The crossing number of $K_{1,1,3,n}$

Pak Tung Ho*

October 31, 2006

Abstract

In this paper, we show that the crossing number of the complete multipartite graph $K_{1,1,3,n}$ is

$$cr(K_{1,1,3,n})=4\lfloor\frac{n}{2}\rfloor\lfloor\frac{n-1}{2}\rfloor+\lfloor\frac{3n}{2}\rfloor.$$

Our proof depends on Kleitman's results for the complete bipartite graphs [D. J. Kleitman, The crossing number of $K_{5,n}$, J. Combin. Theory, 9 (1970), 315-323].

1 Introduction

Computing the crossing number of a given graph is, in general, an elusive problem. In fact, computing the crossing number of a graph is NP-complete [3]. Exact values are known only for very restricted classes of graphs. A good, updated survey on crossing numbers is [9].

A longstanding problem of crossing numbers is the Zarankiewicz conjecture, which asserts that the crossing number of the complete bipartite graphs $K_{m,n}$ is given by

$$cr(K_{m,n}) = \lfloor \frac{m}{2} \rfloor \lfloor \frac{m-1}{2} \rfloor \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor. \tag{1}$$

It is only known to be true for $m \leq 6$ [8]; and for m = 7 and $n \leq 10$ [10]. Recently, in [2], E. deKlerk et al. give a new lower bound for the crossing number of $K_{m,n}$. In the following, Z(m,n) will denote the right terom of equation (1).

It is natural to ask generalize the Zarankiewicz conjecture and to ask: What are the crossing numbers for the complete multipartite graphs? For

^{*}Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067. Email: paktungho@yahoo.com.hk

general upper bound of the crossing number of a complete n-partite graph, see [5]. In [1], it is shown that the crossing numbers of $K_{1,3,n}$ and $K_{2,3,n}$ are as follows;

$$cr(K_{1,3,n}) = Z(4,n) + \lfloor \frac{n}{2} \rfloor,$$

 $cr(K_{2,3,n}) = Z(5,n) + n.$

In [6], the author has applied a similar technique as in [1] to find the crossing numbers of $K_{1,1,1,1,n}$, $K_{1,2,2,n}$, $K_{1,1,1,2,n}$ and $K_{1,4,n}$. In [7], it is also shown that if Zarankiewicz's conjecture is true for m=2k+1 (for m=2k+2 respectively), then the crossing number of $K_{1,2k,n}$ (of $K_{1,2k+1,n}$) is $Z(2k,n)+(k^2-k)\lfloor\frac{n}{2}\rfloor$ (is $Z(2k+1,n)+k^2\lfloor\frac{n}{2}\rfloor$ respectively). In this paper, we show that the crossing number of $K_{1,1,3,n}$ is $cr(K_{1,1,3,n})=4\lfloor\frac{n}{2}\rfloor\lfloor\frac{n-1}{2}\rfloor+\lfloor\frac{3n}{2}\rfloor$.

Here are some notations. Let G be a simple graph with the vertex set V = V(G) and the edge set E = E(G). A drawing is a mapping of a graph G into the plane. Vertices go into distinct nodes. An edge and its incident vertices map into a homemorphic image of the closed interval [0,1] with the relevant nodes as endpoints and the interior, an arc, containing no node. A drawing is good if it satisfies (i) no two arcs incident with a common node have a common point; (ii) no two arcs have more than one point in common; (iii) no arc has a self-intersection; and (iv) no three arcs have a point in common.

A common point of two arcs is a *crossing*. Let A and B be subsets of E. In a drawing ϕ , the number of crossings of edges in A with edges in B is denoted by $cr_{\phi}(A, B)$. Especially, $cr_{\phi}(A, A)$ will be denoted by $cr_{\phi}(A)$. For a good drawing ϕ , the total number of crossings is $cr_{\phi}(E)$. The *crossing number* of the graph G, cr(G), is the the minimum of $cr_{\phi}(E)$ among all good drawings ϕ of G.

Remark. We often make no distinction between a graph-theoretical object (such as a vertex, or a edge) and its drawing. Throughout this work, we have taken special care to ensure that no confusion arises from this practice.

We note the following formulas, which can be shown easily,

$$cr_{\phi}(A \cup B) = cr_{\phi}(A) + cr_{\phi}(B) + cr_{\phi}(A, B),$$
 (2)

$$cr_{\phi}(A, B \cup C) = cr_{\phi}(A, B) + cr_{\phi}(A, C),$$
 (3)

where A, B and C are mutually disjoint subsets of E.

