour α joining a to b. A complete edge-coloured G^* -decomposition of order n and index r is a G^* -decomposition of rK_n^* . Edge-coloured G^* -decompositions will often be referred to simply

as G^* -decompositions as the asterisk identifies that the decomposition is edge-coloured. Similarly, we may sometimes refer to the graph G^* rather than the edge-coloured graph G^* . A partial G^* -decomposition G^* is said to be *embeddable*, or to have an *embedding*, if it is a subset of a complete G^* -decomposition G^{**} , and G^* is then said to be *embedded in* G^{**} .

The purpose of this paper is to examine the following two questions:

- (1) For which G^* does there exist a complete G^* -decomposition?
- (2) For which G^* is it true that every partial G^* -decomposition is embeddable?

We are interested only in determining, for a given G^* , whether or not there exists a complete G^* -decomposition of some finite order, not in more general asymptotic existence results. Similarly, for Question (2) we are interested only in establishing for a given G^* whether or not every partial G^* -decomposition is embeddable, and not in the orders for which the embeddings exist.

There have been several articles written on edge-coloured graph decompositions and, in particular, some asymptotic existence results have been established. In 2000, Lamken and Wilson [6] proved that for any simple edge-coloured graph G^* , there exist G^* -decompositions of rK_n^* for all sufficiently large integers satisfying simple numerical conditions. This generalises Wilson's well-known proof of the asymptotic existence of G-decompositions for any simple non-edge-coloured graph G [8]. Recently, Li Marzi et al [7] proved a sufficient condition for the existence of edge-coloured G^* -decompositions (where G^* is not necessarily simple) for an infinite family of sufficiently large integers, see Theorem 2.1. This result was established in order to prove certain results on algebras associated with m-cycle systems. Here, we use the result of Li Marzi et al and obtain necessary and sufficient conditions for the existence of a G^* -decomposition (of

some finite order).

Other results on edge-coloured graph decompositions include Wilson's results on decomposing rK_n^* into edge-coloured copies of K_m [9] and the results of Colbourn and Stinson on decomposing complete edge-coloured graphs into edge-coloured copies of K_4 [5]. As described in [5] and [6], edge-coloured graph decompositions, or the more general directed edge-coloured graph decompositions which are studied in [6], are equivalent to other well-known types of designs such as: resolvable and near-resolvable designs, group divisible designs, grid designs, nested designs, self-complementary designs, perpendicular arrays, K-perfect m-cycle systems etc. Also see [1, 2, 3, 4].

2 Existence

For Question (1) we ignore the trivial case of order 1 decompositions. For a subgraph G^* of index 1, the colour can be ignored and a simple graph G (a subgraph of K_n) results. Hence, Wilson's Theorem [8] guarantees the existence of a finite complete G^* -decompositions in the case of index 1.

The same result is not true for G^* -decompositions when G^* is a simple graph of index more than 1. Obviously, if there are more edges of one colour than another in G^* then no finite complete G^* -decomposition exists. However, if G^* is any simple edge-coloured graph in which the number of edges of each colour is the same, then a result of Lamken and Wilson [6] guarantees the existence of a finite complete G^* -decomposition. These above mentioned results of Wilson [8] and Lamken and Wilson [6] are much stronger, actually guaranteeing the existence of complete G-decompositions and G^* -decompositions of all sufficiently large orders satisfying simple numerical conditions.

Now consider arbitrary (non-simple) edge-coloured graphs. It is easy

to construct edge-coloured graphs where each colour occurs on the same number of edges, but where no G^* -decomposition of finite order exists. For example, consider the graph T^* shown in the figure below.

No complete T^* -decomposition exists because (for example) it is impossible to use up a single solid edge between a and b. Denote by $C(a_1b_1)$ the set of colours occurring on the parallel edges joining two vertices a_1 and b_1 of a graph G^* and say that $C(a_1b_1)$ is complementable in G^* when there exists a partition

$$C(G^*) = C(a_1b_1) \cup C(a_2b_2) \cup \cdots \cup C(a_tb_t)$$

of $C(G^*)$ for some $a_1, b_1, a_2, b_2, \ldots, a_t, b_t \in V(G^*)$. Then an obvious necessary condition for the existence of a complete G^* -decomposition is that every colour set C(ab) of G^* be complementable. The graph T^* mentioned above does not satisfy this condition.

