Some Good Cyclic and Quasi-Twisted Z4-Linear
Codes

Nuh Aydin
Department of Mathematics, Kenyon College
Gambier, OH 43022
E-mail: aydinn@kenyon.edu

T. Aaron Gulliver
Department of Electrical and Computer Engineering,
University of Victoria, Victoria, BC Canada V8W 3P6
E-mail: agulliveQece.uvic.ca

Abstract

For over a decade, there has been considerable research on codes over
Z4 and other rings. In spite of this, no tables or databases exist for codes
over Zg4, as is the case with codes over finite fields. The purpose of this
work is to contribute to the creation of such a database. We consider
cyclic, negacyclic and quasi-twisted (QT) codes over Z;. Some of these
codes have binary images with better parameters than the best-known
binary linear codes. We call such codes “good codes”. Among these are
two codes which improve the bounds on the best-known binary non-linear
codes. Tables of best cyclic and QT codes over Z; are presented.

Keywords: Codes over Z4, cyclic codes, quasi-cyclic codes, best-known
codes.

1 Introduction

The study of linear codes over finite fields has provided many useful results in
coding theory. After the discovery of good binary non-linear codes from codes
over Zg4, the ring of integers modulo 4, [24], [29), [30], there has been significant
investigation into this class of codes. Despite this extensive research, there have
been few new binary codes discovered by this approach. A solitary example is
the new binary non-linear code given in [7] obtained from an extended cyclic

code over Z,.
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To date, much of the research attention has focussed on self-orthogonal and
self-dual codes over Z4. Self-dual codes over Z, of length up to 9 are classified
in (8], and this is extended to length 15 in [12] (16 for Type II codes in [31]).
Rains has classified optimal self-dual codes over Z4 in [33]. A large number
of self-orthogonal quasi-twisted (QT) Z4 codes have also been constructed [15].
An excellent survey of self-dual codes is given by Rains and Sloane [34].

It is well known that the class of QT codes (which includes quasi-cyclic (QC)
codes), contains many good codes. A very large number of new linear codes over
finite fields have been discovered within these two classes (1], [9], [10], [17], [18],
(19), [20], [21], [22], [37]). There exist tables/databases of best-known codes
over small fields available online [6]! and [16]. The computer algebra system
MAGMA [5] has such a database too. A table of best-known binary non-linear
codes is also available [27).

QC and QT codes over Z,; were first studied in {2] and a number of binary
codes with parameters better than comparable linear codes were obtained via
the standard Gray map. The binary image of one of the codes in [2] gives a new
non-linear binary code, which has parameters (92,2%4,28). We would like to
remark that the table [27] is not as comprehensive as the tables for linear codes
over fields; it does not go beyond minimum distance 29. Many of the binary
images of Z4 linear codes are non-linear, and it is often not possible to compare
such a code with a best-known non-linear binary code. In these cases, one can
do the next best thing: compare the parameters with a best-known binary linear
code. It should also be noted that although the Gray images of Z4-linear codes
are not necessarily binary-linear, they are still distance invariant, a property
that linear codes possess but arbitrary non-linear codes do not (necessarily).

This work begins the development of a database of best-known linear codes
over Z4. In the light of the results of previous investigations over fields and
Z4, our approach begins with cyclic and QT codes. We have investigated cyclic
codes over Z, and obtained a table of best-known cyclic codes (up to certain
lengths and dimensions). This includes a number of codes that have better
parameters than comparable binary linear codes. We call such codes “good
codes”. Of these, two lead to improvements in the distance bounds on binary
non-linear codes in [27]. We have also searched for good QT codes over Z,; and

1After the submission of this manuscript, it was announced that this online database is
discontinued due to the existence of [16] which has more explicit information on constructions
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discovered a number of such codes.

2 Preliminaries

A code C of length n over Z, is a subset of Z}. C is a linear code over Zy
if it is an additive subgroup of Z7, hence a submodule of Z};. We represent
the elements of Z; by Z4 = {0,1,2,3}. In this paper we will consider only
linear codes over Zs. An element of C is called a codeword and a generator
matriz is a matrix whose rows generate C. The Hamming weight wy(z) of a
vector = (Z1,%2,...,Zn) in Z} is the number of components z; # 0. The
Lee weight wi(z) of a vector z is )., min{|z;|, |4 — z;]}. The Hamming and
Lee distances dg(z,y) and d(z,y) between two vectors z and y are wy (z —y)
and wg (z — y), respectively. The minimum Hamming and Lee weights, di and
dy, of C are the smallest Hamming and Lee weights, respectively, amongst all
non-zero codewords of C.

