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Abstract

Let M = {v1,v2 ... v¢} be an ordered set of vertices in a graph G. Then
(d(u,v1),d(u,v2) ... d(u,ve)) is called the M-location of a vertex u of G. The
set M is called a locating set if the vertices of G have distinct M-locations. A
minimum locating set is a set M with minimum cardinality. The cardinality of
a minimum locating set of G is called Location Number L(G). This concept has
wide applications in motion planning and in the field of robotics. In this paper
we consider networks with binary tree as an underlying structure and determine
minimum locating set of such architectures.We show that the location number
of an n-level X-tree lies between 2" —3 and 2" —3 + 2. We further prove that
the location number of an N x N mesh of trees is greater than or equal to N/2
and less than or equal to N.

1 Introduction

The tree interconnection network lends itself to several suitably structured ap-
plications. However, the low connectivity at each node, traffic congestion and
single point of failure at the root node reduce reliability and availability. Both
the hypertree and X-tree are fault tolerant variants of the basic tree network
and have been the focus of more recent implementation and research interest.
The tree interconnection network is suitable for tree structured computations
(multi-input, single-output) and divide-and-conquer type applications. Tree-
based networks have fixed degree nodes and are suitable for massively parallel
systems. For the single-rooted complete binary tree shown in Figure 1(a), the
node degrees are bounded above by 3. The average inter-node distance in such
a tree network increases as log N, where NN is the network size. While the
_tree has smaller diameter than the mesh, it does not exploit physical locality
effectively [8, 10]. In particular, many algorithms can make use of direct com-
munication between the leaf nodes if it exists. For applications that require
extensive communication between leaf nodes, this property may prove to be a
serious disadvantage.
Additionally, the single root node in the case of the single-rooted binary tree
could present severe traffic congestion and a single point of failure. Even in
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the case of the double-rooted tree, failure or severe congestion at any root node
disconnects both left and right halves of the network.
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Figure 1: (a) A complete binary tree (b) An X-tree

Grids and meshes of trees are among the best known interconnection net-
works devised. Meshes of trees perform better with algorithms that require
data broadcasting in the rows or columns. The mesh of trees is a hybrid in-
terconnection network based on arrays and trees. It owns two advantages of
small diameter and large bisection width and is known as the fastest network
when considered solely in terms of speed [10]. It can provide logarithmic or
log-squared time solutions to many important problems suclr as packet rout-
ing, sorting, pre-fix computation, matrix multiplication, convolution, transitive
closure, shortest path, minimum spanning tree, nearest neighbor, convex hull,
and so on [10]. The meshes of trees have been proposed as an ingenious hybrid
of trees and meshes. The mesh of trees is an area-universal network. Thus
it can emulate any network of equal VLSI layout area with a poly-logarithmic
slowdown. Due to its small diameter, the mesh of trees can solve a number of
problems more quickly than the 2-dimensional mesh.

Let M = {v;,v2 ... v¢} be an ordered set of vertices in a graph G. Then
f(w) = (d(u,v1), d(u,ve) ... d(u,ve)) is called the M-location of a vertex u of
G. The set M is called a locating set if no two vertices of G have the same
M-location (that is, f(z) # f(y) if £ # y). In other words, if M is a locating
set then it is clear that for each pair of vertices u and v of V \\ M, there is a
vertex w € M such that d(u,w) # d(v,w) [9). A minimum locating set is a set
M with minimum cardinality {6]. The cardinality of & minimum locating set of
G is called Location Number and is denoted by L(G). The minimum locating set
problem is to find a minimum locating set. The members of a minimum locating
set of G are called landmarks of G. Slater (16, 17] describes applications of these
concepts when working with sonar and loran stations. Chartrand et al. [4] calls
locating set as a resolving set.

For the complete graph Kj, the cycle Cp, and the complete bipartite graph
Ky, Harary et al. [7] have shown that L(Kp) = p — 1, L(C,) = 2 and
L(Kmgs) = m+n —2. This problem hes been studied for grids [11], trees,
multi-dimensional grids [9), Petersen graphs [2], De Bruijn graphs [12], Torus
networks [13], Benes and Butterfly networks [14] and Honeycomb networks [15).
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The minimum locating set problem is proved to be NP-complete for general
graphs by a reduction from 3-dimensional matching [3, 6]. Recently Manuel et
al. [14] have proved that this problem is NP-complete for bipartite graphs.