We now examine some further necessary conditions for the existence of a complete G^* -decomposition. Consider the graph G^* with vertex set $V(G^*) = \{a, b, c, d, e, f\}$, colour set $C(G^*) = \{\alpha, \beta, \gamma, \delta\}$ and edges defined by

$$C(ab) = \{\alpha, \beta\} \qquad C(ac) = \{\gamma, \delta\} \qquad C(ad) = \{\gamma, \delta\} \qquad C(ae) = \{\alpha, \delta\}$$

$$C(af) = \{\alpha, \beta, \gamma\} \qquad C(bc) = \{\alpha, \delta\} \qquad C(bd) = \{\alpha, \gamma, \delta\} \qquad C(be) = \{\beta\}$$

$$C(bf) = \{\delta\} \qquad C(cd) = \{\beta\} \qquad C(ce) = \{\beta, \gamma\} \qquad C(de) = \{\alpha, \beta, \gamma\}.$$

It is easy to check that every set of parallel edges is complementable in G^* . However, there are only two possible partitions of $C(G^*)$ containing C(ab): namely $C(ab) \cup C(ac)$ and $C(ab) \cup C(ad)$. Since these are also the only partitions of $C(G^*)$ containing C(ac) or C(ad), it follows that there is no complete G^* -decomposition (since any partial G^* -decomposition contains twice as many occurrences of $\{\gamma, \delta\}$ as $\{\alpha, \beta\}$).

The article [7] by Li Marzi et al gives sufficient conditions for the existence of a complete G^* -decomposition (see Theorem 2.1 below), and it is easy to see that any G^* satisfying these conditions will also satisfy the necessary conditions we have mentioned thus far. We find it convenient to make the following definition. An existence labeling or ex-labeling of a graph G^* is an assignment of labels from a set X to the edges of G^* such that

- parallel edges are assigned the same label; and
- for each colour $\alpha \in C(G^*)$, the edges of colour α are assigned distinct labels.

Li Marzi et al proved the following theorem.

Theorem 2.1. Let G^* be edge-coloured graph of size e and index r. If $\frac{e}{r}$ is an integer and there is an ex-labeling of G^* with $\frac{e}{r}$ labels then there exists a complete G^* -decomposition of order q for all sufficiently large prime powers $q \equiv 1 \pmod{\frac{2e}{r}}$.

Dirichlet's Theorem tells us that there are an infinite number of primes $q \equiv 1 \pmod{\frac{2e}{r}}$, so the theorem guarantees there are G^* -decompositions of order n for infinitely many values of n. It is natural then to ask whether the existence of an ex-labeling of G^* with $\frac{e}{r}$ labels is necessary for the existence of a complete G^* -decomposition. We now show that this is not the case.

Let P be a copy of the Petersen graph on the vertex set $\{0, 1, 2, ..., 9\}$ and consider the edge-coloured graph P^* of order 10, size 30 and index 10 constructed as follows. Let $V(P^*) = \{0, 1, 2, ..., 9\}$, $C(P^*) = \{0, 1, 2, ..., 9\}$

 $\{c_0,c_1,c_2,\ldots,c_9\}$ and define $E(P^*)$ by joining x to y by an edge of colour c_x and an edge of colour c_y for each edge $xy\in P$. Since P is 3-regular, for each $x\in\{0,1,2,\ldots,9\}$ there are three edges of colour c_x in P^* and these are each incident with the vertex x. It follows that an ex-labeling of P^* with 3 labels induces a proper 3-edge colouring of P. Since no such colouring exists, there is no ex-labeling of P^* with 3 labels.

However, we now use Theorem 2.1 to prove the existence of complete P^* -decompositions. Let P'^* be the union of two vertex disjoint copies of P^* . So P'^* has order 20, size 60 and index 10. The following table gives an exlabeling of P'^* with the 6 labels a, b, c, d, e and f. Hence by Theorem 2.1, complete P'^* -decompositions exist. In any such decomposition, splitting each copy of P'^* into two copies of P^* yields a complete P^* -decomposition.

