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Abstract

Acharya and Hegde have introduced the notion of strongly k-indexable
graphs: A (p,g)-graph G is said to be strongly k-indezable if its vertices can
be assigned distinct integers 0,1,2,...,p — 1 so that the values of the edges,
obtained as the sums of the numbers assigned to their end vertices can be
arranged as an arithmetic progression k,k+ 1,k +2,...,k + (¢ - 1). Such an
assignment is called a strongly k-indexable labeling of G. Figueroa-Centeno
et.al, have introduced the concept of super edge-magic deficiency of graphs:
Super edge-magic deficiency of a graph G is the minimum numbser of isolated
vertices added to G so that the resulting graph is super edge-magic. They
conjectured that the super edge-magic deficiency of the complete bipartite
graph Kmn is (m — 1)(n — 1) and proved it for the case m = 2. In this paper
we prove that the conjecture is true for m = 3, 4 and 5, using the concept of
strongly k-indexable labelings®.

1 Introduction

For all terminology and notation in graph theory we follow Harary (6] and West [7].

Graph labelings, where the vertices and edges are assigned real values or sub-
sets of a set are subject to certain conditions, have often been motivated by their
utility to various applied fields and their intrinsic mathematical interest (logico-
mathematical). An enormous body of literature has grown around the subject,
especially in the last forty years or so, and is still getting embellished due to in-
creasing number of application driven concepts [5).

Acharya and Hegde [1,2] have introduced the concept of strongly k-indexable
graphs. .

Given a graph G = (V, E), the set N of nonnegative integers, a finite subset
A of N and a commutative binary operation + : N x N — N, every vertex
function f : V(G) — A induces an edge function f* : E(G) — A such that
fH(uw) = f(u) + f(v),Y uv € E(G). Such vertex functions are called additive
vertexr functions. An additive labeling of a graph G is an injective additive
vertex function f such that the induced edge function f is injective.
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For the given (p, ¢)-graph G = (V, E).
L f(V)={f(u):ueV(G)}.
2. f*(E)={f*(e) : e € E(G)}.

Definition 1.1 An additive labeling f : V(G) — {0,1,2,...,p— 1} of a (p,q)-graph
G with ft(E) = {k, k+d, ..., k+ (g — 1)d} is called strongly (k, d)-indezable
labeling of G.

Definition 1.2 A strongly (k, d)-indezable labeling of a (p,q) graph G withd = 1
is called a strongly k-indexable labeling. A graph which admits such a labeling
for at least one value of k is called strongly k-indezable graph.

Enomoto et.al.,[3] have introduced the concept of super edge-magic graph.

Definition 1.3 A graph G is said to be super edge-magic if it admits a bijection
f:VUE = {(1,2,...,p+q} vith f(V) = {1,2, ...,p} and f(E) = {p+1,p+2, ...,p+q}
such that f(u) + f(v) + f(uv) = c(f), wv € V where c(f) is a constant.

From the above definition one can see that a graph is super edge-magic if and

only if it is strongly k-indexable for some k.
R. M. Figueroa-Centenoa et.al.,[4] have introduced the concept of super edge-

magic deficiency of graphs.

Definition 1.4 The super edge-magic deficiency of a graph G is the minimum
number of isolated vertices added to G so that the resulting graph is super edge-
magic and is denoted by p1,(G).

From the above definitions one can see that 0 < p,(G) < oo.

- Since a graph is super edge-magic if and only if it is strongly k-indexable, super
edge-magic deficiency can be equivalently defined as the minimum number of iso-
lated vertices added to a graph G so that the resulting graph is strongly k-indexable
for some k. For the sake of convenience we call this parameter as vertex depen-
dent characteristic and denote it by d.(G). Figueroa-Centenoa et.al.,[4] have

proved that

Theorem 1.5 : The vertez dependent characteristic of the complete bipartite graph
K is at most (m —1)(n —1).

They conjectured that

Conjecture 1.6 : The vertex dependent characteristic of the complete bipartite
graph K., » is equal to (m — 1)(n - 1).

Also, they proved that

Theorem 1.7 The vertez dependent characteristic of the complete bipartite graph
Kz.n iS (n - 1).
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2 Results

In this section we prove the above mentioned conjecture for m = 3, 4 and 5, using
the concept of strongly k-indexable labelings.

Theorem 2.1 : The vertez dependent characteristic of the complete bipartite graph
Ksn is2(n—1).

