THE ELLIPTIC CURVES $y^2 = x(x-1)(x-\lambda)$

AHMET TEKCAN

ABSTRACT. Let p be a prime number and let \mathbb{F}_p be a finite field. In the first section, we give some preliminaries from elliptic curves over finite fields. In the second section we consider the rational points on the elliptic curves $E_{p,\lambda}: y^2 = x(x-1)(x-\lambda)$ over \mathbb{F}_p for primes $p \equiv 3 \pmod 4$, where $\lambda \neq 0$, 1. We proved that the order of $E_{p,\lambda}$ over \mathbb{F}_p is p+1 if $\lambda=2$, $\frac{p+1}{2}$ or p-1. Later we generalize this result to \mathbb{F}_{p^n} for any integer $n \geq 2$. Also we obtain some results concerning the sum of x-and y-coordinates of all rational points (x,y) on $E_{p,\lambda}$ over \mathbb{F}_p . In the third section, we consider the rank of $E_{\lambda}: y^2 = x(x-1)(x-\lambda)$ over \mathbb{Q} .

AMS Subject Classification 2000: 11G05, 11G07, 11G20, 14H52.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves, rank of elliptic curves.

Date: 13 February 2007.

1. Introduction.

Mordell began his famous paper [10] with the words Mathematicians have been familiar with very few questions for so long a period with so little accomplished in the way of general results, as that of finding the rational points on elliptic curves. The history of elliptic curves is a long one, and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography [4,8,9], for factoring large integers [7], and for primality proving [1,3]. The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem [17].

Let q be a positive integer, \mathbb{F}_q be a finite field and let $\overline{\mathbb{F}}_q$ denote the algebraic closure of \mathbb{F}_q with $\operatorname{char}(\overline{\mathbb{F}}_q) \neq 2, 3$. An elliptic curve E over \mathbb{F}_q is defined by an equation

(1.1)
$$E: y^2 = x^3 + ax^2 + bx,$$

where $a, b \in \mathbb{F}_q$ and $b^2(a^2 - 4b) \neq 0$. The discriminant of E is defined by $\Delta = 16b^2(a^2 - 4b)$. The condition that $\Delta \neq 0$ is equivalent to the curve being

smooth. We can view an elliptic curve E as a curve in projective plane \mathbb{P}^2 , with a homogeneous equation $y^2z = x^3 + ax^2z^2 + bxz^3$, and one point at infinity, namely (0,1,0). This point ∞ is the point where all vertical lines meet. We denote this point by O. Then the set of rational points (x,y) on E

(1.2)
$$E(\mathbb{F}_a) = \{(x, y) \in \mathbb{F}_a \times \mathbb{F}_a : y^2 = x^3 + ax^2 + bx\} \cup \{O\}$$

is a subgroup of E. The order of $E(\mathbb{F}_q)$, denoted by $\#E(\mathbb{F}_q) = N$, is defined as the number of the points on E and is given by the following formula:

(1.3)
$$#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + ax^2 + bx}{\mathbb{F}_q} \right),$$

where $(\frac{1}{F_q})$ denotes the Legendre symbol (for the arithmetic of elliptic curves and rational points on them see [13,14,15,16]).

Let p be a prime number and let $q = p^n$ for integer n > 1. Let N = q + 1 - a (the integer a is called the trace of Frobenius). Then there is an elliptic curve E defined over \mathbb{F}_q such that $\#E(\mathbb{F}_q) = N$ if and only if $|a| \leq 2\sqrt{q}$, know the Hasse interval, and a satisfies one of the following (see [16, p.92]):

- $(1) \gcd(a,p) = 1$
- (2) n is even and $a = \pm 2\sqrt{q}$
- (3) n is even, p is not equivalent to $1 \pmod{3}$ and $a = \pm \sqrt{q}$
- (4) n is odd, p = 2, 3 and $a = \pm p^{(n+1)/2}$
- (5) n is even, p is not equivalent to $1 \pmod{4}$ and a = 0
- (6) n is odd and a = 0

Let $P \in E(\mathbb{F}_q)$. Then the order of P is the smallest positive integer m such that mP = Q. A fundamental result from group theory is that the order of a point always divides the order of the group $E(\mathbb{F}_q)$. An elliptic curve E over \mathbb{F}_q is called supersingular if there are no points of order q, even with coordinates in an algebraically closed field. For prime $p \geq 5$, E is supersingular if and only if a = 0, in which case $\#E(\mathbb{F}_p) = p + 1$.