	label in	label in]	label in	label in
(edge, colour)	copy 1	copy 2	(edge, colour)	copy 1	сору 2
$(01,c_0), (01,c_1)$	a	С	$(27,c_2), (27,c_7)$	a	f
$(12, c_1), (12, c_2)$	ь	d	$(38, c_3), (38, c_8)$	f	b
$(23, c_2), (23, c_3)$	c	е	$(49, c_4), (49, c_9)$	c	f
$(34, c_3), (34, c_4)$	a	d	$(57, c_5), (57, c_7)$	c .	b
$(04, c_4), (04, c_0)$	ь	e	$(79, c_7), (79, c_9)$	d	e
$(05, c_5), (05, c_0)$	d	f	$(69, c_9), (69, c_6)$	b	a
$(16, c_1), (16, c_6)$	f	e	$(68, c_6), (68, c_8)$	d	c
$(58, c_5), (58, c_8)$	e	a			

It turns out, as the following theorem shows, this idea of examining ex-labelings of disjoint copies of G^* is all we need to give necessary and sufficient conditions for the existence of a complete G^* -decomposition. For any positive integer t and any graph G^* , denote by $t \otimes G^*$ the graph obtained

by taking t vertex disjoint copies of G^* .

Theorem 2.2. Let G^* be an edge-coloured graph of size e and index r. There exists a complete G^* -decomposition of order n for some finite n if and only if $\frac{e}{r}$ is an integer and there exists a positive integer t such that there is an ex-labeling of $t \otimes G^*$ with $t \in L^2$ labels.

Proof First suppose $t\otimes G^*$ has an ex-labeling with $t^{\underline{e}}_{r}$ labels for some positive integer t. Then by Theorem 2.1 there exists a complete $(t\otimes G^*)$ -decomposition. Decomposing each copy of $t\otimes G^*$ into t copies of G^* yields a complete G^* -decomposition. Conversely, suppose there exists a G^* -decomposition of order n for some finite n. Let $\pi:\{1,2,\ldots,\binom{n}{2}\}\mapsto E(K_n)$ be a bijection, let $t=\frac{rn(n-1)}{2e}$ (the number of copies of G^* in a G^* -decomposition of order n), and let $\{G_1^*,G_2^*,\ldots,G_t^*\}$ be a G^* -decomposition of order n. Now take t vertex disjoint copies of G^* and for $i=1,2,\ldots,t$, label the edges of the i-th copy with the labels induced by π on the corresponding edges of G_i^* . The result is an ex-labeling of $t\otimes G^*$ with $t^{\underline{e}}_r$ labels.

3 Embedding

If G is any simple non-edge coloured graph, then any partial G-decomposition G is a G-decomposition of some simple graph K. Hence by Wilson's Theorem [8] there is a complete K-decomposition K of finite order, and so by taking a G-decomposition of each copy of $K \in K$ we obtain an embedding of G. So we see that it is an immediate consequence of Wilson's Theorem [8] that if G is any simple non-edge coloured graph, then any partial G-decomposition is embeddable. Since we have already seen examples where an edge-coloured graph G^* has no complete G^* -decomposition, a similar result cannot hold for edge-coloured graphs. However, an obvious question

is whether the existence of complete G^* -decompositions ensures that every partial G^* -decomposition is embeddable. The following example shows that this is not the case. Consider the graph S^* shown on the left in the figure below.

An ex-labeling of S^* is shown in the figure, so complete S^* -decompositions exist by Theorem 2.1. However, the partial S^* -decomposition shown on the right is clearly not embeddable. To see this, observe that the solid edge of $3K_n^*$ joining b and e can never be placed in a copy of S^* (without having two edges of one of the other colours joining b and e).

However, by imposing additional conditions on ex-labelings we are able to prove a theorem, similar to Theorem 2.1, which provides us with sufficient conditions for ensuring every partial G^* -decomposition is embeddable. Thus, we define an *embedding labeling* or an *em-labeling* of G^* to be an exlabeling, with some set X say, along with the extra condition that for some $x \in X$, x is assigned to simple edges only.

Theorem 3.1. Let G^* be edge-coloured graph of size e and index r. If $\frac{e}{r}$ is an integer and there is an em-labeling of G^* with $\frac{e}{r}$ labels then every partial G^* -decomposition of order n, where n is finite, embeds in a complete G^* -decomposition of order n' for some integer n'.

Proof Let \mathcal{G}^* be a partial G^* -decomposition of finite order and let $|\mathcal{G}^*| = t$. Now, \mathcal{G}^* is an edge-coloured G^* -decomposition of some edge-coloured

graph H^* with size te and index r say. Find an ex-labeling of H^* with $\{1, 2, ..., M\}$ where M is some sufficiently large integer $(M \ge t \frac{e}{r})$.