Proof: From Theorem 1.5, clearly
de(Ks, n) £2(n—1). (1)

From Theorem 1.7, d.(K3,3)= 2.
Suppose dc(K3, n) < 2(n — 1) for some integer n > 3. Then there exists a strongly

k-indexable labeling f : V(K3,» U (2n — 2 - 5)K1) — {0, 1,...,3n — j} for some
integer j > 1 such that

FH(Ks,n) = FH(Ks,nU@n—2-j)K1) = {k, k+1,...k+3n—1}.

Let A= {z::zi€ V(Ksn), deg(z:) =n and f(z;) < f(zi41), i =1, 2}.
B ={y;:yi € V(K3,»), deg(ys) =3 and f(%) < f(yi+1);1<éi<n -1}

C={z:z€ V((2n - 2 - j)K)), deg(z:) =0, 1 <i< 2n -2 —j}.
Let f(z1) = a then f(z2) = a + b and f(z3) = a + b + ¢ where b, ¢ are positive
integers.

Consider the following mutually exclusive subsets of f+(Ks):
Ay ={a+ f(n), a+b+ f(n1), a+b+c+ f(n)}
Az = {a+ f(y2), a+ b+ f(y2), a+b+c+ f(y)}

As = {a+ f(ys), a+b+ f(ys), a+b+c+ fus)) @

Ap = {a+f(yn)7 a+b+ f(yn)s a+b+c+ f(yn)}
Since f is strongly k-indexable,

f+(K3. ,,) =A1UAUA3U...UA4,.

Therefore a+ f(y1) = k and a+b+c+ f(yn) = k+3n — 1. There are (b- 1) edge
values between each a + f(y;) and a+b+ f(3:), 1 <i<nin f+(K3, ») and (c- 1)
edge values between each a +b+ f(y:) and a+b+c+ f(y:), 1 <i <nin f* (K3, ).
As there are only 3n elements in f*(K3, n), we must have (b—1)n+(c—1)n+2 < 3n
which implies

b-1n+(c—-1)n<3n-2<3n=>b+c<s.
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Therefore possible values of b and ¢ are one among the following.
(1)b=1andc=3.
(2)b=3andc=1.
(3)b=1andc=2.
4b=2andc=1.
(5)b=2and c=2.
6)b=1landc=1.

Case 1: b=1and ¢c= 3.
From (2), weget

Ar={a+ f(n), a+1+ f(y1), a+4+ f(1n)}
A ={a+ f(y2), a+ 1+ f(32), a+ 4+ f(ya)}
As={a+ f(y3), a+ 1+ f(y3), a+ 4+ f(y3)}

An={a+ f(yn), a4+ 1+ f(ya), a+4+ f(yn)}.
One can observe that, the increasing order of edge values of K3, , are
a+ f(1n1), a+1+ f(31), a+ f(y2), a+ 1+ f(z2),
a+4+ f(y1), a+ f(ys), e +4+ f(ys).

From this increasing order we get,
f(y2) =2+ f(11) and f(ys) =5+ f(m).

But then
f(z) + f(ys) =a+1+5+ f(n)

=a+6+ ()

= f(x3) + f(y2) — a contradiction (because f* is injective).
Case 2: b=38 and c = 1.
By similar arguments as in Case 1, we get a contradiction.

Case 3: b=1and c = 2.
From (2), weget

Ay ={a+ f(n1), a+ 1+ f(11), a+3+ f(n)}
Ay ={a+ f(y2), a+ 1+ f(y2), a+ 3+ f(y2)}
A3={a+f('y3)a a+1+f(y3)7 a+3+f(y3)}

An = (a4 f(gn), a+1+ fgn)s a+3+ f(un)}.
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One can easily observe that
f(z2) + fy2) =a+1+f(y2)

=a+3+ f(yl)
= f(z3) + f(31) — a contradiction.

Case4: b=2and c= 1.
By similar arguments as in Case 3, we get a contradiction.

Case 5: b=1and c= 1.
Ifb=c=1 and then
k=a+ f(y)
k+l1=a+1+ f(31)

k+2=a+2+ f(3n) ®3)

k+3n—1=a+2+ f(yn).