Let A be a nonempty subset of V or of E for a graph G, for a graph G. Then $\langle A \rangle$ denotes the subgraph of G induced by A. The set of edges which are incident with a vertex v is denoted by E(v). For a complete k-partite graph $K_{a_1,a_2,...,a_k}$ with the partition $(A_1,A_2,...,A_k)$ of the vertex set V

and the edge set E, where $|A_i| = a_i$, we will write $E_{A_iA_j}$ for the edge sets of $\langle A_i \cup A_j \rangle$.

2 Crossing number of $K_{1,1,3,n}$

Lemma 2.1. There are 7 non-isomorphic good drawings of $K_{1,1,3}$.

Proof. From [4], we know that there are 6 non-isomorphic drawings of $K_{2,3}$, namely, the drawings in Figure 1. To obtain a drawing of $K_{1,1,3}$ from these drawings of $K_{2,3}$, we have to draw an edge e connecting the vertices in the partition containing two vertices, that is, the vertices represented by \bullet . Note that the edge e cannot cross any edge in order to be a good drawing. Then, from the drawings in Figure 1, we obtain 7 non-isomorphic drawings of $K_{1,1,3}$, namely, the drawings in Figure 2.

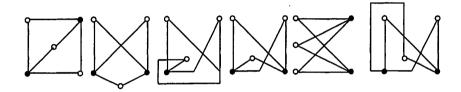


Figure 1.

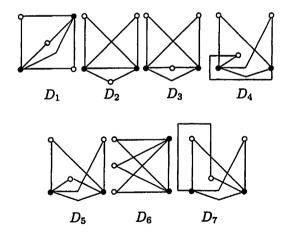


Figure 2.

Theorem 2.1. The crossing number of the complete 4-partite graph $K_{1,1,3,n}$ is given by

$$cr(K_{1,1,3,n})=Z(5,n)+\lfloor\frac{3n}{2}\rfloor.$$

Proof. Let (X,Y,U,Z) be the vertex partition of $K_{1,1,3,n}$ such that $X=\{x\}, Y=\{y\}, U=\{u_1,u_2,u_3\}$ and $Z=\bigcup_{i=1}^n\{z_i\}$. To show that $cr(K_{1,1,3,n})\leq Z(5,n)+\lfloor\frac{3n}{2}\rfloor$, see Figure 3 for n=4 and it can be easily generalized to

 z_4 z_3 z_1 z_2

n. This also follows from the general bound in [5].

Figure 3.

Therefore it is sufficient to prove that

$$cr(K_{1,1,3,n}) \ge Z(5,n) + \lfloor \frac{3n}{2} \rfloor. \tag{4}$$

We will prove (4) by induction on n. For $n=1, K_{1,1,3,1}$ contains $K_{3,3}$ and it is clear that $K_{3,3}$ is nonplanar, therefore $cr(K_{1,1,3,1}) \ge 1$. Therefore (4) is true for n=1.

For n=2, $\langle E_{YU} \cup E_{YZ} \cup E_{UZ} \rangle$ contains a drawing of $K_{3,3}$. From [4], we know that any drawing of $K_{3,3}$ has a crossing number 1, 3, 5, 7 or 9. Therefore, if the $K_{3,3}$ contained in $\langle E_{YU} \cup E_{YZ} \cup E_{UZ} \rangle$ has at least 3 crossings, we have $cr(K_{1,1,3,2}) \geq 3$. Therefore we may assume the $K_{3,3}$ contained in $\langle E_{YU} \cup E_{YZ} \cup E_{UZ} \rangle$ having only 1 crossing. Again, from [4], there is a unique drawing of $K_{3,3}$ such it has only 1 crossing, namely, the

drawing in Figure 4. However, if the $K_{3,3}$ contained in $\langle E_{YU} \cup E_{YZ} \cup E_{UZ} \rangle$ is drawn as in Figure 4, no matter which region x is placed, we have the number of crossings between the edges in E(x) and $E_{YU} \cup E_{YZ} \cup E_{UZ}$ is at least 2, which implies that the total number of crossings is at least 3. This proves (4) for n=2.

Figure 4.