If $M = t^{\underline{e}}_r$ then we have an ex-labeling of H^* with $\{1, \ldots, t^{\underline{e}}_r\}$. Thus by Theorem 2.1, an H^* -decomposition of finite order exists. Decomposing each copy of H^* into copies of G^* yields an embedding of G^* .

If $M>t^{\underline{e}}_r$ let H'^* be the graph resulting from the union of H^* with t' vertex disjoint copies of G^* , $\{G_1^*,\ldots,G_{t'}^*\}$, where $t'=M-t^{\underline{e}}_r$. Now H'^* is a graph of size (t+t')e and index r. If there is an ex-labeling of H'^* with $(t+t')^{\underline{e}}_r$ labels we can use Theorem 2.1 to prove the existence of an H'^* -decomposition. Decomposing each copy of H'^* into copies of G^* yields an embedding of G^* .

Thus, we need to find an ex-labeling of H'^* with $(t+t')\frac{e}{r}$ labels. Firstly, ex-label the subgraph H^* with integers $1,\ldots,M$. Then em-label each of the subgraphs G_i^* with integers $M+(i-1)\frac{e}{r}+1,\ldots,M+i\frac{e}{r}$ so that $M+i\frac{e}{r}$ occurs only on simple edges. Now consider colour $c\in C(G^*)$. In the subgraph H^* , c colours $t\frac{e}{r}$ edges so there are $t'=M-t\frac{e}{r}$ labels in the set $\{1,\ldots,M\}$ which are not used on edges of colour c. Let these labels be $x_1,\ldots,x_{t'}$. In each of the subgraphs G_i^* there is a simple edge of colour c with label $M+i\frac{e}{r}$. Replace each label $M+i\frac{e}{r}$ with x_i for $i=1,\ldots,t'$. Repeat this for all of the colours in $C(G^*)$. It is easy to check that we have an ex-labeling of H'^* with $\{1,2,\ldots,M+t'\frac{e}{r}\}\setminus\{M+\frac{e}{r},M+2\frac{e}{r},\ldots,M+t'\frac{e}{r}\}$; so $M+t'\frac{e}{r}-t'=(t+t')\frac{e}{r}$ labels are used.

Corollary 3.1. If G^* is a simple edge-coloured graph of size e and index r such that $\frac{e}{r}$ is an integer and each of the colours $C(G^*)$ is assigned to exactly $\frac{e}{r}$ edges of G, then every partial G^* -decomposition of finite order is embeddable.

Proof For each colour $\alpha \in C(G^*)$, arbitrarily assign the integers $\{1, \ldots, \frac{e}{r}\}$ to the edges of colour α . Clearly this is an em-labeling of G^* with $\frac{e}{r}$ labels

Theorem 3.1 says that the existence of an em-labeling of an edge-coloured graph G^* is a sufficient condition for embeddability. However, it is not a necessary condition. For example, it is easy to see that any partial $2K_2^*$ -decomposition is embeddable, but clearly $2K_2^*$ has no em-labeling as it has no simple edges. We now prove two further theorems on embedding partial G^* -decompositions. Unfortunately, neither gives a simple characterisation of embeddability of partial G^* -decompositions just in terms of the properties of G^* . Finding such properties seems an interesting problem. Theorem 3.2 involves looking at particular partial G^* -decompositions and Theorem 3.3 involves looking at all possible ex-labelings of multiple copies of G^* .

Theorem 3.2. Let G^* be an edge-coloured graph of size e and index r. A partial G^* -decomposition G^* is embeddable if and only if there exists a positive integer t such that $G^* \cup (t \otimes G^*)$ can be ex-labeled with a set of $(|G^*| + t)^{\underline{e}}_r$ labels.