From (3), we get
fly2) =38+ f(w1)

flys) =6+ f(y) @

F(ga) = 3(n — 1) + £(31).
Hence

flyn) =3n-3+f(n))
<3n—j (. 3n—j is the maximum vertex value)

= flyn) <3-4

But f(y1) 20 =3-j20 =j€{l, 2, 3}
Note that
f(A) ={a, a+1, a+2}.
£(B) = {f(%1), f(11) + 3, f(31) +6,..., f(1n) + 3(n — 1)}. ( From (4)), weget
f(C) ={f(=1), f(z2), f(z3),-... f(z2n-2-5)}

Let F={f(y:)+i:1<1%<3n-3N\f(B). Clearly F C f(K3,,U(2n—2—j)K;)
and F contains 2(n-1) vertex values.

Sub Case 5.1: j = 1.
Then f(C) contains 2n — 3 vertex values and therefore one element of F' must be
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in f(A).
Let f(y1) + 3s— 5 € f(A) for some integer s, 2 < s < n. Then

a=f(y1)+3s—5 =>a+2¢ f(B) -a contradiction.
a+l1=f(pn)+3s—-5 =ac€f(B) —a contradiction.
a+2=f(y)+3s—5 =>a+1€f(B) -acontradiction.

Let f(y1) 4+ 3r — 4 € f(A) for some integer s, 2 < r < n. Then
a=f(y)+3r-4 =a+1€ f(B) -a contradiction.
a+l=f(y)+3r—4 =a+2¢ f(B) -a contradiction.
a+2=f(y1)+3r—-4 =ac€ f(B) —a contradiction.

Therefore j # 1.

Sub Case 5.2: j = 2.

Then f(C) contains 2n — 4 vertex values and therefore two elements of F must be
in f(A).

Let f(11) + 3t — 2, f(y1) + 3t — 4 € f(A) for some integer ¢, 1 < ¢ < n. Then,
a+1= f(y1) + 3t -3 = f(y1) + 3(t — 1) € f(B)-a contradiction.

Let f(y1) + 3m =5, f(y1) + 3m —4 € f(A) for some integer m, 1 < m < n. Since
these two values are consecutive, either a € f(B) or e + 2 € f(B)-a contradiction.

Therefore j # 2.

Sub Case 5.3: j = 3.
Then f(C) contains 2n — 5 elements and therefore three elements of F must be in

f(A), which is impossible since the elements of f(A) are consecutive. Clearly j # 3.
Thus for j 2 1, (K3, ») U (2n — 2 — j)K] is not strongly k-indexable.

Case 6: b =2 and c = 2.
From (2), weget
={a+ f(n), a+2+ f(n1), a+4+ f(n)}
Az ={a+ f(y2), a +2+ f(32), a + 4+ f(y2)}

An={a+ f(yn), a+2+ f(yn), a +4+ f(va)}-
Then the increasing order of edge values of K3 ,, are

a+ f(m), a+ fyz), a+2+ flwr), a+2+ flua),
a+4+ f(y1), a+4+ f(y2), a+ f(y3), -..na+44 fya)
= f(y2) =1+ f(1), f(ya) = 6+ f(¥1) and f(wa) = 7+ f(y1).
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If » is odd, that is n = 2r + 1 then there are 4r vertex labels which are not used
between f(y:1) and f(yer+1). Therefore2n —2~j =4r—j > 4r = i <0 -a
contradiction to j > 1.

If n is even then,

f(ya) =3n =5+ f(1n), f(yn-1) = fyn) - 1.
k=a+ f(n1),k+3n—1=a+4+ f(yn)
= f(yn) =k+3n-5—-a
= f(yn) =k +3n-5- (k- f(1))
= f(yn) =3n -5+ f(y1)) <3n—j
= j €{1,2,3,4,5}.
Threrefore
f(A) ={e, a +2, a +4}.
f(B) ={f(n), f(n1)+1, (1) +6, f(1) +7,..., f(3) + 3n — 5}.
F(C) = {f(=1), f(z2), f(23),..., f(z2n—2-)}.
Again, let R={f(v1) +2, f(1n) +3, f(11) +4, f(n1) +5, f(1) +8,...,}.
Clearly R C f(Ks,nU(2n — 2 - j)K)) and R contains (2n-4) vertex values and

RN f(B) = ¢. Similar to the arguments used for Sub Cases (5.1), (5.2) and (5.3)
we can show that j # 1,2,3,4,5. Hence from (1), we get dc(K3, ) =2(n —1). o

Theorem 2.2 : The vertex dependent characteristic of the complete bipartite graph
K4. n i3 3(71 el 1).