In this paper, we study the minimum locating set problem for X-trees, mesh
of trees and double rooted X-trees. We prove that the location number of n-
level X-tree is greater than or equal to 2" ~3 and less than or equal to 2" =342,
Also we show that the location number of N x N mesh of trees lies between
N/2 and N.

2 Topological Properties of Binary Tree Derived
Architectures

2.1 X-Trees

An X-tree is a complete binary tree with edges added to connect consecutive
nodes on the same level of the tree. Edges are added to the tree so that the
vertices on each level are connected, from left to right, in a path. Edges on
such paths are called as horizontal edges. Horizontal edges are of two types;
sibling edges and cousin edges. A sibling edge denotes a horizontal edge that
connects two vertices with the same parent and a cousin edge denotes any of the
remaining horizontal edges. Two sibling edges are said to be adjacent if there
is exactly one cousin edge between them. The term vertical edge designates a
tree edge. An n-level X-tree has 2" + ! —1 vertices and 2" +2 —n — 4 edges [1].
Vertices at level n are called leaf vertices. See Figure 1(b). An n-level X-tree
or a 2"-leaf X-tree will be denoted by X(n). The root of X(n) is considered to
be at level 0. The vertices of X (n) other than the root and the leaf vertices are

called internal vertices.

2.2 Mesh of trees

An N x N mesh of trees consists of an N x N grid of nodes where there is an
N-leaf complete binary tree on each row and each column. An N x N mesh of
trees is denoted as MOT(N). The number of nodes in MOT(N) is 3N2 — 2N.
The diameter of MOT(N) is 4log N [10]. An N x N mesh of trees is basically
a 2-dimensional square mesh whose edges have been removed and replaced by
complete binary trees on each column and row. These trees are called column
trees and row trees. The graph in Figure 2 is a 8 x 8 mesh of trees. The new
nodes introduced are internal nodes of the trees. We follow the notation given
in [10]. In the following sections, we provide bounds for the location number of
the binary tree derived architectures mentioned earlier.
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Figure 2: An 8 x 8 mesh of trees. The square vertices are internal vertices of
column trees and triangles are internal vertices of row trees.

3 Minimum Locating Set of X-trees

Consider an n-level X-tree X(n). The vertices at the bottommost level are
called leaves and other nodes are called internal nodes. Let Vi and V; denote
the sets of leaf and internal vertices of X(n) respectively. We label the root of
X (n) as 1. Nodes at any level are labeled from left to right. The children of the
node z are labeled 2z and 2z 4 1. See Figure 3.

Lemma 1 Let S be any locating set for X-tree X(n). Then S ¢ V;.

Proof. Let u, v € Vi be the children of the same parent. Then u and v are
equidistant from every member of V;. Hence S ¢ V;. O

Corollary 1 Let S be any locating set for X-tree X(n). VL NS #¢. O

We first provide a lower bound for the location number of X(n). To do this
we define a set N(a) for each leaf vertex a of X(n) by
N(a)={a-3,a—2,a-1,a,a+1,a+2,a+3,a+4}.
We call N(a) as the leaf neighbourhood of a. This set contains at most 8
elements and not all elements of N(a) are defined for some leaves. For example,
N(@2") = {27,2" +1,2" +2,2" + 3,2" + 4}.
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Figure 3: A 4-level X-tree with labels

Lemma 2 Let S be a locating set of X(n). Fora € Vi, N(a)NS # ¢ whenever
(a,a +1) is a sibling edge of X(n).
Proof. If possibe let N(a) NS = ¢. This implies § C V(X(n)) \ N(a). Now
let u be any vertex in V(X(n)) \ N(a). There exists shortest paths from a
to u and @ + 1 to u, passing through the parent of ¢ and @ + 1. Hence we
have d(a,u) = d(a + 1,u). In particular this is true for every u € S; but this
contradicts the fact that S is a locating set for X(n). O

Now |V;| = 2" and |N(a)| < 8, for a € VL. As Vi, can be partitioned into
2" — 3 gubsets of cardinality 8 each, we have the following result by applying
Lemma 2.
Lemma 3 (Lowerbound) L(X(n)) >2"—3. 0
Notation 1 The vertices at level j of X(n) can be partitioned into 4-subsets,
each inducing a path. Let R} be the path induced by the vertices 2/ +4(i—1) +k,
0<k<3,1<i<% -2 2<j<n. Consider R _, and let m; denote the left
descendant of 2° — 1 +4(i —1). Thenm; =2(2" - 1 +4(i —1)) = 2" +8(i — 1).
Lemma 4 Any two vertices of R}, 1 <i <2 = 2,2 < j <n-—1, are at unegual
distances from m;.
Proof. Let ux =29 +4(i —1) +k, 0 < k < 3 be the vertices of R, 1 <i <
2 -2 2 < j <n-1 Now d(ug,m:) = n — j. Hence d(u;,m;) =n—j+1,
d(ug,m;) =n — j + 2 and d(u3, m;) = n — j 4+ 3 proving that the pairs ug, u;;
ug, uz and ug, u3 are at unequal distances from m;. Similar argument applies to
the pairs ug, ug; u1,u3 and ug, u3. O

Lemma 5 (Upper Bound) L(X(n)) <2"~3+2,n>4.