Proof First suppose $\mathcal{G}^* \cup (t \otimes G^*)$ has an ex-labeling with $(|\mathcal{G}^*| + t) \frac{e}{r}$ labels for some positive integer t. Then by Theorem 2.1 there exists a complete $\mathcal{G}^* \cup (t \otimes G^*)$ -decomposition. Decomposing each copy of $\mathcal{G}^* \cup (t \otimes G^*)$ into $|\mathcal{G}^*| + t$ copies of G^* yields a complete G^* -decomposition with \mathcal{G}^* embedded in it. Conversely, suppose \mathcal{G}^* is embedded in a complete G^* -decomposition of order n. Let $\pi : \{1, 2, \dots, \binom{n}{2}\} \mapsto E(K_n)$ be a bijection, let $t = \frac{rn(n-1)}{2e} - |\mathcal{G}^*|$ and let $\mathcal{G}^* \cup \{G_1^*, G_2^*, \dots, G_t^*\}$ be the complete G^* -decomposition of order n. This induces an ex-labeling of \mathcal{G}^* . Furthermore, take t vertex disjoint copies of G^* and for $i = 1, 2, \dots, t$, label the edges of the i-th copy with the labels induced by π on the corresponding edges of G_i^* . The result is an ex-labeling of $\mathcal{G}^* \cup (t \otimes G^*)$ with $(|\mathcal{G}^*| + t) \frac{e}{r}$ labels. \circ

Theorem 3.3. Let G^* be an edge-coloured graph of size e and index r with $\frac{e}{r}$ and integer. Every partial G^* -decomposition is embeddable if and only if for each $t \in \mathbb{N}$ and each ex-labeling of $t \otimes G^*$ there is some integer t' such that

- there is an ex-labeling $t' \otimes G^*$, and
- taking the ex-labelings of $t \otimes G^*$ and $t' \otimes G^*$ together we have an ex-labeling of $(t+t') \otimes G^*$ with $(t+t') \frac{e}{r}$ labels.

Proof (\Leftarrow) Let $\mathcal{G}^* = \{G_1^*, \ldots, G_t^*\}$ be a partial G^* -decomposition. Then \mathcal{G}^* is a G^* -decomposition of some edge-coloured graph H^* . Find some ex-labeling of H^* with a sufficiently large set X of labels. Take t vertex disjoint copies of G^* and for $i=1,2,\ldots,t$ label the edges of the i-th copy with the labels on the corresponding edges of G_i^* . This is an ex-labeling of $t\otimes G^*$ with X.

Now assume we can find some integer t' and an ex-labeling of $t' \otimes G^*$ so that taking the ex-labelings of $t \otimes G^*$ and $t' \otimes G^*$ together we have an exlabeling of $(t+t') \otimes G^*$ with $(t+t') \frac{e}{r}$ labels. Replace the ex-labeling of $t \otimes G$ with the ex-labeling of H^* . Then we have an ex-labeling of $H^* \cup (t' \otimes G^*)$ (the vertex disjoint union of H^* with $t' \otimes G^*$) with $(t+t') \frac{e}{r}$ labels. By Theorem 2.1 an $H^* \cup (t' \otimes G^*)$ -decomposition exists. By decomposing each copy of $H^* \cup (t' \otimes G^*)$ into copies of G^* we have a G^* -decomposition in which G^* is embedded.

(\Rightarrow) We assume every partial G^* -decomposition is embeddable. Suppose we have an ex-labeling of $t\otimes G^*$ with a set X of labels. The graph $t\otimes G^*$ is a partial G^* -decomposition. We will say the set of edges $\{e_1,\ldots,e_s\}$ underlies G^* if no two edges in $\{e_1,\ldots,e_s\}$ are parallel and for all $e\in E(G^*)$, e is parallel to or equal to e_i for some $i\in\{1,2,\ldots,s\}$. Suppose a set of s edges underlies G^* . Choose a set Y of labels so that $X\cap Y=\emptyset$ and |Y|=st. Then ex-label $st\otimes G^*$ with Y so that two edges have the same

label if and only if they are parallel. By considering the disjoint union of $t \otimes G^*$ and $st \otimes G^*$ we have an ex-labeling of $(s+1)t \otimes G^*$ with $X \cup Y$.

Let the copies of G^* in $(s+1)t\otimes G^*$ be G_1^* , G_2^* , ..., $G_{(s+1)t}^*$ and let the vertex set of each G_i^* be $\{v_{i,1},\ldots,v_{i,n}\}$ so that for all $i,j\in\{1,2,\ldots,st\}$ the map $v_{i,k}\to v_{j,k}$ for $k\in\{1,\ldots,n\}$ is an isomorphism of G_i^* and G_j^* . Let G_1^*,\ldots,G_t^* be labeled with X and $G_{t+1}^*,\ldots,G_{(s+1)t}^*$ be labeled with Y.