The formula defined in (1.3) can be generalized to \mathbb{F}_{q^n} for some integer $n \geq 2$. Let $\#E(\mathbb{F}_q) = q + 1 - a$ and let

(1.4)
$$X^{2} - aX + q = (X - \alpha)(X - \beta).$$

Then the order of E over \mathbb{F}_{q^n} is given by

(1.5)
$$#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

2. RATIONAL POINTS ON $y^2 = x(x-1)(x-\lambda)$ Over \mathbb{F}_{n} .

It is known that every elliptic curve E over \mathbb{F}_q is isomorphic to an elliptic curve in Legendre form $E_{\lambda}: y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in \mathbb{F}_q$ with $\lambda \neq 0, 1$. Let p be a odd prime and let \mathbb{F}_p be a finite field, and let $\lambda \in \mathbb{F}_p$ with $\lambda \neq 0, 1$. In this section we consider the number of rational points on elliptic curve

(2.1)
$$E_{p,\lambda}: y^2 = x(x-1)(x-\lambda)$$

over \mathbb{F}_p . When $p \equiv 1 \pmod{4}$, there is no rule. Therefore we only consider the case $p \equiv 3 \pmod{4}$.

Theorem 2.1. If $\lambda = 2$, $\frac{p+1}{2}$ or p-1, then the order of $E_{p,\lambda}$ over \mathbb{F}_p is p+1, that is, $E_{p,\lambda}$ is supersingular.

Proof. Let $\lambda=2,\frac{p+1}{2}$ or p-1 and let $x\in\mathbb{F}_p$ be any point. Now consider the cubic equation

$$x(x-1)(x-\lambda)=0.$$

This equation has three solutions x = 0, x = 1 and $x = \lambda$. Therefore we have $y^2 \equiv 0 \pmod{p} \Leftrightarrow y \equiv 0 \pmod{p}$, that is, there are three points (0,0), (1,0) and $(\lambda,0)$ on $E_{p,\lambda}$. Therefore for these values of x, we have

$$\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_a}\right)=0.$$

Set $\mathbb{F}_p^0 = \{0, 1, \lambda\}$. Then $x(x-1)(x-\lambda)$ is zero for $x \in \mathbb{F}_p^0$. So we get

(2.2)
$$\sum_{x \in \mathbb{F}_p^0} \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right) = 0.$$

For the other values of x, i.e. $x \in \mathbb{F}_p - \mathbb{F}_p^0$, we have both x and -x. Each of these values gives two points, the one makes $x(x-1)(x-\lambda)$ a square, i.e.

$$\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right)=1.$$

So there are two values of y since $y^2 = x(x-1)(x-\lambda)$ is a square. There are $\frac{p-3}{2}$ (since $\#(\mathbb{F}_p - \mathbb{F}_p^0) = \frac{p-3}{2}$) points x in $\mathbb{F}_p - \mathbb{F}_p^0$ such that $x(x-1)(x-\lambda)$ is a square. Let \mathbb{F}_p^+ denote the set of the points x in \mathbb{F}_p such that $x(x-1)(x-\lambda)$ is a square. Then we get

(2.3)
$$\sum_{x \in \mathbb{F}_p^+} \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right) = \frac{p-3}{2}.$$