Proof. We claim that the set S = {I,m;,2"+1-1:1<i<2"-3}isa
locating set for X(n). In otherwords, we prove that for every pair of vertices
u,v in X(n) there exists a vertex w € S such that d(u, w) # d(v, w).
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Since 1 € S, the pairs of vertices of X(n) at different levels are at unequal
distances from 1. So we need to consider only pairs of vertices of X(n) at the
same level of X(n).

Let u and v be any two vertices at level j of X(n).

Case 1: u,v € R}, 1<i<2~2,2<j<n-1

By Lemma 4, d(u,m,) # d(v,m;), where m; is the leftmost descendant of
% +4(i — 1) lying at level n. The possibility that u =27 + 4(i — 1) is not ruled
out.

Case 2: u € R , V€ Rj , 1 < tg. It is sufficient to consider the case
ia =1 +1 SoletuGR; a.nd'ueR""1 Assume that v = 29 +4(: — 1) + k,
0<k <3andv=2 44i+k, 0<k;2 <3

Let up = 27 +4(i — 1). Then d(u,ug) = k1 < 3 and d(v,ug) > 4.

Therefore,

d(ua mz) = d(u, 'Uo) + d(uo, Tnt)
< 2?7+
dw,m;) > 2"-J7 + 4

This argument applies to all levels j, 2 < j < n— 1. Peculiarly in the nt*
level of the X (n) in each of the 8-subsets beginning with m; the pairs of vertices
m; + 4, m; + 5; and m; + 6, m; + 7 are at equal distances from m;. But these
vertices will be at unequal distance from m;,;. Finally the pairs 2" +1 — 4,
gn+1_3and 2" +1-2 2"+1_1 are at equal distances from 1 and every m;.
This forces the inclusion of 2" ! —1in S. The cardinality of S is 2" —3 + 2.

0O
Lemmas 3 and 5 imply the following result.

Theorem 2 2" 3 < L(X(n)) 2" ~3%+2,n>4. 0
A simple calculation shows that L(X(n)) =2" - 2+1, forn =2, 3.
Conjecture 1 L(X(n)) =2"~"3+1,n>4. 0

4 Minimum Locating Set of Mesh of Trees

In this section, we shall prove that the location number of an N x N mesh of
trees is greater than or equal to N/2 and less than or equal to N.

4.1 N x N Mesh of Trees

We first provide a lower bound for the location number of an N x N mesh of
trees.

4.1.1 Lower Bound for L(MOT(N))

Lemma 6 Let L denote a locating set of an N X N mesh of trees MOT(N). A
pair of successive column trees 2§ — 1 and 25 has at least one vertex of L.
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Proof. Let us consider the leaves (1,27 — 1) and (1,2j). Let w be the father of
(1,27 —1) and (1, 27). Let u be any vertex which is not in the successive column
trees 2j —1 and 2j. A shortest path between u and (1,24 — 1) passes through w.
In the same way, every shortest path between u and (1,2;) passes through w.
Thus a locating set should contain at least one vertex v in column trees 25 — 1
and 2j such that v is at unequal distance from (1,25 — 1) and (1,25). O

Lemma 7 Let L denote a locating set of N x N mesh of tree MOT(N). A pair
of successive row trees 2i — 1 and 2i has at least one vertex of L. O

Theorem 3 L(MOT(N)) > N/2.

Proof. By Lemma 6, every pair of successive column trees 2j — 1 and 27 has at
least one vertex of L(MOT(N)). There are N/2 such pair of column trees. O

In fact the set D = {(1,1),(3,3),(5,5)...(N —1,N — 1)} intersects every
pair successive column trees 25 — 1 and 2j as well as every pair of successive
row trees 2i — 1 and 2¢. Consider two adjacent vertices z and y of (1,1). Then
it is easy to verify that z and y are equidistant from (k, k) for all k = 1,2... N.
Thus, the set {(1,1),(2,2),(3,3)... (N, N)} of diagonal vertices is not a locating
set. In the same way, the set {(1,1),(1,2),(1,3)...(1, N)} of leaves of 1-st row
tree is not a locating set. Also, the set {(1,1),(2,1),(3,1)...(N, 1)} of leaves
of 1-st column tree is not a locating set too. O

4.1.2 Upper Bound for L(MOT(N))

Let ¢; denote the root of j-th column tree and r; denote the root of i-th row
tree. Let T be a complete binary tree with root 7. A vertex u of T is at level
s if the distance between r and u is s.