Proof: From Theorem 1.5, clearly
de(Ky4, n) <3(n—1). (5)

From Theorems 1.7 and 2.1, we get d.(K>2 4) = 3 and d.(K3,4) = 6. Assume
that de(Ky, n) < 3(n — 1) for some integer n > 4. Then there exists a strongly
k-indexable labeling f : V(K4 n U (3n — 3 = 5)K1) — {0, 1,....,4n — j} for some
integer j > 1 such that

[Y(Kan)=f1(KenU@Brn-3-35)K1)={k, k+1,...,k+4n—1}.
Let A= {z;:z; € V(K4 »n), deg(z:) =n and f(z;) < f(ziy1), i=1, 2, 3}.
B ={yi:yi € V(Ky n), deg(y;) =4 and f(:) < f(yi41);1<i<n -1}
C={z:2¢€V(Bn—3—-j)Ki), deg(z) =0,1<i<3n-3-j}.
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Let f(z1) = a then f(z2) = a+b, f(z3) =a+b+cand f(x3) =a+b+c+d where
b, ¢, d are positive integers.
Similar to previous theorems consider the mutually exclusive subsets of f+(Ky, »):

Av={a+ f(n), a+b+ f(mn), a+b+c+ f(n), e+ b+c+d+ f(n)}
Az ={a+ f(y2), a+ b+ fy2), a+b+c+ f(y2), a+b+c+d+ f(y)}
As={a+ f(ya), a+ b+ f(ya), a+ b+c+ f(ys), a+b+c+d+ f(ys)}

An={at f(n)s a+b+ f(ya), at+btct f(gn), a+btctd+ flyn)}.

There are (b- 1), (c- 1) and (d - 1) distinct edge values between each a + f(y;)
and a +b+ f(yi) , a+ b+ f(y:) and a + b+ c+ f(3:) and a + b + ¢+ f(3:) and
a+b+c+d+ f(¥), 1 <i<nin fH(Ky n) respectively. As there are only 4n
elements in f+(Ky, »), we must have (b~ 1)n+(c—1)n+ (d-1)n +2 < 4n.
Therefore we get b+c+d < 7.

There are many possible values of b, ¢ and d such that b+ c+d < 7. It is enough
to consider the following seven cases since the remaining cases follow by similar
arguments.

(1)b=1,c=1landd=2.

2b=1c=1landd=3.

3)b=1,c=1andd =4

4b=2c=1andd=2.

(5)b=2,c=1andd=3.

6)b=1c=1andd=1.

(Mb=2c=2andd=2.

Casel: b=1,c=1andd = 2.
In this case, note that f(y2) = 3 + f(:1) and therefore. we get

f(ze) + f(y1) = f(z2) + f(y2) — a contradiction (because f+ is injective).

Case 2: b=1,c=1and d = 3.
In this case also, note that f(y2) = 3 + f(%1) and therefore we get

f(za) + f(1) = f(=x3) + f(y2) — a contradiction.

Case 3: b=1,¢c=1andd = 4.
Similarly, in this case f(y3) =4 + f(y2). Therefore,

f(z3) + f(ys) = f(za) + f(y2) — a contradiction.

Case 4: b=2,c=1and d = 2.
Note that f(y2) = 1+ f(¥1)

f(z3) + f(y1) = f(z2) + f(y2) — & contradiction.
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Case 5: b=2,c=1and d = 3.
Note that in this case also f(y2) =1+ f(n1)

f(z3) + f(n) = f(z2) + f(y2) — a contradiction.

Case 6: b=1,c=1and d = 1. and

Case 7: b = 2, ¢ = 2 and d = 2. also arrive at contradiction using analogous
arguments of Theorem 2.1 Case-5 and Case-6. Therefore from all these seven cases,
clearly 7 # 1. Hence from (5) dc(Kyg, ») =3(n—1). ¢

Theorem 2.3 . The vertez dependent characteristic of a complete bipartite graph
K5|n 1'8 4(n - 1).

Proof. Consider the complete bipartite graph K5 . From Theorem 1.5, we have
de(Ksn) <4(n—1) ()

Also, we see that d.(K2s) = 4, dc(K3s) = 8 and do(K45) = 12. Assume that
de(Ksn) < 4(n — 1) for some positive integer n > 5. Then, there exists a strongly
k-indexable labeling f : V(K5, U (4n — 4 - j)K,) — {0,1,2,...,5n — j} for some
positive integer j > 1 such that f+(Ks,) = f*(Ksn U (4n — 4 - j)Ki) = {k, k+
1,...,k+5n-1}.