The other value gives no points since

$$\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right)=-1.$$

So there are no values of y since $y^2 = x(x-1)(x-\lambda)$ is not a square. There are $\frac{p-3}{2}$ points x such that $x(x-1)(x-\lambda)$ is not a square. Let \mathbb{F}_p^- denote the set of the points x in \mathbb{F}_p such that $x(x-1)(x-\lambda)$ is not a square. Then we get

(2.4)
$$\sum_{x \in \mathbb{F}_n^-} \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right) = -\frac{p-3}{2}.$$

Applying (2.2), (2.3) and (2.4), we get

$$\sum_{x \in \mathbb{F}_p} \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right) = \sum_{x \in \mathbb{F}_p^0 \cup \mathbb{F}_p^+ \cup \mathbb{F}_p^-} \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right)$$

$$= 0 + \frac{p-3}{2} - \frac{p-3}{2}$$

$$= 0.$$

Therefore the order of $E_{p,\lambda}$ over \mathbb{F}_p is p+1 since

$$\#E_{p,\lambda}(\mathbb{F}_p) = p+1 + \sum_{x \in \mathbb{F}_p} \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right) = p+1$$

by
$$(1.3)$$
.

Example 2.1. Let p = 11. Then we have the following table for elliptic curves $E_{11,\lambda}: y^2 = x(x-1)(x-\lambda)$ over $\mathbb{F}_{11}:$

λ	$E_{11,\lambda}$	$\#E_{11,\lambda}(\mathbb{F}_{11})$
2	$y^2 = x^3 - 3x^2 + 2x$	12
3	$y^2 = x^3 - 4x^2 + 3x$	16
4	$y^2 = x^3 - 5x^2 + 4x$	16
5	$y^2 = x^3 - 6x^2 + 5x$	8
6	$y^2 = x^3 - 7x^2 + 6x$	12
7	$y^2 = x^3 - 8x^2 + 7x$	16
8	$y^2 = x^3 - 9x^2 + 8x$	8
9	$y^2 = x^3 - 10x^2 + 9x$	8
10	$y^2 = x^3 - 11x^2 + 10x$	12

It is clear that $E_{11,2}$, $E_{11,6}$ and $E_{11,10}$ are supersingular elliptic curves since their orders are 12.

From now on we assume that $\lambda = 2, \frac{p+1}{2}$ or p-1 throughout the paper. Now we generalize Theorem 2.1 to \mathbb{F}_{p^n} for integer $n \geq 2$.

Theorem 2.2. The order of $E_{p,\lambda}$ over \mathbb{F}_{p^n} is

$$\#E_{p,\lambda}(\mathbb{F}_{p^n}) = \left\{ \begin{array}{ll} (p^{\frac{n}{2}}-1)^2 & \text{if } n \equiv 0 \, (\text{mod } 4) \\ p^n+1 & \text{if } n \equiv 1,3 \, (\text{mod } 4) \\ (p^{\frac{n}{2}}+1)^2 & \text{if } n \equiv 2 \, (\text{mod } 4). \end{array} \right.$$

Proof. We know that $E_{p,\lambda}$ is supersingular, that is $\#E_{p,\lambda}(\mathbb{F}_p) = p+1$. Therefore a = 0. Then by (1.4), we get

$$X^2 + p = (X - i\sqrt{p})(X + i\sqrt{p}).$$

Set $\alpha = i\sqrt{p}$ and $\beta = -i\sqrt{p}$. Let $n \equiv 0 \pmod{4}$, say n = 4m for an integer $m \ge 1$. Then

$$\alpha^{n} + \beta^{n} = (i\sqrt{p})^{4m} + (-i\sqrt{p})^{4m}$$

$$= i^{4m}(\sqrt{p})^{4m} + (-i)^{4m}(\sqrt{p})^{4m}$$

$$= p^{2m} + p^{2m}$$

$$= 2p^{2m}$$

$$= 2p^{\frac{n}{2}}.$$

Therefore by (1.5), we get

$$\#E_{p,\lambda}(\mathbb{F}_{p^n}) = p^n + 1 - (\alpha^n + \beta^n) = p^n + 1 - 2p^{\frac{n}{2}} = (p^{\frac{n}{2}} - 1)^2.$$

Similarly, it can be shown that $\#E_{p,\lambda}(\mathbb{F}_{p^n})=p^n+1$ if $n\equiv 1,3(\text{mod }4)$ and $\#E_{p,\lambda}(\mathbb{F}_{p^n})=(p^{\frac{n}{2}}+1)^2$ if $n\equiv 2(\text{mod }4)$.

