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Abstract

A perfectly one-factorable (P1F) regular graph G is a graph ad-
mitting a partition of the edge-set into one-factors such that the union
of any two of them is a Hamiltonian cycle. We consider the case in
which G is a cubic graph. The existence of a P1F cubic graph is
guaranteed for each admissible value of the number of vertices. We
give conditions for determining P1F graphs within a subfamily of
generalized Petersen graphs.

Keywords: factorization 05C70, colouring of graphs and hypergraphs
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1 Introduction

We shall say that a one-factorization F of a regular graph is perfect if
any two one-factors of F form a Hamiltonian cycle. A regular graph G
admitting a perfect one—factorization is said to be perfectly one—factorable
or P1F for short.
In the literature P1F cubic graphs are also called Hamilton graphs in [7]
or strongly Hamiltonian graphs in [8], while F is said to be a Hamilton
decomposition, (7, 8].
While the existence spectrum of perfect one—factorizations of the complete
graph K, is not yet known, for every even value of n there exists a cubic
graph of order n admitting a perfect one-factorization. If ug,u1,...,%n—1
are the vertices of the graph (represented on the regular n-gon with clock-
wise labelling), then setting f; = {uiui+1:0< i< n~1,{=0 (mod 2)},
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fo={uiip1 :0<i<n—1,i=1 (mod 2)} and f3 = {upug,uittn—; : 1 <
i < & — 1}, we have that F = {f1, f2, fa} is a perfect one—factorization of
the resulting cubic graph.

Moreover, there also exists a perfectly one—factorable bipartite cubic
graph of order n for every admissible value of n, that is 3 =1 (mod 2) (see
(8]). In fact the 3-Mobius ladder is bicubic and P1F.

Are there other examples of P1F cubic graphs? The answer is yes: every
2-factor Hamiltonian cubic graph, [4], is P1F since it is one-factorable and
has the property that any 2-factor is Hamiltonian.

More specifically, it is proved in [6] that each P1F cubic graph can be
constructed by repeated application of two modifications, namely the ex-
tensions p and , of the graph, called 6—graph, consisting of two vertices
and three multiple edges between them.

The procedure described in [6] allows in principle the construction of ALL
cubic graphs which are perfectly one-factorable. Still, given any specific cu-
bic graph G, this procedure does not yield a criterion which can easily tell
whether G is P1F or not. Generally speaking, one cannot decide whether
any one of the inverse operations can be performed on the graph unless
a perfect one—factorization has already been assigned. For this reason we
investigate a large family of cubic graphs, namely the family of generalized
Petersen graphs, [10].

For the generalized Petersen graphs GP(n, k), withn >3 and 1 < k <
| 252}, the following results hold:

(i) GP(n,1) is P1F if and only if n = 3;

(ii) GP(n,?2) is P1F if and only if n = 3,4 (mod 6);

(iii) GP(n,3) is P1F if and only if n = 9;

(iv) GP(n,k) is not P1F if n =0 (mod 2) and k=1 (mod 2);
(v) GP(3d,k) with d =1 (mod 2), (k,3d) =1 and k& > 1 is P1F;
(vi) GP(3d,d) with d =1 (mod 2) is P1F.

The smallest case which remains undecided even after (i), (ii), (iii), (iv),
(v) and (vi) is GP(10,4) (as a matter of fact it is not P1F by direct
computation).

It remains an open problem to determine all pairs (n, k) for which the
generalized Petersen graphs GP(n, k) are P1F. It does not seem that this
task can be carried out immediately. As a matter of fact a direct study of
some graphs which do not fall in the previous list produce both existence

34



and non-existence results: we are able to exhibit a perfect one-factorization
of GP(19,4) and to prove that GP(17,4) is not P1F.

2 Some general properties

One—factorizations of cubic graphs are also called 3-edge—colourings, hence
one-factors will be also called colours.

