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Abstract

In this paper, we show that the crossing number of the complete
multipartite graph K1,1,3,n is

er(Kinam) =4L5)1 251 + 1)

Our proof depends on Kleitman’s results for the complete bipartite
graphs [D. J. Kleitman, The crossing number of Ks,n, J. Combin.
Theory, 9 (1970), 315-323].

1 Introduction

Computing the crossing number of a given graph is, in general, an elusive
problem. In fact, computing the crossing number of a graph is NP-complete
[3). Exact values are known only for very restricted classes of graphs. A

good, updated survey on crossing numbers is [9].
A longstanding problem of crossing numbers is the Zarankiewicz con-

jecture, which asserts that the crossing number of the complete bipartite
graphs K, » is given by

er(Kmm) = BN ISIES (1)

It is only known to be true for m < 6 [8]; and for m = 7 and n < 10 [10).
Recently, in [2), E. deKlerk et al. give a new lower bound for the crossing
number of Km . In the following, Z(m,n) will denote the right terom of
equation (1).

It is natural to ask generalize the Zarankiewicz conjecture and to ask:
What are the crossing numbers for the complete multipartite graphs? For
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general upper bound of the crossing number of a complete n-partite graph,
see [5]. In [1],it is shown that the crossing numbers of K13, and Ko 3n
are as follows;

er(Kian) = Z(4m)+ 3],
cr(Ka3n) Z(5,n) + n.

In [6], the author has applied a similar technique as in [1] to find the
crossing numbers of Ki,11,1,n, K1,22n, K1,1,0,2,n 80d Ky 4. In [7], it
is also shown that if Zarankiewicz’s conjecture is true for m = 2k + 1
(for m = 2k + 2 respectively), then the crossing number of K ok, (of

K1 k1) I8 Z(2Kk,n) + (k2 — k) Lg | (is Z(2k+1,n) + k2 Lg | respectively).

In this paper, we show that the crossing number of K 1 3,» is er(K1,1,3,n) =
n, n-—1 3n

AsIl—=—1+ 151

Here are some notations. Let G be a simple graph with the vertex set
V = V(G) and the edge set E = E(G). A drawing is a mapping of a graph
G into the plane. Vertices go into distinct nodes. An edge and its incident
vertices map into a homemorphic image of the closed interval [0, 1] with the
relevant nodes as endpoints and the interior, an arc, containing no node.
A drawing is good if it satisfies (i) no two arcs incident with a common
node have a common point; (ii) no two arcs have more than one point in
common; (iil) no arc has a self-intersection; and (iv) no three arcs have a
point in common.

A common point of two arcs is a crossing. Let A and B be subsets of
E. In a drawing ¢, the number of crossings of edges in A with edges in B is
denoted by crg(A, B). Especially, crg(A, A) will be denoted by cry(A). For
a good drawing ¢, the total number of crossings is cry(E). The crossing
number of the graph G, cr(G), is the the minimum of ¢ry(E) among all
good drawings ¢ of G.
Remark. We often make no distinction between a graph-theoretical object
(such as a vertex, or a edge) and its drawing. Throughout this work, we
have taken special care to ensure that no confusion arises from this practice.

We note the following formulas, which can be shown easily,

crg(AUB) = cry(A)+ crg(B) +cre(4, B), (2)
crg(A,BUC) = cry(A,B)+cre(AC), (3)

]

where A, B and C are mutually disjoint subsets of E.

Let A be a nonempty subset of V' or of E for a graph G, for a graph G.
Then {A) denotes the subgraph of G induced by A. The set of edges which
are incident with a vertex v is denoted by E(v). For a complete k-partite
graph K, q,,....a, With the partition (A;, Ao, ...., Ax) of the vertex set V

462



and the edge set E, where |A;| = a;, we will write E4, 4, for the edge sets
of (A; U A4;).
2 Crossing number of K33,

Lemma 2.1. There are 7 non-isomorphic good drawings of K11,3.

Proof. From [4], we know that there are 6 non-isomorphic drawings of K3 3,
namely, the drawings in Figure 1. To obtain a drawing of K )3 from these
drawings of K33, we have to draw an edge e connecting the vertices in
the partition containing two vertices, that is, the vertices represented by e.
Note that the edge e cannot cross any edge in order to be a good drawing.
Then, from the drawings in Figure 1, we obtain 7 non-isomorphic drawings
of K1,1,3, namely, the drawings in Figure 2. a

AR DA

Figure 1.

A
A

Figure 2.

D,

D,
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Theorem 2.1. The crossing number of the complete 4-partite graph Ky 1 3
is given by
3n
er(K1,13,0) = Z(5,m) + |57

Proof. Let (X,Y,U, Z) be the vertex partition of K 3, such that X =
n
{z},Y = {y}, U = {u1,u2,us}and Z = U{zi}. To show that cr(K1,1,3.4) <

i=1
3
Z(5,n)+ l_—nj, see Figure 3 for n = 4 and it can be easily generalized to
n. This also follows from the general bound in (5].