Let A= {zi 1Z € V(K5,n)7 deg(:z:g) =n, f(zi) < f(xi-i-l))i = 1, 2a 314}

B ={y:: i € V(Ks,n),deg(w:) = 5, f(3:) < f(gi+1), 1 <i<n—1}
C={zi:2z,€ V((4n — 4 — §)K1),deg(z) = 0,1 <i<4n—-4 —j}.
Let f(z1) = a, then f(z2) =a+b, f(z3) =a+b+ec, f(za) =a+b+c+dand

f(zs) = a+b+c+d+e, where b, ¢, d, e are positive integers. Consider the following

mutually exclusive subsets of f*(Ksn):
A1 = {a+f (1), a+b+f (1), a+b+c+f(y1), a+b+etd+f(y1), a+b+ctd+e+f(y1)}

Az = {a+f(y2), a+b+f(y2), a+b+c+f(y2), a-+d+c+d+f(y2), a+b+c+d+e+f(ya)}
Az = {a+f(y3), a+b+ f(y3), a+b+c+ f(ys), a+b+c+d+ f(y3), a+b+c+d+e+ f(y3)}

An = {a+f(yn), a+b+f(yn), a+b+ctf(yn), atbtet+d+f(yn), atbtct+d+etf(ya)}-

8)
Since f is strongly k-indexable, f+(Ksn) = A1U AU U A,.

Therefore, a+ f(y1) =k and e+ b+ c+d+e+ f(yn) = k+ 5n — 1. Note that
there are (b— 1) edge values between a + f(y;) and a + b+ f(3:),1 <i < n, {c~1)
edge values between a+b+ f(y:) and a+b+c+ f(y:),1 < i < n, (d—1) edge values
between a+ b+ c+ f(y:) and e + b+ c+d+ f(y),1 <7< n, (e — 1) edge values
between a+b+c+d+ f(y;) anda+b+c+d+e+ f(y),l <i<nin fH(Ksn).

As there are only 5n elements in f+(Ks,n), we must have (b—1)n+ (c —1)n+
(d-1)n+(e—1)n+ 2 < 5n, from which we get,
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b-Nn+(c-ln+(@-1)n+(e—1)n<5n—-2<5n
= b+c+d+e<.

There are many possible values of b,c,d,e such that b+ c+d+e < 9. It is
enough to consider the following twelve cases since the remaining cases follow by

similar arguments.

Case 1: b=1, c=1, d=1, e= 5.
From (8), we get
Air={a+ f(n)a+1+ f(n)a+2+ f(n1),a+3+ f(n),a+8+ f(11)}

Az ={a+ f(y2),a+ 1+ f(y2),a+ 2+ f(y2),a + 3+ f(y2), 0 + 8+ f(y2)}

Az ={a+ f(y3),a+1+ f(ys),a+ 2+ f(ys),a+ 3+ fys),a + 8+ f(ys)}

An={a+ f(Wn),a+ 1+ f(ga),a +2+ F(¥n),a+3+ f(ya),a +8+ fun)}.
Then, the increasing order of edge values of K5 , are a+ f(11),a+ 1+ f(y1), 2+

2+ f(y1),a+3+ f(n1),a+ f(y2),a+ 1+ f(y2),a+ 2+ f(y2),a+ 3+ f(y2),a + 8+

f(yl)ra+f(y3)i" '1a+8+f(yn)'
From this increasing order, we get

a+ f(y2) =a+4+ f(v1) and a + 9+ f(1) = a + f(y3)

= f(y3) =9+ f(y1) and f(y2) =4+ f(1).
But f(z4) + f(ya) =a+3+9+ f(1n)=(a +8) + (4 + f(11))= f(=zs) + f(2).
This is a contradiction since f is injective.

Case 2: b=1, c=1, d=1, e= 4.
From (8), we get
A ={a+f(n)a+1+ fn)a+2+ fm)a+3+ fn)a+ 7+ f(y1)}

Ay ={a+ f(y2),a+ 1+ f(v2),a+2+ f(y2),a+3+ f(v2),a+ 7+ f(y2)}
Az ={a+ f(y3),a+1+ f(ys),a+ 2+ f(ys),a+ 3+ f(ys),a + 7+ f(y3)}
An={at f(ga),a+ 1+ F(Un)ya+2+ Fun)ya+3+ f(ya),a+ 7+ f(ya)}

Then, one can easily observe that

a+4+ f(1) =a+ f(y2) and a + 8 + f(31) = a + f(y3)

= f(y2) =4+ f(y1) and f(y3) =8+ f(y1).