The Gray map ¢ : Z} — Z2" is the coordinate-wise extension of the function
from Z4 to Z2 defined by 0 — (0,0),1 — (1,0),2 — (1,1),3 — (0,1). The
image ¢(C), of a linear code C over Z, of length n by the Gray map, is a (in
general non-linear) binary code of length 2n. The Gray map is an isometry
from (Z},wy) to (Z3",wy). Therefore, the minimum Hamming weight of ¢(C)
is equal to the minimum Lee weight of C.

The dual code C* of C is defined as {z € Z} |z -y = 0,V y € C}, where
z -y is the standard inner product of z and y. C is self-orthogonal if C C C+
and C is self-dual if C = C*+.

Two codes are said to be equivalent if one can be obtained from the other
by permuting the coordinates and (if necessary) changing the signs of certain
coordinates. Codes differing by only a permutation of coordinates are called
permutation-equivalent. Any linear code C over Z, is permutation-equivalent to

a code with generator matrix G of the form

- Ii Ay Bi+2B,
G'[ 0 2L, 24 ] )

where Ay, A2, By, and B are matrices with entries 0 or 1 and I, is the identity
matrix of order k. Such a code has size 4%12%2, The code is a free module if
and only if k; = 0. If C has length n and minimum Lee weight d;,, the code is

referred to as an [n,4%12%2 d;)-code.
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The minimum weights of optimal linear Z, codes up to length n = 7 are
given in [11], and rate 1/2 codes over Z4 up to length n = 8 have been classified

in [23].

3 The Structure of Cyclic Codes over Z,
3.1 Cyclic and Negacyclic Codes of Odd Length

A cyclic (negacyclic) code over Z is a Z,-linear code which is invariant under
cyclic (negacyclic)? shifts. Similar to the case of finite fields, cyclic (negacyclic)
codes over Z, of length n are ideals in the ring zz,‘.fl (-(f—,t%), under the
usual identification of vectors with polynomials. Although algebraically cyclic
(negacyclic) codes have the same structure over fields and over Z, (ideals in a
factor ring), the fact that Z,[z] is not a unique factorization domain makes it
more challenging to find all cyclic codes over Z4. For instance, computer algebra
systems (such as Magma and Maple), cannot provide factorizations of z" — 1
or z™ + 1. There are some theoretical results to help with the search, but we
do not have complete answers in all cases. One needs to use theoretical results
to facilitate practical implementation of computer searches. Therefore, it is
appropriate to recall relevant results from the literature on cyclic and negacyclic
codes in this section. The easiest case to consider is cyclic codes of odd length
over Z4. Some of the most important facts about ideals of the relevant ring and
the factorization of z" — 1 are summarized below, and they can be found in [32],
[38] or {39].

For an odd positive integer n, z® — 1 can be factored into a product of
finitely many pairwise coprime basic irreducible polynomials over Z4. Also, this
factorization is unique up to ordering of the factors [32, 39). In fact, we have the
following: if fo(z)|(z™ — 1) in Z,[z] then there is a unique, monic polynomial
f(z) € Z4[z] such that f(z)|(z" — 1) in Z4[z] and f(z) = fa(z), where f(z)
denotes the reduction of f(z) modulo 2 [39]. The polynomial f(z) is called the
Hensel lift of fo(z). There are well-known methods of finding this polynomial,
such as Graeffe’s method [24]. Therefore, there is a one-to-one correspondence
between irreducible factors of ™ — 1 over Zy and irreducible factors of z" — 1

over Zs.
2A negacyclic shift of an m-tuple (zo,z1,...,Zm-1) over Zs is the m-tuple
(aZm—1,%0,...,Zm-2) Where a =3 = ~1
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Once the factorization of ™ —1 over Z, is obtained, the ideals of R := ?%J-E{T
can be determined. For an odd positive integer n, any ideal I of the ring R has a
generator of the form a I = (f(z)h(z), 2f(x)g(z)) where f(z)g(z)h(z) = z" -1
[32, 39). Moreover, |I| = 49¢89(=)2degh(z)_ Tt follows that the number of cyclic
codes of length n is 3", where r is the number of irreducible factors of 2™ — 1
32).

Finally, it can be shown that any ideal of R, for an odd 7, is a principle
ideal, with a generator of the form p(z) = f(z)h(z) + 2f(z) (or equivalently
p(z) = f(z)h(z) + 2f(z)g(z)) where f(z),g(z), h(z) are as above [32, 39].

Remark 1 When z" — 1 has r irreducible factors over a field, the total
number of cyclic codes is 2. We have a larger number over Z; due to the
existence of non-free codes (over & field all codes are free).