Lemma 1 Let G be a cubic graph with a perfect one-factorization F =
{f1, fa, fa}. Let E be an edge—cut, |E| = h, with h = hy + hy + h3, where
h; denotes the number of edges in E of colour f;. The following conditions
hold:

1. hy =hg = hg=h (mod 2);
2. hiha + hyhs + hohs > 0.

Proof. Condition (1) is the parity Lemma proved in [5]. Condition
(2) means that at least two integers h; are different from zero. In fact if
h; = hy = 0, with j # k, then f; U fi is a non-Hamiltonian cycle in G.
This contradicts the assumption on F.

It is well known that a graph G possessing a Hamiltonian cycle is at
least 2-edge—connected. A P1F cubic graph is 3-edge—connected. In fact,
if e1,e2 € E(G) disconnect the graph G, then we have a contradiction by
condition (2) of Lemma 1.

Observe that a Hamiltonian cycle C of an arbitrary cubic graph G
always gives rise to a one-factorization of G: namely the cycle C is the
union of two distinct one-factors, say fi and f;, whereas E(G) \ E(C)

gives the third one—factor. For the rest of the paper we will denote such a

~ one-factor by G — C and we will say that the one-factorization arises from
C.
If G is a cubic graph possessing an odd number of Hamiltonian cycles, from
Smith’s Theorem, [9] it follows that every edge of G belongs to at least
two Hamiltonian cycles. We shall use this property to prove the following
general proposition.

Proposition 1 Let G be a cubic graph possessing ezactly three Hamilto-
nian cycles, then G admits a perfect one—factorization.

Proof. Let Cy, C; and C3 denote the Hamiltonian cycles of G. Let
F = {f1, f2, f3} be the one-factorization of G arising from Cj, that is
fiv fa =C and fs = G — Cy. To prove that F is perfect we show that
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Co=fiUfyand C3 = fo U f3.

Since G has an odd number of Hamiltonian cycles, from the previous remark
it follows that the edges in f3 are all contained in both cycles C; and Cj,
that is fs C Cy and f3 C Cs. Then C; can be written as the disjoint union
of f3 and a set F' of n edges, with |V(G)| = 2n. Since C; is a Hamiltonian
cycle of G and f3 is a one-factor, it follows that also F' is a one—factor of G.
We have that F C C; because G = C; U f3. Since the unique one—factors
in C; are f; and f; it follows that either F' = f; or F = f;. Without loss
of generality we can assume F = f; and so Cz = f1 U f3. The same holds
for Cs, that is Cs = faU fs.

It is well-known that a cubic graph G with a unique 3—-edge—colouring
has exactly three Hamiltonian cycles, then we have that G is P1F by Propo-
sition 1. The class of planar cubic graphs with a unique 3-edge—colouring
is fully described in [3]. The author shows that each planar graph has a
unique 3-edge—colouring if and only if it can be obtained from Ky by re-
peatedly applying star products with copies of K4. We observe that not all
planar P1F cubic graphs are contained in this class: see for instance the
graph GP(10,2), that is the dodecahedral graph.

3 PI1F generalized Petersen graphs

The generalized Petersen graph GP(n,k),n >3 and 1 <k < [L”T"Qj, isa
graph with vertex-set {uo, u1,...,Un—1,V0, V1, Un—1} and edge-set {u;uiy1,
ugV;, Vivispk ¢ 0 € i € n — 1}, with subscripts reduced modulo n.
Edges uiu;4+1 and v;v;+x are called outer and inner edges respectively, while
the edges u;v; are called spokes. Two spokes u;v; and u;v; are consecutive
or subsequent, if j =<+ 1.
It is well known that every GP(n, k) has a 3-edge colouring apart from the
original Petersen graph GP(5,2), [2].

Moreover GP(n,k) is Hamiltonian if and only if it is different from
GP(n,2) and from GP(n, 25*)with n =5 (mod 6), [1].

Proposition 2 Let d and k be positive integers with d odd and either
(3d,k) =1 (k > 1), or k= d. The graph GP(3d,k) is P1F.