But f(z4) + f(32) = (e +3) + (4 + f(11) = (@ + 7) + f(n1) = f(=zs) + f(1)).
This is again a contradiction.

Case 3: b=1, c=1, d=1, e= 3.
From (8), we get
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Ay ={a+ f(n1)e+ 1+ f(m1),a+2+ f(y1),e+3+ f(y1),a + 6+ f(31)}
A ={a+ f(y2),a+ 1+ f(y2),a+ 2+ f(y2),a+ 3+ f(y2),a+ 6+ f(y2)}
As={a+ f(ys),a+ 1+ f(ys),a+2+ f(ya),a+ 3 + f(ya),a+ 6+ f(y3)}
An={a+ fun)ya+1+ F(gn)a+2+ f(yn)sa+3+ f(vn) a+6+ f(n)}.
Then, one can easily observe that

a+4+ f(y) =a+ f(y2) and a + 7+ f(11) = a + f(ys)

= f(y2) =4+ f(n) and f(y3) =7+ f(31)

But f(z3) + f(y2) = a+ 2+ 4+ f(y1)= (a + 6) + f(y1)= f(zs) + f(w1).
This is again a contradiction.

Case 4: b=1, c=1, d=1, e= 2.
From (8), we get
Ay ={a+ f(n),e+ 1+ f(mr),a+2+ f(n),a+3+ f(n1),a+5+ f(11)}

Az = {a+ f(ye),a+ 1+ f(y2),a+ 2+ f(y2),a + 3+ f(v2),a + 5+ f(y2)}
As={a+ f(y3),a+ 1+ f(y3),a+ 2+ f(ys),a+ 3+ f(ys),a + 5+ f(y3)}

An = {0t fgn),a+ 1+ F(ga),a + 24 F(un),a+3+ F(gn),a+5 + f(un)}.
Then, one can easily observe that
a+4+ fy1) =a+ f(ya) and a+ 6+ f() =a + F(us)
= f(3) =4+ f(3) and f(ys) =6+ f(11).

But f(z2) + f(¥2) = e + 1+ 4+ f(n1)= (a +5) + f(3)= f(zs) + f(1).
This is again a contradiction.

Case 5: b=38, c=3, d=1, e= 1.
From (8), we get
Ar={a+fn),a+3+ f(),a+6+f(y1),a+7+ f(31),a+8+ f(y1)}

Ay = {a+ fy)ra+3+ f@2),a+6+ F(32), 0+ T+ F(w),a+ 8+ f(y2)}
As ={a+ f(ya)a+3+ f(ys),a+ 6+ f(ys),a+ 7+ f(ys),a + 8+ f(ys)}
An = {ad flun)ra+ 3+ F(yn),a+6+ f(yn),a + 7+ f(yn), a+8+ flyn)]}.

Then, one can easily observe that
a+4+ f(n1) =a+ f(y2) and a +9+ f(y1) =a+ f(y3)

= f(y2) =4+ f(y1) and f(y3) =9+ f(31).
But f(z2) + f(y2) =a+3+4+ f(y1)=(a+7) + f(n1)= f(za) + F(11)-
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This is again a contradiction.

Case 6: b=2, c=2, d=2, e= 1.
From (8), we get
Ar={a+ fy1)a+2+ f(n1),a+4+ f(n),a+6+ f(1),a+ 7+ f()}

Az ={a+ f(y2),a+2+ f(y2),a+4+ f(y2),a + 6+ f(y2),a + 7+ f(y2)}
Az ={a+ f(y3),a+2+ f(y3),a+ 4+ f(ys),a+ 6+ f(y3),a+ 7+ f(y3)}
Ao ={a+ f(gn),a+2+ f(ga),a +4+ F(Un)a+6+ f(ya),a + 7+ f(gm)}.

Then, one can easily observe that

a+ f(y2) =a+3+ f(y1) and a + f(y3) =a + 8+ f(y1)

= f(y2) =3+ f(v1) and f(ys) =8+ f(n1).

But f(z3) + f(¥2) = a+ 4+ 3+ f(y2)= (e + 7) + f(n1)= f(zs) + f(1n).
This is again a contradiction.