Therefore it is sufficient to prove that
3n
cr(Kl,l,3,n) 2 Z(s)n) + |._2_J (4)

We will prove (4) by induction on n. For n = 1, K 1,3,1 contains K33 and
it is clear that K33 is nonplanar, therefore cr(K3,1,3,1) > 1. Therefore (4)
is true for n =1.

For n = 2, (Eyy U Eyz U Eyz) contains a drawing of K33. From
[4], we know that any drawing of K3 3 has a crossing number 1, 3, 5, 7 or
9. Therefore, if the K33 contained in (Eyy U Eyz U Eyz) has at least
3 crossings, we have cr(Ky,1,32) = 3. Therefore we may assume the Ksgs
contained in (Eyy U Eyz U Eyz) having only 1 crossing. Again, from [4],
there is a unique drawing of K3 3 such it has only 1 crossing, namely, the



drawing in Figure 4. However, if the K3 3 contained in (EyyUEyzUEyz)
is drawn as in Figure 4, no matter which region z is placed, we have the
number of crossings between the edges in E(z) and Eyy UEyzUFEyz is at
least 2, which implies that the total number of crossings is at least 3. This

proves (4) for n = 2.

Figure 4.

Now suppose
3(n-2

\

cr(Kl,l‘a,n_z) > Z(5 n-— 2) + l_
(Kisane) 2 Zom-D+ Al (5)
CT(Kl,l'a,n) < Z(5 n) + l J,

for some n > 3. Then there exists a good drawing ¢ of K; ;3 such that

erg(B) < 2(5,m) + |51 ~ 1. )
Let W = Exy U Exy U Eyy. Then, by (2) and (3), we have
crs(E) = cr(W) + erg(| ) E(z)) + ) ero (W, E(z:)). )
i=1 i=1

Since (U E(z)) 2 Ksn, by (1), we have

i=1

erg(|J B(z)) 2 Z(5,n). (8)

i=1

If ery (W, E(z;)) 2> 2 for all 4, by (7) and (8), we have cry(E) > Z(5,n)+2n
which contradicts (6). Therefore, by reordering, we may assume

crg(W, E(21)) < 1. 9)

We will consider two cases:
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Case 1. cry(W, E(z;)) = 0 for some 7;
Case 2. crg(W, E(2;)) > 1 for all ¢

Case 1. By reordering, we may assume that crg(W, E(2;)) = 0. A drawing
of (W) divides R? into regions and the condition crgy(W, E(21)) = 0 implies
that X UY UU is contained in the boundary of one of the regions. Denote
F = W U E(2;). Then Figure 5 shows all the possible drawings of (F) up
to isomorphism because of Figure 2.

21 Z1

F 1 F. 2
Figure 5.

Suppose the drawing of (F) is F;. Then for 2 < j < n, we have

cre(F,B(zy)) 2 4  (10)
By (2) and (3), we have
crg(B) = crg(F) + era(|J E(x)) + Y ers(F, E(2:)). (11)
i=2 i=2

n
Note also that U E(z;) =2 K5 n—1, by (1), we have

i=2

n
ero(lJ B(=)) 2 2(5,n~ 1). (12)
i=2
Since crg(F) = 3 in Fy, by (10), (11) and (12), we have cry(E) > 3 +
Z(5,n—1)+4(n-1) 2 Z(5,n) + [3?"'] which contradicts (6).
Now suppose the drawing of (F) is F3. If z; for 2 < j < n is located in
another region than f, we have

cro(F, E(z;)) 2 4. (13)



If z; for 2 < j < n is located in the region f, we have
cre(W, E(z5)) 2 3. (14)

Let [ be the number of z; for 2 < j < n being located in the region f.
Combining (6), (7), (8), (14), we have

a<(3)-1 (15)

Since crg(F) = 1, by (11), (12), (13), (14) (15), we have cry(E) > 1+
Z(B.n—-1)+4(n—1—1)+30> Z(5,n) + [37" |, which contradicts (6).
Case 2. By (9), there must exist a region in the drawing of (W) containing
at least 4 vertices of X UY U U on its boundary. From the drawings in
Figure 2, the only possible drawings of W are Dy, Dy, D3, Ds, Dg.