Example 2.2. Let p=19 and $\lambda=20$. Then the order of $E_{19,10}: y^2=x^3-11$ x^2+10x over \mathbb{F}_{19^n} is

$$\#E_{19,10}(\mathbb{F}_{19^n}) = \begin{cases} 16983302400 & \textit{for } n = 8\\ 322687697780 & \textit{for } n = 9\\ 116490258898220 & \textit{for } n = 11\\ 6131071210000 & \textit{for } n = 10. \end{cases}$$

Let [x] and [y] denote the x-and y-coordinates of all points (x, y) on $E_{p,\lambda}: y^2 = x(x-1)(x-\lambda)$, respectively. Then we can give the following results concerning the sum of [x] and [y].

Theorem 2.3. The sum of x-coordinates on $E_{p,\lambda}$ is

$$\sum_{[x]} E_{p,\lambda}(\mathbb{F}_p) = \sum_{[x]} \left(1 + \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p} \right) \right) . x$$

Proof. Recall that

$$1 + \left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right) = \begin{cases} 1 & \text{if } x(x-1)(x-\lambda) \text{ is zero in } \mathbb{F}_p \\ 2 & \text{if } x(x-1)(x-\lambda) \text{ is a square in } \mathbb{F}_p \\ 0 & \text{if } x(x-1)(x-\lambda) \text{ is not a square in } \mathbb{F}_p. \end{cases}$$

Let $\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right) = 0$. Then $x(x-1)(x-\lambda)$ is zero in \mathbb{F}_p . Hence the equation $x(x-1)(x-\lambda) = 0$ has three solutions $x = 0, 1, \lambda$. Therefore $y^2 \equiv 0 \pmod{p} \Leftrightarrow y \equiv 0 \pmod{p}$. So for such a point $x \in \mathbb{F}_p^0$, we have a point (x,0) on $E_{p,\lambda}$. Therefore we get (x+0).x = x is added to the sum.

Let $\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right)=1$. Then $x(x-1)(x-\lambda)$ is a square in \mathbb{F}_p . Let $x(x-1)(x-\lambda)=k^2$ for some $k\in\mathbb{F}_p^*$. Then $y^2\equiv k^2(\bmod p)\Leftrightarrow y\equiv \pm k(\bmod p)$, that is, for any point (x,k) on $E_{p,\lambda}$, the point (x,-k) is also a point on $E_{p,\lambda}$. Therefore for each point $x\in\mathbb{F}_p^+$, we have (1+1).x=2x is added to the sum.

Finally, let $\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right) = -1$. Then $x(x-1)(x-\lambda)$ is not a square in \mathbb{F}_p . Therefore the equation $y^2 \equiv x(x-1)(x-\lambda) \pmod{p}$ has no solution. Hence for each point (x,y) we have (1+(-1)).x=0. This completes the proof. \square