Remark 2 The generator polynomial p(z) of an ideal of R described above
does not necessarily divide z® — 1. For example, let n = 3, f(z) = 1, and
h(z) = = — 1, then p(z) = = + 1 and p(z) A(z® —1). When h(z) = 1, p(z) =
3f(z) = —f(z) does divide ™ — 1. It is shown in (2] that the cyclic code
generated by p(z) is a free module if and only if p(z) divides ™ — 1.

Making use of the structures of cyclic codes of odd length and the results
from [32, 39] quoted above, we have conducted exhaustive computer searches
over Z4-cyclic codes (up to certain lengths and sizes). We have determined
the cyclic codes with best minimum Lee weights for each length and size. The
binary images of many of these cyclic codes have the same parameters as the
best-known binary linear codes, and some lead to good non-linear codes, which
are listed in Table 1.

Remark 3 It is well-known that negacyclic codes of odd length over Z,
are equivalent to cyclic codes of the same length. Therefore, there is no need to
consider negacyclic codes of odd length as far as code parameters are concerned.
When 7 is odd, ™ + 1 has a unique factorization over Z4 and it is obtained from
the factorization of z" — 1 by the simple transformation (a ring isomorphism)

z— —z [2).

3.2 Cyclic and Negacyclic Codes of Even Length

When n is even z™ — 1 (or =" + 1) does not have a unique factorization and
the structures of cyclic and negacyclic codes of even length over Z; are more

507



complicated. There are some results in this area but we do not have complete
answers for all cases. Cyclic codes of oddly even length (length N = 2n, where n
is odd) are studied in [3]. It is shown that although the number of cyclic codes of
oddly even length N = 2n is much larger than the number of cyclic codes of odd
length n (for example, there are 27 cyclic codes of length 7, while the number
of cyclic codes of length 14 is 1183), many of these codes have poor minimum
distances. One subclass of such codes, called minimal codes, is identified in
[3] as being promising in terms of having large minimum distances. These
codes have generators of the form f(z2)f,(z) where 2" — 1 = f(z)f,(z) (over
Z4fz]), and fo(z) = fs(z) + 29(z), deg(g(z)) < deg(fs(z)). Several examples
of minimal codes of short length in this class are presented in [3] that have
binary images with the same parameters as the best-known binary linear codes.
It was given as an open problem to determine whether there are codes in this
class with good binary images. We investigated this problem, searching for
new codes in this class. We have found a number of additional codes with the
same parameters as the best-known binary codes and one code with a better
minimum distance. This code has Z, parameters [30,4%,28] and generator g =
32:26 + 32725 + $24 + :!:23 + 33:21 + 2320 + x19 + 33)18 + 2:516 + _,B]5 + 2113 +
2212 4 321 4 3210 + 329 + 28 + 328 4 324 + 2 + 222 4 2z + 3 obtained from
f(z?) = 222 + 2% + 3218 4 216 + 2214 4 3272 + 28 + 328 + 224 + 3 and f,(z) =
374 4 3z% + 222 + 2z + 1. (We later give a QT code with the same parameters.)

Recall that a negacyclic code of odd length over Z, is equivalent to a cyclic
code of the same length under the ring isomorphism z — —z. Negacyclic codes

of even length over Z, are studied in [4], where it is shown that a negacyclic
2°+4

code of even length N = 2%n, n odd, has a generator of the form H [9:(z)]}
(product taken in Z4[z]) modulo 2V + 1) where the g;(z)’s are monli;oco-prime
divisors of ™ — 1 in Z4[z]). It follows that the number of negacyclic codes of
length N is (22+! 4 1), where  is the number of irreducible factors of z" — 1.
This enables us to systematically generate all negacyclic codes of even length.
We have found a number of such codes with binary images that have the same

parameters as the best-known binary linear codes.
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3.3 New Cyclic Codes

In this section, we present the results of the search over cyclic codes. Table 1
gives the generators and parameters of the cyclic Z4 codes whose Gray images
have better minimum distances than the comparable binary linear codes. The
first three columns give the Z4 parameters, corresponding binary parameters,
and minimum distance of the best-known binary linear code with the same pa-
rameters, respectively. The generator of the Z; code is given in the last column.
All the binary images are non-linear. The first 11 codes have parameters that
fall into the table [27]. Of these, codes 1-9 have the same parameters as the
best-known binary nonlinear codes. Note however that although they have ad-
ditional structure, the [47,4?3, 18] and [47, 424, 16] codes improve the bounds in
the table of best-known nonlinear codes [27]. Their binary images have parame-
ters (94,246, 18) and (94, 248, 16), respectively. In the notation of [27), A(93,15)
is improved from 9244 to 28 = 16-2%, and A(93,17) is improved from 11242
to 246 =16 - 242,

For the generators of these codes, we list the coefficients of the generator
polynomials in increasing powers. For example, the generator g(z) = 3z% +
2z4 + 223 + 322 + 3z + 3 of the [31,4%%,6] cyclic code in the table is listed as
3332203. The parameters of other cyclic and negacyclic codes are available from
the authors.