Now suppose

$$cr(K_{1,1,3,n-2}) \geq Z(5,n-2) + \lfloor \frac{3(n-2)}{2} \rfloor$$

$$cr(K_{1,1,3,n-1}) \geq Z(5,n-1) + \lfloor \frac{3(n-1)}{2} \rfloor$$

$$cr(K_{1,1,3,n}) < Z(5,n) + \lfloor \frac{3n}{2} \rfloor,$$
(5)

for some $n \geq 3$. Then there exists a good drawing ϕ of $K_{1,1,3,n}$ such that

$$cr_{\phi}(E) \le Z(5,n) + \lfloor \frac{3n}{2} \rfloor - 1.$$
 (6)

Let $W = E_{XY} \cup E_{XU} \cup E_{YU}$. Then, by (2) and (3), we have

$$cr_{\phi}(E) = cr_{\phi}(W) + cr_{\phi}(\bigcup_{i=1}^{n} E(z_i)) + \sum_{i=1}^{n} cr_{\phi}(W, E(z_i)).$$
 (7)

Since $\langle \bigcup_{i=1}^n E(z_i) \rangle \cong K_{5,n}$, by (1), we have

$$cr_{\phi}(\bigcup_{i=1}^{n} E(z_i)) \ge Z(5, n).$$
 (8)

If $cr_{\phi}(W, E(z_i)) \geq 2$ for all i, by (7) and (8), we have $cr_{\phi}(E) \geq Z(5, n) + 2n$ which contradicts (6). Therefore, by reordering, we may assume

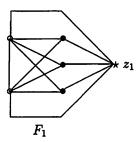
$$cr_{\phi}(W, E(z_1)) \le 1. \tag{9}$$

We will consider two cases:

Case 1. $cr_{\phi}(W, E(z_i)) = 0$ for some i;

Case 2. $cr_{\phi}(W, E(z_i)) \geq 1$ for all i

Case 1. By reordering, we may assume that $cr_{\phi}(W, E(z_1)) = 0$. A drawing of $\langle W \rangle$ divides \mathbb{R}^2 into regions and the condition $cr_{\phi}(W, E(z_1)) = 0$ implies that $X \cup Y \cup U$ is contained in the boundary of one of the regions. Denote $F = W \cup E(z_1)$. Then Figure 5 shows all the possible drawings of $\langle F \rangle$ up to isomorphism because of Figure 2.



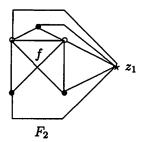


Figure 5.

Suppose the drawing of $\langle F \rangle$ is F_1 . Then for $2 \leq j \leq n$, we have

$$cr_{\phi}(F, E(z_j)) \ge 4.$$
 (10)

By (2) and (3), we have

$$cr_{\phi}(E) = cr_{\phi}(F) + cr_{\phi}(\bigcup_{i=2}^{n} E(z_i)) + \sum_{i=2}^{n} cr_{\phi}(F, E(z_i)).$$
 (11)

Note also that $\bigcup_{i=2}^{n} E(z_i) \cong K_{5,n-1}$, by (1), we have

$$cr_{\phi}(\bigcup_{i=2}^{n} E(z_i)) \ge Z(5, n-1).$$
 (12)

Since $cr_{\phi}(F) = 3$ in F_1 , by (10), (11) and (12), we have $cr_{\phi}(E) \geq 3 + Z(5, n-1) + 4(n-1) \geq Z(5, n) + \lfloor \frac{3n}{2} \rfloor$ which contradicts (6).

Now suppose the drawing of $\langle F \rangle$ is F_2 . If z_j for $2 \leq j \leq n$ is located in another region than f, we have

$$cr_{\phi}(F, E(z_i)) \ge 4.$$
 (13)

If z_j for $2 \le j \le n$ is located in the region f, we have

$$cr_{\phi}(W, E(z_j)) \ge 3.$$
 (14)

Let l be the number of z_j for $2 \le j \le n$ being located in the region f. Combining (6), (7), (8), (14), we have

$$3l \le \lfloor \frac{3n}{2} \rfloor - 1. \tag{15}$$

Since $cr_{\phi}(F) = 1$, by (11), (12), (13), (14) (15), we have $cr_{\phi}(E) \geq 1 + Z(5, n-1) + 4(n-1-l) + 3l \geq Z(5, n) + \lfloor \frac{3n}{2} \rfloor$, which contradicts (6).

Case 2. By (9), there must exist a region in the drawing of $\langle W \rangle$ containing at least 4 vertices of $X \cup Y \cup U$ on its boundary. From the drawings in Figure 2, the only possible drawings of W are D_1, D_2, D_3, D_5, D_6 .