Proof. Let (3d,k) = 1, that implies k =1 (mod 3) or k =2 (mod 3).
We construct a one-factorization {f1, f2, fa} of GP(3d, k) by colouring the
outer edges as follows:

ujuj41 € fLif =0 (mod 3);
uUjUj+1 € foifj=1 (mod 3);
ujuj41 € faif j=2 (mod 3).
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Then the spokes u;v; are coloured as stated below:

u;v; € fLif j=2 (mod 3);
ujv; € f2if j=0 (mod 3);
UjV; € faifj=1 (mod 3).

Finally the colouring of the inner edges v;v;4+ changes according to the
fact that k =1or k=2 (mod 3). If j is a fixed index in {0,...,3d — 1},
with j = 0 (mod 3), then the inner edges are coloured as in Figure 1 if
k=1 (mod 3), or as in Figure 2if k =2 (mod 3).

) g
......... ) £y
N P
Figure 1: £ =1 (mod 3) Figure 2: k=2 (mod 3)

Let p; denote the path in GP(3d, k) given by (u2, va, va—, Voo, Uz—2k,
ug—2xk) if k = 1 (mod 3), or by (ug,v2, Vo, V2+2k, Uo2k, Us+2k) if & = 2
(mod 3). To consider simultaneously both cases k =1 (mod 3) and k = 2
(mod 3), we write p; as py = (u2, V2, Vg, V2g2k, Uag2k, Us2k)-

One can see that p; possesses 6 distinct vertices. In fact up = ugpgy if
and only if 2k = 0 (mod 3d) which means 2k = 0 (mod 3). That yields
a contradiction since 2k = 2,1 (mod 3). For the same reason va # vozak,
v2 # vogk and vogk # vogok. Whereas uz = uago; if and only if 2k = 1
(mod 3d), but 2 < 2k < 3d -1, since 1 € 2k < [3—"2‘—1_|, then uz # uazox.
It is straightforward that uo_gx # u3—2k.

Observe that in p; two edges sharing a vertex do not belong to the same
one~factor, whereas edges not sharing a vertex belong to the same one-
factor. In fact we have that p; is bicoloured.

Fori=2,...,d, let ¢; : V. — V be the map defined on the vertex—set
of the graph moving every vertex u; (vj) to the vertex w4, (vj4r), where
r=(i—-1)(2-2k)ifk =1 (mod 3),orr = (i—1)(2+2k) if k = 2 (mod 3).
To consider simultaneously both values of k we set r = (i — 1)(2 F 2k).
The map ¢; is an automorphism of the graph, then p; and ¢;(p;) = p; are
isomorphic paths and since (¢ — 1)(2F 2k) = 0 (mod 3) we have that every
edge e; of p; is coloured as ¢;(e;), that is ¢; preserves the colours.
Consider the paths p; and p;, with 4,5 € {1,2,...,d} and i # j. We prove
that p; and p; have no common vertices. Without loss of generality we can
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assume that j > 1.

Suppose that p; and p; have a common vertex, say u; (or vz). That means
Us = Uy (i-1)(272K) B0 U = Upy(-1)(2726) (OF Vs = Vyy(i-1)(2728) and
Vr = Vpp(j—1)(232k)) With y,z € {2,2F 2k, 3 F 2k} (or y,z € {2,2F
k,2 F 2k}). Therefore uyi(i—1)@2F2k) = Yz+(i—1)(252k) (OF Vys(i-1)(2F2k) =
Vai(i—1)@x2k)) if and only if y + (5 — 1)(2 F 2k) = 2 + (5 — 1)(2 F 2k)
(mod 3d), that is if and only if y — z = (§ — ¢)(2 F 2k) (mod 3d). That
implies ¥y — z = 0 (mod 3), since (2 F 2k) = 0 (mod 3) for every k = 1,2
(mod 3). Since y — z € {0,1,3d — 1,(£2k — 1), —(£2k — 1),2k, -2k)}
(mod 3d) (or y — z € {0,k,—k,2k,—2k} (mod 3d)), the only admissible
value for y — z is 0. We assume y = z. It follows that (j —i)(2F2k) =0
(mod 3d), that is (j —2)(2F 2k) = 3dg with ¢ € Z. Since 1 < j—i<d~-1
we have that 3d { (j — i), therefore 3d has to divide (2 F 2k). It follows
that 2k -2 > 3dif k =1 (mod 3), or 2+ 2k > 3d if k = 2 (mod 3), but
1<k<|3L], thatis 0 < 2k—2<3d -3 and 4< 2+ 2k < 3d — 1, then
3d{ (2 F 2k), therefore p; and p; have no common vertices if ¢ # j.