Case T: b=2, c=2, d=1,e= 1.
From (8), we get
Ar={a+ fly)a+2+ fy1)a+4+ f(n)a+5+ f(y1),a + 6+ f(v1)}

Ay ={a+ f(y)a+2+ f(y2),a+ 4+ f(y2),a+ 5+ f(y2),a + 6 + f(y2)}
As={a+ f(ys),a+2+ f(ys),a+ 4+ f(ys),a+ 5+ f(y3),a + 6+ f(ys)}

An = {«;1 f(yn)a +24 f(yn)s‘a':i' 4+ f(y..')','a +5+ f(s},;),a +6+ f(yn)}.

Then, one can easily observe that
a+ f(y2) =a+3+ f(3) and a + f(y3) =a+ 7+ f(y1)
= f(y2) =3+ f(y1) and f(y3) =7+ f(n1).

But f(z2) + f(y2) = (a +2) + B + f(n1))= (a +5) + f(11)= f(z4a) + f(w1).
This is again a contradiction.

Case 8: b=1, c=2, d=2, e= 3.
From (8), we get
A= {a+f(y1)1a+1+f(yl)va+3+f(yl)sa+5+f(yl)ta+8+f(yl)}

Ap = {G'l'f(yz):a'*'1+f(3/2)10+3+f(y2),a+5+f(yz),a+8+f(y2)}
As={a+ f(ys),a+1+ f(ys),a+3+ f(ys),a+ 5+ f(ys),a+8+ f(ys)}

An = {a+ fun)at 1+ fgn)ra+3+ F(ua)ra+5+ f(ya)ia+8+ f(ya)}
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Then, one can easily observe that
a+ f(y2) =a+4+ f(y) and e+ f(ys) =a+ 9+ f(1)
= f(y2) =4+ f(n) and f(y3) =9+ F(3n)-
But f(z3) + f(y2) = a+ 1+ 4+ f(31)= (a + 5) + f(1)= f(za) + F(y1).
This is again a contradiction.

Case 9: b=1, c=1, d=2, e= 4.
From (8), we get
A ={a+ f(m)a+1+ f(m)e+2+ f(3),a+4+ f(y1),a+8+ f(v1)}

Az ={a+ f(y2),a+ 1+ f(y2),a+ 2+ f(y2),a+ 4+ f(y2),a + 8+ f(v2)}
= a+ f(1n) <a+1+ f(y1) <a+2+ f(y1) are three consecutive numbers
= a+ f(y2) =a+3+ f(n)
=>a+1+f(y2) =a+4+f(n)
=> A1 NAg 5 ¢.

This is again a contradiction.

Case 10: b=1, c=1, d=2, e= 3.
From (8), we get
Ar={a+ fn)a+1+f)a+2+f(n)a+d+f(n)e+7+ f(n)}

Ay ={a+ f(y2),a+ 1+ f(y2),a+2+ f(y2)ra+4+ f(y),a+ 7+ f(y2)}
Az = {°+f(y3),a+1+f(y3)a0+2+f(y3)aa+4+f(ys),a+7+f(y3)}
An = {;:F f(yn), at1+ f(yn):.;l.-*' 2+ f(y;-');a +4+ f'(.y.n), a+7+ f(yn)}
Then, one can easily observe that

a+ f(ye) =a+4+ f(1n) and a + f(y3) =a+ 7+ f(y1)

= f(y2) =5+ f(v1) and f(ys) = 8+ f(3).
But f(zs) + f(¥2) = a+ 2+ 5+ f(y2)= (e + 7) + f(1)= f(zs) + f(31).
This is again a contradiction.

Case 11: b=2, c=2, d=2, e= 2.

From (8), we get

A ={a+ fn)a+2+Ff(n1),a+4+ fy)a+6+ f(n),a+8+ f(11)}
Az ={a+f(y2),a+2+ f(y2),a+4+ f(y2),a+6+ f(y2),a+8+ f(y2)}
As={a+ f(y3),a+2+ f(ys),a+4+ f(ys),a+ 6+ f(ys),a + 8+ f(y3)}

An={a+f(ya)sa+2+ f(yn),a +4+ f(yn)a +6+ f(yn),a + 8+ f(ya)}-
Then, one can easily observe that
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a+2+ f(3) =a+ f(ye) and a + 8+ f(31) = a + f(ys)

= f(y2) =3+ f(31) and f(ys) =9+ f(31).