We summarize the results that lead to improvements in the table of best-

known binary codes [27] in the following theorem.

Theorem 8.1. Let A(n,d) be the size of the largest binary code of length n and
minimum distance d. Then, A(93,15) > 2% and A(93,17) > 246,
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Table 1: Parameters and Generators of the Good Cyclic Zy-codes

Binary d Generators
62,210,28 26 | 321031123302213113203323003
62,217 26 24 | 31013223133032012103332201
62,2°0,14 12 | 30032012302211013
62,250 6) 5 | 3332203
62,21126 25 | 303033101320033311203123221
(62,2524 23 | 310210213331231322210323121
(62,27, 22) 21 | 10021132301023231310013031
62,2%,12) 11 | 32126011332133111
62, 2%, 8) 7 | 111310232321
94, 2%%, 18) 16 | 3122301223201303320110203
(94, 2%, 16) 15 | 102011020133233013321133
(126,277,48) | 47 | 131220230232221121120323123031303331003100
2121230213113321
[9,4™2T 54] | (178,2%5,54) | 53 | 1223100002121223301100230011010130322010
21318120300022003222023232301112000111
[ T89,4TT212,56] | (178,2%%,56) | 54 | 333311020221101230010331330000313232200322
3220130322301210013231133122320330201
[B9,4727 48] | (178,2%,48) |46 | 103302023132333320310231212332130123

23320322202100130132110321310021

*These codes lead to improvements in the database of binary non-linear codes.
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4 Quasi-Twisted Codes over Z4

4.1 Basic Facts

Next, we consider new Z4 codes in the class of quasi-twisted (QT) codes. The
class of quasi-twisted codes over fields was first introduced in [25] as a general-
ization of quasi-cyclic (QC) codes [18], [19]. More recently, QT codes over Z,
and other rings have been considered. QT codes over Z4 was first considered in
[2]. A Z, code is called quasi-twisted if the same negacyclic shift of a codeword
in p groups of size m always results in another codeword. Algebraically, QT
codes are submodules of RP where R := xz,,ffa where a = 1 or 3. Many QT
codes can be constructed from m x m twistulant matrices (with a suitable per-
mutation of coordinates). In the case of a 1-generator QT code, the generator

matrix, G, can be represented as

G = [B1, By, -, By (2)
where the B; are m x m twistulant matrices of the form
bo b b - bp-2 bm—
abm-1  bo b o+ bm-z  bm-g
abp_2 abme1 by  bm-s e bn-3 (3)
ab, aby aby - abp_y  bp

and a =1 or 3. If a = 1, the code is QC.

The algebra of m xm twistulant matrices over Z, is isomorphic to the algebra
of polynomials in the ring Z[z]/(z™ — ) if B is mapped onto the polynomial,
b(z) = bo+biz+ box? + + -+ + bp_1z™ 1, formed from the entries in the first
row of B [28]. The b;(z) associated with a QT code are called the defining
polynomials [17].

If the defining polynomials b;(z) contain a common factor which is also a
factor of ™ — a, then the QT code is called degenerate [17]. Define the order

of this QT code as [36]
m

T -«
h(z) = ng{xm - Q, bO(x)y by (22), "ty bP"l(x)} ‘ (4)

The dimension of the QT code, k, is equal to the degree of h(z). If h(z) has
degree m, the dimension of the code is m, and (2) is a generator matrix. If
deg(h(z)) = k < m, a generator matrix for the code can be constructed by

deleting m — k rows of (2).
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4.2 New Quasi-Twisted Codes

We now describe our search method for quasi-twisted codes, and present the
results obtained. First, a representative set of defining polynomials is required.
Consider the set, A, of polynomials of degree m — 1 or less, with |4| = 4™
elements. Two polynomials, bj(z) and b;(z) belong to the same equivalence

class if
b;j(z) = az'bi(z) mod (z™ — a),

for some integer [ and scalar a = 1 or 3. This means that two polynomials are in
the same class if one can be obtained from the other by a constacyclic shift, by
multiplying by a nonzero scalar, or both. Only one polynomial from each class
need be considered when constructing QT codes since polynomials from the
same class produce equivalent codes [17]. This equivalence relation is induced
by the action of a finite group on the set of m-tuples over Z4, where the group is
generated by the transformation (zo, Z1,...,ZTm-1) = (@*Tm-1,20,...,Tm-2).
Distinct equivalence classes correspond to distinct orbits under the action of
this group and so can be enumerated using Burnside’s Lemma [35] (p. 294).