Suppose that $\langle W \rangle$ is drawn as D_1, D_2 or D_5 . It can be checked that if $cr_{\phi}(W, E(z_i)) \geq 1$, then either $cr_{\phi}(E_{XU}, E(z_i)) \geq 1$ or $cr_{\phi}(E_{YU}, E(z_i)) \geq 1$. Hence, by our assumption that $cr_{\phi}(W, E(z_i)) \geq 1$ for all i, we have

$$\sum_{i=1}^{n} cr_{\phi}(E_{XU}, E(z_i)) + \sum_{i=1}^{n} cr_{\phi}(E_{YU}, E(z_i)) \ge n.$$
 (16)

Note that $E-E_{XU}\cong K_{1,4,n}$. From [6] (see also [7]), we know that $cr(K_{1,4,n})=Z(5,n)+2\lfloor\frac{n}{2}\rfloor$. This implies that

$$cr_{\phi}(E - E_{XU}) \ge Z(5, n) + 2\lfloor \frac{n}{2} \rfloor.$$
 (17)

By (2), (3) and the fact that $cr_{\phi}(E_{XU}) = 0$, we have

$$cr_{\phi}(E) = cr_{\phi}(E - E_{XU}) + cr_{\phi}(E_{XU}, E - E_{XU}).$$
 (18)

By (6), (17), (18) and the fact $cr_{\phi}(E_{XU}, E - E_{XU}) \ge \sum_{i=1}^{n} cr_{\phi}(E_{XU}, E(z_i))$, it follows

$$\sum_{i=1}^{n} cr_{\phi}(E_{XU}, E(z_i)) \le \lceil \frac{n}{2} \rceil - 1.$$
 (19)

Note that also $E - E_{YU} \cong K_{1,4,n}$, and by exactly the same argument we obtain (19), we get

$$\sum_{i=1}^{n} cr_{\phi}(E_{YU}, E(z_i)) \le \lceil \frac{n}{2} \rceil - 1.$$
 (20)

But (19) and (20) together contradict (16).

Now it remains the case $\langle W \rangle$ is drawn as in D_3 or D_6 . First suppose that $\langle W \rangle$ is drawn as in D_3 . By (9) and our assumption that $cr_{\phi}(W, E(z_i)) \geq 1$ for all i, we have $cr_{\phi}(W, E(z_1)) = 1$. Then z_1 must lie in the region containing 4 vertices in $X \cup Y \cup U$, that is, the outer region of D_3 . Let $F = W \cup E(z_1)$. Note that if z_1 is drawn in the outer region of D_3 , in order to satisfy $cr_{\phi}(W, E(z_1)) = 1$, $\langle F \rangle$ can only be drawn as in Figure 6.

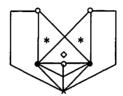


Figure 6.

For z_j $(2 \le j \le n)$ lying in the region marked with \diamond , we have

$$cr_{\phi}(W, E(z_j)) \ge 2.$$
 (21)

We claim that the equality in (21) is impossible. Suppose not, without loss of generality, we may assume that z_2 lies in the region marked with \diamond and $cr_{\phi}(W, E(z_2)) = 2$. Then we must have

$$cr_{\phi}(E(z_1), E(z_2)) = 0.$$
 (22)

For $3 \le k \le n$, $\langle E(z_1) \cup E(z_2) \cup E(z_k) \rangle$ is isomorphic to $K_{5,3}$. Then by (2), (3), (22), and the fact that $cr(K_{5,3}) = 4$ (see [8]), we have

$$cr_{\phi}(E(z_1) \cup E(z_2), E(z_k)) \ge 4 \text{ for } 3 \le k \le n.$$
 (23)

Let $E' = E - (E(z_1) \cup E(z_2)$. Then $\langle E' \rangle = K_{1,1,3,n-2}$ and

$$cr_{\phi}(E) = cr_{\phi}(E') + cr_{\phi}(E(z_{1}) \cup E(z_{2})) + cr_{\phi}(W, E(z_{1})) + cr_{\phi}(W, E(z_{2})) + \sum_{i=3}^{n} cr_{\phi}(E(z_{1}) \cup E(z_{2}), E(z_{i})).$$
(24)

By (2), (3), (5), (23), (24), and the fact that $cr_{\phi}(W, E(z_1)) = 1$ and $cr_{\phi}(W, E(z_2)) = 2$, we have $cr_{\phi}(E) \geq Z(5, n-2) + \lfloor \frac{3(n-2)}{2} \rfloor + 1 + 2 + 4(n-2) \geq Z(5, n) + \lfloor \frac{3n}{2} \rfloor$ which contradicts to (6). This proves our claim.