But f(z1) + f(ys) =a+ 9+ f(31) = (a +6) + B+ f(11)) = f(z4) + f(32)-
This is again a contradiction.

Case 12: b=1, c=1, d=1, e= 1.

Then
k=a+ f(y)
k+l=a+1+ f(y1)
k+2=a+2+ f(y1)
k+3=0a+3+f(n)
k+d=a+4+f(n)
k+5=a+ f(y2)
k+6=a+1+ f(y2)

©

k+5n-1=a+4+ f(yn)

From (9), we get
fly2) =5+ f(w)

f(ys) =10+ f(11)
flya) = 15+ f(31)

F(vm) =5(n 1) + £()

(10)

From (10), we get
flyn)=k+5n—-1-a—-4

=k+5n—-5— (k- f(n))
=5n—5+ f(1)
< 5n — j (since 5n — j is the maximum vertex value)
= f(y) <5-3.
Butf(y1) 20=>5-3520
= j€{1,2,3,4,5}. Note that f(4) ={a,a+1,a+2,a+3,a+4},

f(B) = {f(%1),5+ f(%1),10+ f(¥1),-..,5(n — 1) + f(n1)},
f(C) = {f(z1), f(22),. .., F(Z(an-a-5))}-
Let F = {f(sn) + 1,f(y1) + 2, f(31) + 3, f(»1) + 4, F(»1) + 6, f(1) + 7, F(3n) +
8,f(n1) +9,..., f(y1) + 5n —6}.
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Clearly F C f(KsnU(4n —4—3)K1) and F contains 4(n — 1) vertex values. Also

Fnf(B)=0.
We have three sub cases.

Sub Case 12.1: j=1.
Then, f(C) contains 4n — 5 vertex values and hence one element of F' must be in

F(A). Let f(31) + 5m — 7 € f(A) for some positive integer m, 2 < m < n. Then
a = f(y)+5m— 7= a+2¢€ f(B), a contradiction.

a+1= f(y)+5m— 7= a+3 € f(B)- a contradiction

a+2=f(y)+5m~T7= a+4€ f(B)- acontradiction

a+3=f(y1) +5m — 7=>a+4 € f(B)- a contradiction
a+4=f(y1)+5m—7=a+1¢€ f(B)- a contradiction

Let f(y1) + 57 — 6 € f(A) for some integer ,2 < r < n. Then,
@ = f(y) + 5r — 6 => a + 1 € f(B)- a contradiction

a+1=f(yn)+5r —6=a+2 ¢ f(B)- a contradiction
a+2= f(y1) +5r — 6 = a+3 € f(B)- a contradiction
a+3 = f(n)+5r —6 = a+4 € f(B)- acontradiction

a+4 = f(y1) + 57 — 6 = a + 3 € f(B)- a contradiction
Therefore j # 1.

Sub Case 12.2: j=2.

Then, f(C) contains 4n—6 vertex values and therefore two elements of F must be in
f(A). Let f(y1)+5t—4, f(11)+5t—6 € f(A) for some positive integer t,1 < ¢t < n.
Then, a+ 1 = f(y1) + 5t = 5 = f(y1) + 5(t — 1) € f(B)- a contradiction. Let
(@) +5w—7, f(1n) +5w—6 € f(A) for some positive integer w,1 < w < n. Since
these two values are consecutive, either a € f(B) or a + 2 € f(B)- a contradiction.
Therefore, j # 2.

Sub Case 12.3: j=3.
Then, f(C) contains 4n — 7 vertex values and therefore three elements of F' must

be in f(A). This is impossible since the elements of f(A) are consecutive. Clearly
J#3.
Proceeding on similar lines to sub case 12.3 above, we get contradictions when

j =4,5. Thus for j > 1, K5, U (4n — 4 — j)K is not strongly k-indexable. Hence
From (7), we get d.(Ks,5) = 4(n — 1). This completes the proof. ¢

Remark 1. In strongly 4-indexable labelings it is enough to consider only vertex

labelings (as vertex labelings induces edge labelings) whereas in super edge-magic™
labelings one has to deal with two functions. From the proof of theorem 1.7 men-
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tioned in Figueroa-Conteno et.al., one can see that it is easier to prove the results
on super edge-magic deficiency of graphs using the concept of strongly k-indexable
labelings rather than super edge-magic labelings.
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