The search for a QC code was initialized by randomly choosing p defining
polynomials. The search employs a stochastic optimization algorithm, tabu
search (13}, [14], [22]. This method has been shown to produce optimal or near-
optimal solutions to difficult optimization problems with a reasonable amount
of computational effort. For an extensive survey of optimization methods in
coding theory, with an emphasis on stochastic procedures, see [26].

Tabu search is based on local search, which means that starting from an
arbitrary initial solution, a series of solutions is obtained so that every new
solution only differs slightly from the previous one. In the context of our search,
this means replacing a defining polynomial in the current solution with a new
one. A potential new solution is called a neighbor of the old solution, and all
neighbors of a given solution constitute the neighborhood of that solution. To
evaluate the quality of solutions, a cost function is needed. Tabu search always
proceeds to a best possible solution in the neighborhood of the current solution.

To ensure that the search does not loop on a subset of solutions, recent
solutions are stored in a tabu list, and these are then not allowed for a certain
period of time. The search criterion used here was the minimum weight, and
the cost function was chosen so as to maximize this weight. Thus a new solution
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Table 2: Maximum Minimum Lee Distances for Best (pm, m) QC and QT Codes
over Z4

4 5 6 7 8 9 10 11 12 13 14 15 16 17

3

5 8 10 12 14 16 18 20 22 24 26 28 32 33 36
7 10 14 16 20 24 26 29 32 34 38 40 44 48 50
8 12 16 22 24 28 32 36 41 46 49 54 58 64 66
16 20 26 30 34 40 46 50 55 60 64 69 74 80
12 17 24 28 34 40 46 52 58 64 68 74 80 8 92
13 20 26 32 40 46 52 58 64 72 77 84 90 96 103
14 22 28 36 42 49 56 64 72 78 86 92 100 108 114

03 ok wlF
00 00O O & b infto
[

o

is kept if the minimum weight of the code increases. To avoid local minima,
the search is restarted at a new arbitrary solution after a specified number of
iterations.

Tables 2 and 3 present the minimum weights of the best rate 1/mp and rate
1/(m — 1)p codes, respectively, that were obtained. By best, we mean that this
code has the highest weight of any known QT code with the same parameters.
Since this is the first compiled table of Z4 codes, it is not possible to compare
these codes with previous results. However, using the Gray map, it is possible
to compare these codes with the best-known binary linear codes [27]. Of the 238
entries in Tables 2 and 3, 129 attain or exceed the best known distance for the
corresponding binary code. The first rows of the twistulant matrices of the QT
codes listed in these tables that exceed the minimum distances of the best linear
codes are given in Table 4, where d denotes the minimum Hamming distance
of the corresponding best-known binary linear code, and the first column gives
the Z; code parameters. The first rows of the other codes are available from

the authors.
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Table 3: Maximum Minimum Lee Distances for Best (pm,m — 1) QC and QT

Codes over Z4
p

m|2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
36 8 12 16 18 22 24 28 32 34 38 40 44 48 50 54 56
416 10 16 18 22 26 32 34 38 42 48 50 56 60 64 66 72
5|8 12 16 22 28 32 36 42 48 52 56 64 66 72 76 82 88
68 12 18 24 32 36 44 48 54 60 66 72 78 84 88 96 102
718 14 22 28 34 42 48 56 62 66 74 82 88 94 102 108 114
8|8 16 24 30 38 42 52 58 64 74 82 88 96 104 112 120 128
9|10 16 24 30 38 48 56 62 72 82 90 98 104 112 120 130 140

Table 4: Parameters and First Rows of the Good QT Z4 Codes

Zy m| « b;(a:)

[30,4%,28] | 5 | 1 | 3131,301,31332,2231,3302,2123

[30,45,26] | 5 | 1 | 2112,1333,1033,221,133,2123

[28,46,22] | 7 | 1 | 331311,301,310332,3311,323323

[49,45,42] | 7 | 1 | 3223222,331311,330321,21302,322221,3311,312033

[56,47,46] | 7 | 1 | 131213,102021,22221,12123,123323,13212,131111,132231

[66,45,58] | 6 | 3 | 1303,111211,111132,122131,11,102,21213,10212,2111,10321,2201
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