Let e; denote the edge of GP(3d, k) whose endpoints are the last vertex
in p;—; and the first vertex in p;, that is e; = uyq(i—1)(22k) Y2+ (i-1)(2F2k)
Since 1+ (i — 1)(2F 2k) =1 (mod 3), we have that e; € f5.

Note that the first and last edge in each path p; are both in f;.

By the properties proved above we can say that f; U fo = pyUeyUpa U
...Up;1Ue;Up; U...pgUeq is a Hamiltonian cycle.

Let ¢ : V — V be a map defined on the vertex—set of GP(3d, k) moving
every vertex u; (v;) to the vertex ui+1 (vi+1). One can see that ¢ is an
automorphism of the graph and so does ¢? : V. — V, which moves every
vertex u; (v;) of the graph to the vertex u;;2 (vi42). One can easily verify
that ¢(f1U f2) = f1U f3 and ¢?(f1U fo) = faU f3, that is /iU fa and foUf3
are Hamiltonian cycles. We conclude that the constructed one-factorization
is perfect.

Let n = 3d and k = d, where d is a positive odd integer. If d = 1, to
construct a perfect one—factorization for GP(3, 1), it suffices to colour the
spokes with three different colours.

Let d > 1, as before we denote by fi, f2 and f3 the one-factors, which we
construct by colouring the spokes of the graph as follows:

u,-v,-efl ifogjigd-1;
ujvjefg ifd€j$2d—l;
u,-v,-efg if2ad<j<3d-1.

Then the outer edges are coloured in this way:
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ujujp1 € fi fd<j<3d-landj=1 (mod 2);

ujuj41 € fo f0<j<d—-1landj=1 (mod 2),
or2d<j<3d-1landj=0 (mod 2);

ujuj+1 € f3 if0<j<2d—-1and j=0 (mod 2).

The inner cycles of the graph are triangles (v;, vj44,v;424), Or equiva-
lently (v;, vj4+d, vj-a). The inner triangles are 3—coloured. More specifically,
each edge e of the triangle has the same colour of the spoke whose inner
endpoint is the vertex opposite to the edge e in the triangle. Thus, for
example, u;v; and vj4+q4vj+24 have the same colour.

One can check that the one-factorization above is perfect (for an example
see Figure 3). We omit this last part of the proof since it can be obtained
readapting the proof given in the previous case GP(3d, k), (3d,k) = 1.

Figure 3: A perfect one-factorization of GP(9, 3)

Proposition 3 Let n and k be positive integers, with n even and k odd.
There is no perfect one-factorization for the generalized Petersen graph
GP(n,k).

Proof. We show that GP(n,k) with n even and k odd is a bipartite

graph.
Let U and W be subsets of the vertex-set V of GP(n, k) defined as follows:
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U={u:0€i<n-1i=0(mod2)}U{v;:0<j<n-1j=1
(mod2)}, W ={u; : 0€i<n—-1Li=1(mod2)}U{v;:0<j<
n—1,7 =0 (mod 2)}. It is easy to see that {U,W} is a partition of V.
Moreover there is no vertex in U and W which is adjacent to a vertex in U
and W, respectively. In fact, two adjacent outer vertices, say u; and u;4,
do not belong to the same subset because (j + 1) — j # 0 (mod 2); two
inner adjacent vertices, say v; and vj4x, do not belong to the same subset
because k # 0 (mod 2); an outer vertex u; and an inner vertex v;, which
are adjacent, do not belong to the same subset because j —j =0 (mod 2).
Then GP(n, k) is a bipartite cubic graph and it does not possess a perfect
one—factorization since the number of vertices is equivalent to 0 modulo 4

(see [8]).