Theorem 2.4. The sum of y-coordinates on $E_{p,\lambda}$ is

$$\sum_{[v]} E_{p,\lambda}(\mathbb{F}_p) = \frac{p^2 - 3p}{2}.$$

Proof. We proved in Theorem 2.1 that the cubic equation $x(x-1)(x-\lambda)=0$ has three solutions x=0, x=1 and $x=\lambda$. We also proved that for the other values of x, i.e. $x\in \mathbb{F}_p-\mathbb{F}_p^0$, we have both x and -x. One of these gives two points. The one makes $x(x-1)(x-\lambda)$ a square, i.e. $\left(\frac{x(x-1)(x-\lambda)}{\mathbb{F}_p}\right)=1$. So there are two values of y since $y^2=x(x-1)(x-\lambda)$ is a square. Let $x\in \mathbb{F}_p^+$, then $x(x-1)(x-\lambda)=t^2$ for any $t\in \mathbb{F}_p^*$. Then we have $y^2\equiv t^2(\text{mod }p)\Leftrightarrow y\equiv \pm t(\text{mod }p)$, that is y=t and y=-t=p-t. The sum of these values of y is t+(p-t)=p. We know that there are $\frac{p-3}{2}$ points $x\in \mathbb{F}_p^+$ such that $y^2=x(x-1)(x-\lambda)$ is a square. Therefore, the sum of y-coordinates of all points (x,y) on $E_{p,\lambda}$ is $p^{\frac{p-3}{2}}$. Hence we conclude that the sum of [y] on $E_{p,\lambda}$ is $p^{\frac{p-3}{2}}$.

Theorem 2.5. Let $\mathbb{E}_{p,\lambda}$ denote the set of the family of all supersingular elliptic curves over \mathbb{F}_p , i.e. $\mathbb{E}_{p,\lambda} = \{E_{p,\lambda} : \lambda = 2, \frac{p-1}{2}, p-1\}$. Then

$$\sum_{\lambda} \# \mathbb{E}_{p,\lambda} = 3p + 3.$$

Proof. We know that there are three supersingular elliptic curves $E_{p,\lambda}: y^2 = x(x-1)(x-\lambda)$ over \mathbb{F}_p . We also proved in Theorem 2.1 that the order of $E_{p,\lambda}$ over \mathbb{F}_p is p+1, i.e. $\#E_{p,\lambda}(\mathbb{F}_p) = p+1$. Therefore the total number of the points (x,y) on all elliptic curves $E_{p,\lambda}$ in $\mathbb{E}_{p,\lambda}$ over \mathbb{F}_p is $\mathbb{N}_{p,\lambda} = 3(p+1)$. \square

3. Rank of
$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$
 Over Q.

Ranks of elliptic curves have an important role on the theory of elliptic curves and are studied by many authors (see [2,5,6,11,12]). Recall that the quadratic twist of an elliptic curve $E: y^2 = x^3 + ax^2 + bx$ is $E^{(d)}: dy^2 = x^3 + ax^2 + bx$. In this section we consider the rank of elliptic curve $E: y^2 = x(x-1)(x-\lambda)$ over \mathbb{Q} for $\lambda \in \mathbb{Q} - \{0,1\}$. First we give the following Lemmas from [12].

Lemma 3.1. Suppose that E is an elliptic curve over a field \mathbb{F} , that K_1, K_2, \cdots, K_n are distinct separable extensions of \mathbb{F} of degree at most 2, and that for $i=1,2,\cdots,n$, there are points $P_i\in E(K_i)$ of infinite order. Suppose also that if $K_i\neq \mathbb{F}$, then $\sigma(P_i)=-P_i$, where σ is the non-trivial element of $Gal(K_i/\mathbb{F})$. Let K denote the compositum $K_1K_2\cdots K_n$. Then $\{P_1,P_2,\cdots,P_n\}$ is an independent set in E(K).

Now let $k(z) \in \mathbb{Z}[z]$. We say that k(z) is square free if k(z) is not divisible by the square of any non-constant polynomial in $\mathbb{Z}[z]$. Let $g(z) \in \mathbb{Q}[z]$. A square free part of g(z) is a square free $k(z) \in \mathbb{Z}[z]$ such that $g(z) = k(z)j^2(z)$ for some $j(z) \in \mathbb{Q}[z]$. Let \mathbb{Q}^* denote the multiplicative group of rational units, and let \mathbb{Q}^{*2} denote the subgroup consisting of perfect squares. Then we can give the following Lemma.