Lemma 8 The set L = {¢1,¢3...CN-1)T1,T3...TN=1} Of roots of odd column
trees and odd row trees is a locating set of an N x N mesh of tree MOT(N).

Proof. Let u and v denote two arbitrary vertices of MOT(XN). There are three
cases:

Case 1(u and v are in different trees): The first possibility is that u and
v are in different row trees. Let us assume that u is in #-th row tree and v is in
k-th row tree. Suppose i is odd. Then the root r; of i-th row tree is a member
of L. Since u is in the i-th row tree, d(u, ;) < logN [10]. In the same way, since
v lies outside the i-th row tree, d(v,r;) > logN [10]. Thus d(u,r;) # d(v,r;).

Suppose k is odd. Then d(u,r«) # d(v,7x) where r« is a member of L.

Suppose both i and k are even. Then the root r;_; of (i —1)-th row tree and
root rx_; of (k—1)-th row tree are members of L. Then if d(u,r;_;) = d(v,r;i—1),
* then d(u,Tk-1) # d(v,7%-1). See Figure 4. The proof is the same if u and v are
in different column trees. The proof is similar if » is in a row treeand v isin a
column tree.

Case 2 (u and v are in the same tree but at different levels): Let
us assume that u is at s-th level in i-th row tree and v is at t-th level in the
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Figure 4: Vertex u lies in i-th row tree and v lies in k-th row tree. Both are
even row trees.

same row tree. If  is odd, the root r; of i-th row tree is a member of L. Now
d(u,r;) = s and d(v,7;) =t. Since s # t, d(u,r;) # d(v, ;).

Suppose i is even. Then r; is not a member of L. Consider the roots ¢;
and cy-1 which are the roots of 1-st column tree and (N — 1)-th column tree
respectively. See Figure 5. Also, ¢; and ¢y_1 are members of L. If d(u,c;) =
d(v, 1), then d(u,cn-1) # d(v,cn—1) because u and v are at different levels of
i-th row tree.

The proof is the same if u and v are at different levels of the same column
tree.

Case 3 (u and v are at the same level of the same tree): Suppose u
and v are at the same level of i-th row tree. The common ancestor of u and v
is denoted as a and the subtree rooted at vertex a is T'(a). The leftmost leaf of
T(a) is denoted as £. See Figure 6. It is easy to observe that £-th column tree
is odd. Thus, the root c¢ of £-th column tree is a member of L. Since u and v
are at the same level of i-th row tree, d(u, c¢) # d(v, cz). See Figure 7.

The proof is the same if » and v are in the same column tree. O

In the above theorem, the cardinality of L is N. Thus an upper bound of
L(MOT(N) is N. We have just shown that the location number of an N x N
mesh of trees lies between N/2 and N. In the following section, we shall prove
that the location number N x N mesh of trees is neither N/2 nor N. We exhibit
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Figure 5: Vertices u and v are in i-th row tree but at different levels where i is
even.

this by demonstrating that L(MOT(4)) = 3 where N/2=2and N =4.

4.2 4 x 4 Mesh of Trees

If the degree of one vertex is even and that of the other is odd then the vertices
are said to be of different parity. Otherwise they are said to be of the same
parity. The distance between two vertices of different parity is odd and that
between vertices of the same parity is even.

Two vertices are said to be diametrically opposite to each other if the distance
between them is equal to the diameter of the graph. Diametrically opposite
vertices in MOT(N) will be of the same parity.

Notation 2 Given two vertices u and v in MOT(N), let M(C) be the diameter
of a shortest cycle C containing v and v. Let d(u,v) = k < AMC) and let
P(u,v) denote the shortest path on C' between them. Let Q(u,v) denote the
(u,v)- section of C whose length is > A(C). Moreover, |P(u,v)| and |Q(x,v)|
denote the length of the path P(u,v) and Q(u,v) respectively.