Suppose that (W) is drawn as Dy, Dz or Ds. It can be checked that if
cre(W, E(z;)) 2 1, then either cry(Exuv, E(2)) > 1 or ery(Eyv, E(z)) >
1. Hence, by our assumption that crg(W, E(z;)) > 1 for all 7, we have

3 era(Bxu, Ba)) + 3 crs(Bru, E(z)) 2 n. (16)

i=1 i=1
Note that E — Exy = K 4,,. From [6] (see also [7]), we know that
cr(Ki4n) = Z(5,n) + 2[%] This implies that

crs(E - Exv) 2 Z(5,m) + 23 17)
By (2), (3) and the fact that crg(Exv) = 0, we have

cr¢(E) = crg(E = Exy) + cre(Exv, E — Exv). (18)

By (6), (17), (18) and the fact cry(Exv, E— Exv) = Zn:cw(EXU, E(z)),

i=1
it follows

> erg(Bxv, E(=)) < [51- 1. (19)
i=1

Note that also E — Eyy = K4, and by exactly the same argument we
obtain (19), we get

3 erg(Byu, Ble) < [31-1. (20)

=1
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But (19) and (20) together contradict (16).

Now it remains the case (W) is drawn as in D3 or Dg. First suppose that
(W) is drawn as in D3. By (9) and our assumption that crg(W, E(2;)) >
1 for all i, we have cry(W, E(z;)) = 1. Then z; must lie in the region
containing 4 vertices in X UY U U, that is, the outer region of D3. Let
F = WUE(z). Note that if 2, is drawn in the outer region of D3, in order
to satisfy cry(W, E(z1)) = 1, (F) can only be drawn as in Figure 6.

pd
N/

Figure 6.

For z; (2 < j < n) lying in the region marked with o, we have
cre(W, E(z5)) 2 2. (21)

We claim that the equality in (21) is impossible. Suppose not, without loss
of generality, we may assume that z lies in the region marked with o and
crg(W, E(z2)) = 2. Then we must have

crg(E(z1), E(z2)) = 0. (22)

For 3 < k £ n, (E(21)U E(22) U E(2)) is isomorphic to K5 3. Then by (2),
(3), (22), and the fact that cr(Ks 3) = 4 (see [8]), we have

crg(E(z1) U E(22), E(2)) 2 4for 3< k <n. (23)
Let E' = E — (E(21) U E(22). Then (E') = K1.1,3.n_2 and
crg(E) = cre(E) + C%(E(Zl)nU E(22)) + crg(W, E(21))

terg(W, B(z)) + > cra(B(z1) U B(z), E(z)).  24)
=3

By (2), (3), (5), (23), (24), and the fact that crg(W, E(z)) = 1 and
crs(W, E(z3)) = 2, we have cry(E) > Z(5,n - 2) + | 3(n - )J+1+2+

4(n—2) 2 Z(5,n)+ [§22 ] which contradicts to (6). ThlS proves our claim.



By our claim and (21), we know that if z; for 2 < j < n lies in the
region marked with o, we have

crg(F, E(25)) 2 cre(W, E(z5)) 2 8. (25)
If z; for 2 < j < n lies in the regions marked with *, we have
crg(F, E(25)) 2 ere(W, E(z;)) 2 3. (26)

If z; for 2 < j < n lies in the regions which are not marked with * or o, we
have

crg(F, E(2)) 2 4. (27)

Let ! be the number of z; for 2 < j < n lying in the regions marked with
* or o. By (25), (26) and our assumption that crg(W, E(z;)) 2> 1 for all 7,
we have

f: cre(W, E(z;)) 23l+(n—1) =n+2L. (28)
J=1
By (6), (7), (8), (28), we get
21 < lg-J -L (29)

Then by (11), (12), (25), (26), (27), (29) and crg(F) = 2, we have

crg(E) =2 24+2Z(5,n-1)+3l+4(n-1-1)
= Z(B,n-1)+4n-2-1
> Z(5,n—1)+4n—2—([§]—1)/2
> 2(,m)+15),

which contradicts (6).

Now consider (W) is drawn as in Dg. By (9) and our assumption that
cre(W, E(z;)) > 1 for all i, we have cry(W, E(z1)) = 1. Then 2; must lie
in the region containing 4 vertices in X UY U U, that is, the outer region
of Dg. Let F = W U E(z;). Note that if 2; is drawn in the outer region
of Dg, in order to satisfy crgy(W, E(21)) = 1, (F) can only be drawn as in

Figure 7.
If z; for 2 < j < n lies in the regions which are not marked with x, we

have

cre(F, E(z5)) 2 4. (30)
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Figure 7.

If z; for 2 < j < 7 lies in the regions marked with *, we have
crg(F, E(z;)) = 3. (31)

However, under the condition crg(W, E(z;)) 2 1 for 2 < j < n, the equality
in (31) is impossible. (Otherwise, crg(W, E(2;)) = 0.) Hence, by (30) and
(31), we get

cre(F,E(25)) >24for2<j<n. (32)

Since ery(F) = 4, by (11), (12) and (32), we have cry(E) > 4 + Z(5,n —
1)+4(n—1) 2 Z(5,n) + [§22J, which contradicts (6).
O
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