Lemma 3.2. Suppose $f(x) \in \mathbb{Q}[x]$ is a separable cubic, and let E is the elliptic curve $E: y^2 = f(x)$. Let $h_1(z) = z$, suppose we have non-constant $h_2(z), h_3(z), \cdots, h_r(z) \in \mathbb{Q}[z]$, let $k_i(z)$ be a square free part of $\frac{f(h_i(z))}{f(z)}$, and suppose that $k_1(z), k_2(z), \cdots, k_r(z)$ are distinct modulo \mathbb{Q}^{*2} . Then the rank of $E^{(f(z))}\left(\mathbb{Q}\left(z, \sqrt{k_2(z)}, \cdots, \sqrt{k_r(z)}\right)\right)$ is at least r and if C is the curve defined by the equations $s_i^2 = k_i(z)$ for $i = 1, 2, \cdots, r$, then for all but at most finitely many rational points $(\tau, \sigma_1, \sigma_2, \cdots, \sigma_r) \in C(\mathbb{Q})$, the rank of $E^{(f(\tau))}(\mathbb{Q})$ is at least r.

In Lemma 3.2, h_i is a linear fractional transformation that permutes the roots of f. Hence $k_i(z)$ is linear. Further $k_1(z) = 1$ and if $h_i(z) = \frac{\alpha z + \beta}{z + \delta}$ with $\alpha, \beta, \delta \in \mathbb{Q}$, then $k_i(z) = f(\alpha)(z + \delta)$ and

$$\frac{f(h_i(z))}{f(z)} = \frac{k_i(z)}{(z+\delta)^4}.$$

Let $E: y^2 = x(x-1)(x-\lambda)$ be an elliptic curve over $\mathbb Q$ and let

$$(3.1) h_1(z) = z$$

$$h_2(z) = \frac{z - \lambda}{(2 - \lambda)z - 1}$$

$$h_3(z) = \frac{\lambda^2(z - 1)}{(\lambda^2 - \lambda + 1)z - \lambda}$$

$$h_4(z) = \frac{\lambda z}{(\lambda + 1)z - \lambda}$$

$$h_5(z) = \frac{\lambda^2(z - 1)}{z(2\lambda - 1) - \lambda^2}$$

$$h_6(z) = \frac{\lambda(2 - \lambda)}{(\lambda^2 - \lambda + 1)z - \lambda^2}$$

be the linear fractional transformations in $\mathbb{Q}[z]$ that permutes the set $\{0, 1, \lambda\}$. Then the square parts of h_i in $\mathbb{Q}[z]$ are

$$(3.2) k_1(z) = 1$$

$$k_2(z) = (1-\lambda)[(\lambda-2)z+1]$$

$$k_3(z) = \lambda(1-\lambda)[(\lambda^2-\lambda+1)z-\lambda]$$

$$k_4(z) = \lambda[(\lambda+1)z-\lambda]$$

$$k_5(z) = \lambda(\lambda-1)[(1-2\lambda)z+\lambda^2]$$

$$k_6(z) = \lambda(1-\lambda)[(\lambda^2-\lambda+1)z-\lambda^2].$$

Theorem 3.1. Let $t \in \mathbb{Q} - \{0, \pm 1\}$, and let $k = t^2$. Let

(3.3)
$$f_k(x) = x(x-1)\left(x - \frac{1-k}{k+2}\right)$$

and let $E_k: y^2 = f_k(x)$. Set $w_k(u) = \frac{2(1-k)W_k(u)}{3[(k+1)u^2+1-k^3]^2}$ for $W_k(u) = (k+1)^2u^4+2k(2k^2+3k+1)u^3+2(3k^4+3k^3+k^2+k+1)u^2+2k(k^3-1)(2k+1)u+k^6-2k^3+1$. Let $\widetilde{E}_k: v^2 = (k+1)^2u^4+4k(2k^2+3k+1)u^3+2(7k^4+7k^3+2k^2+k+1)u^2+4(2k^5+k^4-2k^2-k)u+(k^3-1)^2$. Then E_k and \widetilde{E}_k are elliptic curves over \mathbb{Q} , rank $(\widetilde{E}_k(\mathbb{Q})) \geq 1$, for all but possibly finitely many $(u,v) \in \widetilde{E}_k(\mathbb{Q})$, the quadratic twist of E_k by $(f_k \circ w_k)(u)$ has rank at least 4 over \mathbb{Q} and there are infinitely many non-isomorphic quadratic twists of E_k of rank at least 4 over \mathbb{Q} .