Proposition 4 The generalized Petersen graph GP(n,1) is P1F if and
onlyifn=23.

Proof. If n is even by Proposition 3 we have that GP(n, 1) does not admit
a perfect one—factorization.

We consider » = 1 (mod 2). The graph GP(3,1) is P1F as proved in
Proposition 2 so let n > 3. Suppose that GP(n,1) admits a perfect one-
factorization F = { f1, f2, fa}. It follows that the spokes u;v; cannot have all
the same colour, otherwise we find two adjacent edges with the same colour.
Hence there exist at least two spokes, say u;v; and ui4+1vi+1, which do not
belong to the same one-factor. Without loss of generality we can assume
that u;v; € f1, whereas u;41vi+1 € fo. That implies u;u;41,vvi41 € f3 and
Uim1Ui, Vi—1Vi € fo, then ui_1v;-1 € fi or ui—1v—1 € fa. fuiyvioy € f1,
we find a 4~-cycle (ui—1,u;,v;,vi—1) in fiU fo. fuj_1v;-; € f3, we find a
6-cycle (ui—1,%i, Uit1,Vit+1, Vi, Vim1) in f2 U f3. Both these cycles are not
Hamiltonian since n > 3.

Proposition 5 The generalized Petersen graph GP(n,2) is PIF if and
only if n = 3,4 (mod 6).

Proof. Let n be an arbitrary positive integer, n > 5, and let F =
{f1, f2, f3} be a perfect one-factorization of GP(n,2). We prove that nec-
essarily n = 3,4 (mod 6). Let S = {uj;v; : 1 € i < m} denote a set
of m, m € n — 2, spokes of the same colour, namely f, such that u;,v;,
and uj,,,,Vj.,, have not colour fj. Without loss of generality we can set
UjoUjo = Uovo aNd Uy, Vjmyy = Um+1Um41. Observe that if m is even,
then uovp and %m+1Vm+1 have the same colour, whereas if m is odd they
have different colours.

We show that m € {1,2,6}. Assume m > 6, if m = 3 (mod 4) we have
that foU f3 contains the (ﬁ'—;—ﬂ)—cycle (2o, U1y -+« s Um+1y Um+1, Um—1, Ym—3,



...,vp) which is not Hamiltonian; if m = 1 (mod 4) it is not possible to
complete the colouring; if m is even we find two sets of edges, namely E; =
{uou1, vov2, V1Vn—1,usus, v4vs, vs5v3} O Ep = {u3u4,va'us,v4v2,u7ug,v7v9,
vgvg }, according to the fact that m =0 (mod 4) or m =2 (mod 4) respec-
tively, disconnecting the graph, but not satisfying Lemma 1. In both cases
we have a contradiction, then m < 6.

We consider 1 € m € 6. Assume m = 3, we have that fo U f3 contains
the non-Hamiltonian cycle (uo, u1,u2, u3, 4, v4, v2,v0,up). That yields a
contradiction, then m # 3.

Assume m = 4, we find that fiUfs (or fiUf3) contains the non-Hamiltonian
cycle (u1,u2,v2,v4,u4,u3,v3,v1,u1). That yields a contradiction, then m # 4.
Assume m = 5, we have that upvo,usvs € f1 and as remarked before they
have different colours. We set ugvg € f2 and ugvs € f3. Since upvp and
u4v4 have colour fi, it follows that vovz € f3 whereas v4us € fo. That
implies voug € fy, which gives a contradiction.

We have proved that necessarily m € {1, 2, 6}.