By our claim and (21), we know that if z_j for $2 \le j \le n$ lies in the region marked with \diamond , we have

$$cr_{\phi}(F, E(z_j)) \ge cr_{\phi}(W, E(z_j)) \ge 3.$$
 (25)

If z_j for $2 \le j \le n$ lies in the regions marked with *, we have

$$cr_{\phi}(F, E(z_j)) \ge cr_{\phi}(W, E(z_j)) \ge 3. \tag{26}$$

If z_j for $2 \le j \le n$ lies in the regions which are not marked with * or \diamond , we have

$$cr_{\phi}(F, E(z_j)) \ge 4.$$
 (27)

Let l be the number of z_j for $2 \le j \le n$ lying in the regions marked with * or \diamond . By (25), (26) and our assumption that $cr_{\phi}(W, E(z_j)) \ge 1$ for all j, we have

$$\sum_{j=1}^{n} cr_{\phi}(W, E(z_j)) \ge 3l + (n-l) = n + 2l.$$
 (28)

By (6), (7), (8), (28), we get

$$2l \le \lfloor \frac{n}{2} \rfloor - 1. \tag{29}$$

Then by (11), (12), (25), (26), (27), (29) and $cr_{\phi}(F) = 2$, we have

$$\begin{array}{rcl} cr_{\phi}(E) & \geq & 2 + Z(5, n - 1) + 3l + 4(n - 1 - l) \\ & = & Z(5, n - 1) + 4n - 2 - l \\ & \geq & Z(5, n - 1) + 4n - 2 - (\lfloor \frac{n}{2} \rfloor - 1)/2 \\ & \geq & Z(5, n) + \lfloor \frac{3n}{2} \rfloor, \end{array}$$

which contradicts (6).

Now consider $\langle W \rangle$ is drawn as in D_6 . By (9) and our assumption that $cr_{\phi}(W, E(z_i)) \geq 1$ for all i, we have $cr_{\phi}(W, E(z_1)) = 1$. Then z_1 must lie in the region containing 4 vertices in $X \cup Y \cup U$, that is, the outer region of D_6 . Let $F = W \cup E(z_1)$. Note that if z_1 is drawn in the outer region of D_6 , in order to satisfy $cr_{\phi}(W, E(z_1)) = 1$, $\langle F \rangle$ can only be drawn as in Figure 7.

If z_j for $2 \le j \le n$ lies in the regions which are not marked with *, we have

$$cr_{\phi}(F, E(z_j)) \ge 4.$$
 (30)

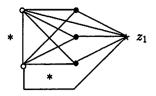


Figure 7.

If z_i for $2 \le j \le n$ lies in the regions marked with *, we have

$$cr_{\phi}(F, E(z_j)) \ge 3.$$
 (31)

However, under the condition $cr_{\phi}(W, E(z_j)) \geq 1$ for $2 \leq j \leq n$, the equality in (31) is impossible. (Otherwise, $cr_{\phi}(W, E(z_j)) = 0$.) Hence, by (30) and (31), we get

$$cr_{\phi}(F, E(z_j)) \ge 4 \text{ for } 2 \le j \le n.$$
 (32)

Since $cr_{\phi}(F) = 4$, by (11), (12) and (32), we have $cr_{\phi}(E) \ge 4 + Z(5, n - 1) + 4(n-1) \ge Z(5, n) + \lfloor \frac{3n}{2} \rfloor$, which contradicts (6).

Acknowledgment. I am indebted to anonymous referee for suggestion which improved the presentation of this paper. I would like to thank my family for their continuous support. I would also like to thank my fiancee, Fan, for her love. But most of all, I thank God for letting me have the chance to do research in what I am interested in.

References

- [1] K. Asano, The crossing number of $K_{1,3,n}$ and $K_{2,3,n}$, J. Graph Theory, 10 (1986), 1-8.
- [2] E. deKlerk, J. Maharry, D. Pasechnik, R. B. Richter, and G. Salazar, Improved bounds for the crossing numbers of $K_{m,n}$ and K_n , SIAM J. Discrete Math. 20 (2006) 189-202.
- [3] M. R. Garey and D. S. Johnson, Crossing number is NP-complete, SIAM J. Alg. Disc. Meth., 1 (1983), 312-316.
- [4] H. Harborth, Parity of numbers of crossings for complete *n*-partite graphs, *Math. Slovaca*, **26** (1976), 77-95.

- [5] H. Harborth, Über die Kreuzungszahl vollständiger, n-geteilter Graphen, Math. Nachr., 48 (1971), 179-188.
- [6] P. T. Ho, On the crossing number of some complete multipartite graphs, submitted.
- [7] P. T. Ho, The crossing number of $K_{1,m,n}$, submitted.
- [8] D. J. Kleitman, The crossing number of $K_{5,n}$, J. Combin. Theory, 9 (1970), 315-323.
- [9] L. A. Székely, A successful concept for measuring non-planarity of graphs: the crossing number, *Discrete Math.* 276 (2004), no. 1-3, 331-352.
- [10] D. R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory, 17 (1993), 657-671.