Now note that if we swap the labels on all the edges between $v_{i,k}$ and $v_{i,l}$ with the labels on all the edges between $v_{j,k}$ and $v_{j,l}$ then we still have an ex-labeling of $(s+1)t\otimes G^*$ with $X\cup Y$. Partition the copies of G^* into t classes G_1,\ldots,G_t where $G_i=\{G_i^*,G_{i+t}^*,\ldots G_{i+st}^*\}$ for $i=1,2,\ldots,t$. Let $\{e_{i,1},\ldots,e_{i,s}\}$ underlie G_i^* . For each $i\in\{1,\ldots,t\}$ and each $j\in\{1,\ldots,s\}$ switch the labels between edges parallel to $e_{i,j}$ and the corresponding edges in G_{i+jt}^* . This produces an ex-labeling of $(s+1)t\otimes G^*$ with $X\cup Y$ such that:

- (a) if x and y label edges in the same copy of G^* and $x \in X$, then $y \notin X$,
- (b) if $y \in Y$, the edges y labels are all parallel to each other.

Using this new ex-labeling of $(s+1)t \otimes G^*$ identify vertices $v_{i,k}$ and $v_{j,l}$ if and only if there exist k' and l' satisfying either

- $k' \ge k$ and $l' \ge l$; or
- $k' \leq k$ and $l' \leq l$;

and such that the edges between $v_{i,k}$ and $v_{i,k'}$ and the edges between $v_{j,l}$ and $v_{j,l'}$ are assigned the same label $x \in X$. Properties (a) and (b) ensure that parallel edges have distinct colours and are assigned the same label. So we have a partial G^* -decomposition G^* labeled with $X \cup Y$ so that edges have the same label if and only if they are parallel. Note that by

decomposing \mathcal{G}^* into copies of G^* we obtain the new ex-labeling of $(s+1)t\otimes G^*$ with $X\cup Y$.

Now, because we are assuming every partial G^* -decomposition embeds in a complete G^* -decomposition, we can embed G^* in a complete G^* -decomposition G'^* of order n for some integer n. Choose a set Z of labels so that $(X \cup Y) \cap Z = \emptyset$ and $|X \cup Y \cup Z| = \binom{n}{2}$. Ex-label rK_n^* with $X \cup Y \cup Z$ so that G^* has the same labeling as above. Now decompose rK_n^* into copies of G^* keeping the labels on the edges. This gives an ex-labeling of $\frac{rn(n-1)}{2e} \otimes G^*$ with $X \cup Y \cup Z$. Within this labeling we have our new ex-labeling of $(s+1)t \otimes G^*$ with $X \cup Y$. Switch the labels back to the original ex-labeling of $(s+1)t \otimes G^*$ with $X \cup Y$. Switch the labels back to the original ex-labeling of $(s+1)t \otimes G^*$ then it is clear that we have found an integer t' and an ex-labeling of $t' \otimes G^*$ so that taking the ex-labelings of $t \otimes G^*$ and $t' \otimes G^*$ together we have an ex-labeling of $(t+t') \otimes G^*$ with $(t+t') \stackrel{e}{\otimes} 1$ labels.

References

- P. Adams, D. Bryant and H. Jordon, Edge-colored cube decompositions, Aequationes Math. (to appear).
- [2] Y. Caro, Y. Roditty, and J. Schönheim, On colored designs I, Discrete Math. 164 (1997), 47-65.
- [3] Y. Caro, Y. Roditty, and Schönheim, On colored designs II, Discrete Math. 138 (1995), 177–186.
- [4] Y. Caro, Y. Roditty, and J. Schönheim, On colored designs III. On λ-colored H-designs, H having λ edges, Discrete Math. 247 (2002), no. 1-3, 51-64.

- [5] C.J. Colbourn, D.R. Stinson Edge-coloured graphs with block size four, Aequationes Math. 36 (1998), 230-245
- [6] E. R. Lamken, R.M Wilson, Decompositions of edge-colored complete graphs, J. Combin. Theory Ser. A 89 (2000), no. 2, 149-200.
- [7] E.M. Li Marzi, C.C. Lindner, F. Rania and R.M. Wilson, {2,3}-Perfect m-Cycle Systems Are Equationally Defined for m = 5,7,8,9 and 11 Only, J. Combin. Des. 12 (2004), 449-458.
- [8] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congr. Numer. 15 (1976), 647-659.
- [9] R.M. Wilson, An existence theory for coloured block designs. Presented at the Colloquium on Algebraic Combinatorics, Montreal, 1986.