We show that if F has a one-factor possessing a set S of 6 subsequent
spokes, then there is no set of 6 subsequent spokes with the same colour
other than S and n = 4 (mod 6). In the case no element of F possesses a
set of 6 consecutive spokes, then n =3 (mod 6).

Suppose that there exist two distinct sets of 6 subsequent spokes, say
Sy = {ww; : 1 <4< 6}and Sy = {wppiveys @ 1 € i < 6}, with the
property that all edges in the same set have the same colour. Without loss
of generality we can assume that S; C fi. As already remarked ugvg and
Um41Um+1 have the same colour. We assume that ugvo, upm419m41 € fa.
We consider the spokes between S; and Sy, that is the edges u;v; with
i=m+1,...,t

Since the number of subsequent edges with the same colour can be only 1,2
or 6, it is easy to verify that the sequence of consecutive spokes between S;
and Sz which have the same colour is necessarily of type 6,1,2,1,2,...,1,2,
1,6, that is we have 6 spokes of colour f;, one spoke of colour f3, two
spokes of colour f;, one of colour f3, two of colour f; and so on. That
means S C fi or S2 C fa. Nevertheless in both cases we have a contra-
diction, since the set £ = {u3u4,v3v5,v4v2,ut+3ut+4,v¢+3vt+5,v,+4vt+2}
disconnects the graph, but does not satisfy Lemma 1. Then S, = Ss.
Observe that if S; = Sz, then § ~2 =0 (mod 6), that is n = 4 (mod 6)
since F is a one—factorization.

We consider the case in which the sets of subsequent spokes with the same
colour have cardinality at most 2. Suppose that there exists a set S con-
taining exactly two consecutive spokes with the same colour. Without loss
of generality we can assume S = {ujv1,u2v2} C f;. It follows that the
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spokes of the graph are coloured as follows:

uiv; € fi ifi=1,2 (mod 6);
uiv; € fo ifi=4,5 (mod 6);
uv; € f3if¢=0,3 (mod 6).

whence n = 0 (mod 6). One can check that f) U f2 contains two cycles
of length n. That yields a contradiction then necessarily a set of subsequent
spokes has cardinality 1 and n = 3,4 (mod 6). The case n =0 (mod 6) is
excluded since in this case fi U f2 contains two disjoint n—cycles.
Viceversa if n = 3 (mod 6) the existence of a perfect one—factorization
follows from Proposition 2. In the case n = 4 (mod 6) and n > 4, we
obtain a perfect one—factorization F = {f1, f2, fs} by colouring the spokes
as follows: ‘

for 0 < j < 5 we set u;jv; € fi

for 6 <j< 5 +2weset

U;jVj, Un+5-jVn+5—j € Hhifj=4,5 (mod 6);
UjVj, Un+5-jUnss-j € f2 il j=0,3 (mod 6);
U;jVj, Un+5—jUn45—j € faifj=1,2 (mod 6)

We now turn our attention to the graphs GP(n,3). Despite an increased
number of cases which must be considered, the following result can be
proved with methods similar to those of the previous Proposition. The
conclusion is rather different this time in the sense that only one graph in
the class GP(n,3) is P1F.

Proposition 6 The generalized Petersen graph GP(n,3) is PIF if and
onlyifn=9.

We remark that the perfect one-factorization of GP(3d,d) in Propo-
sition 2 is obtained from the perfect one—factorization F of GP(3,1) by
creating d consecutive copies of u;v;, for every spoke u;v; of F, thus ob-
taining a monochromatic set of d subsequent spokes.

One can apply the same procedure to a perfect one—factorization of
GP(n, k), with arbitrary parameters n, k. However the one—factorization
obtained in this case might not be perfect.

Finally, we observe that, making use of the well-known isomorphisms
of GP(n,k) (see [10]), together with Proposition 5 and Proposition 6, it
is sometimes possible to determine whether a generalized Petersen graph,
with k > 4, is P1F.
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