In this section we exhibit that the location number of MOT(4) is 3. To show
that this number is the minimum, we need to show that L(MOT(4)) > 2. A
brute force method of showing no 2-subset of V' is a locating set is not feasible
as there are 40C = 780 pairs. We provide a rigorous and an elegant proof to
show that L(MOT(4) > 2.
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Figure 6: The common ancestor of v and v is denoted as @ and the subtree
rooted at a is T(a). The leftmost leaf of T'(a) is denoted as £. There are two
different examples in the figure

Proposition 1 Given two vertices u and v in MOT(N), let C be the shortest
cycle containing u and v. Let P(u,v) denote the shortest path on C between u
and v and Q(u,v) denote the longest path on C between u and v. Then |Q(u,v)|

# |P(u,v)| + 1.

Proof. If it were so, then |P(u,v)| + |Q{(u,v)| = 2|P(xu,v)| + 1, which is not
possible since | P(u, v)|+|Q(u, v)| is even. Consequently |Q(u,v)| > |P(u, v)|+2.
a

Observation 1 If u and v are of different parity and d(u,v) = k, then k <
MC) -1 and hence k' > M(C) +1.

Observation 2 If u and v are of the same parity and d(u,v) =k, then k <
MC) — 2 and hence k' > M\(C) +2.

Lemma 9 L(MOT(4)) > 2.

Proof. Suppose that {u,v} is a locating set for G. Then there is a unique
shortest path P between u and v [9]. Since MOT(N) is 2-connected, u and v
will lie on a common cycle C. Choose C so that the length of C is minimum.
The uniqueness of P implies that » and v are not diametrically opposite in C
and hence d(u,v) = k < X\(C).

Case 1: The vertices u and v are of different parity. Without loss of
generality let d(u) = 2 and d(v) = 3. Let v;,v2 be vertices adjacent to v, but
not lying on P. Let vy € V(C). Then

d(v,v1) =d(v,v2) =1 1)
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Figure 7: Vertices v and v are at the same level of i-th row tree.

Also dg(u,v) = ¥ > A(C) + 1 by Observation 1. Hence dg(u,21) > A(C) >
k. This means that do(u,v;) > k + 1. Since dp(u,v) = k and the path P
followed by the edge vv; is of length k + 1, we have d(u,v;) = k + 1. Now, if
d(u,vg) < k — 1, then there is a (u,v)-path of length < k, a contradiction. If
d(u,v2) = k— 1, then there are two distinct (u,v)- paths, again a contradiction.
If d(u,v2) = k, a cycle of odd length will be formed. Hence d(u,vz) > k+1.
Since P followed by the edge vvs is of length k+1, we must have d(u, v2) = k+1.

Thus
d(u,n) =d(u,vn)=k+1 2

Case 2: The vertices u and v are of same parity. Then d(u,v) = k < A(C) -2
and k' = dg(u,v) > MC) +2.

Case 2a: Let d(u) = d(v) = 3. Then proceeding as in Case 1, the vertices
v; and v, adjacent to v are equidistant from both u and v.

Case 2b: Let d(u) = d(v) = 2. Let w be adjacent to v on C, not lying
on P. Let w; and ws be adjacent to w with wy € V(C) and wp ¢ V(C).
Now u and w are of different parity. We observe that d(u,w) £ k — 1, for
otherwise d(u, v) would be less than k, a contradiction. Also d(u,w) # k-1, for
otherwise there would be two shortest paths between u and v, a contradiction.
Moreover d(u,w) # k. If it were the case, an odd cycle would be formed which
is not possible. Hence d(u,w) = k+ 1. Now k < A\(C) — 2. This means that
d(u,w) =k+1 < A(C) -1 < A(C). As u and w are of different parity, by Case
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Figure 9: Possible Cases

1, we have that w; and w, are equidistant from u and w. That is

d(u, wy) = d(u, we) (3)
and d(w, w;) = d(w, ws) = 1. Since G has no cycles of length 3, we have
d(v,w1) = d(v,wp) =2 4

The possible cases are illustrated in Figure 9.

The equations (1), (2), (3), (4) contradict our assumption. [J

A simple calculation shows that {8, 14, 35} shown in Figure 8 is a locating
set of G. Thus we have the following theorem.

Theorem 4 L(MOT(4)) =3. 0



5 Conclusion

In this paper, we have provided bounds for the location number of X-trees,
double rooted X-trees and mesh of trees. We have proved that the lower bound
of N x N mesh of trees is N/2 and its upper bound is N. Finding the exact
value of location number of mesh of trees is still a challenging mathematical
problem. It would be interesting to consider architectures derived from ternary

trees and k-ary trees. O
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