Proof. Let $\mu = \frac{2\lambda}{\lambda+1}$. Then by (3.2) we get

$$(3.4) \frac{k_3(\mu)}{k_2(\mu)} = \frac{\lambda(1-\lambda)\left[(\lambda^2-\lambda+1)\cdot\frac{2\lambda}{\lambda+1}-\lambda\right]}{(1-\lambda)\left[(\lambda-2)\cdot\frac{2\lambda}{\lambda+1}+1\right]}$$

$$= \frac{\lambda(1-\lambda)\left[\frac{2\lambda^3-2\lambda^2+2\lambda-\lambda^2-\lambda}{\lambda+1}\right]}{(1-\lambda)\left[\frac{2\lambda^2-4\lambda+\lambda+1}{\lambda+1}\right]}$$

$$= \frac{\lambda(2\lambda^3-3\lambda^2+\lambda)}{2\lambda^2-3\lambda+1}$$

$$= \frac{\lambda\left[\lambda(2\lambda^2-3\lambda+1)\right]}{2\lambda^2-3\lambda+1}$$

$$= \lambda^2$$

and also

(3.5)
$$k_2(\mu) = (1-\lambda)\left[(\lambda-2).\frac{2\lambda}{\lambda+1}+1\right]$$
$$= \frac{(\lambda-1)^2(-2\lambda+1)}{\lambda+1}.$$

Let $\frac{-2\lambda+1}{\lambda+1}=t^2$. Then $\frac{-2\lambda+1}{\lambda+1}=t^2\Leftrightarrow \lambda=\frac{1-t^2}{2+t^2}$ which is in (3.3). So if $\lambda=\frac{1-t^2}{2+t^2}$, then $k_2(\mu)$ and $k_3(\mu)$ are both squares. Therefore $(\mu,(\lambda-1)t,\lambda(\lambda-1)t)\in \widetilde{E}_{t^2}$ and $\mathbb{Q}\left(z,\sqrt{k_2(z)},\sqrt{k_3(z)}\right)\in \mathbb{Q}(u)$ since k_2 and k_3 are both squares. Note that the curve \widetilde{E}_k is the curve $v^2=k_4(w_k(u))$ and also $(0,k^3-1)\in \widetilde{E}_k(\mathbb{Q})$. So $\mathbb{Q}(\widetilde{E}_k)=\mathbb{Q}\left(u,\sqrt{k_4(w_k(u))}\right)=\mathbb{Q}\left(z,\sqrt{k_2(z)},\sqrt{k_3(z)},\sqrt{k_4(z)}\right)$ by Lemma 3.2 and hence the rank of $E_k^{(f_k\circ w_k)(u)}(\mathbb{Q}(\widetilde{E}_k))$ is at least 4. Also the rank of $E_k^{(f_k\circ w_k)(u)}(\mathbb{Q})$ is at least 4 for all but infinitely many $(u,v)\in \widetilde{E}_k(\mathbb{Q})$. Let $f_k\circ h_i(z)=f_k(z)k_i(z)j_i^2(z)$, where $j_i(z)\in \mathbb{Q}[z]$ for i=1,2,3,4. Since $k_i(z)$ is square free parts of $h_i(z)$, the points on $E_k^{(f_k\circ w_k)(u)}(\mathbb{Q}(u,v))$ are

$$(w_k(u), 1),$$

$$\left(h_1 \circ w_k(u), \left(\frac{-(k+1)u^2 + k^3 - 1}{t[(k+1)u^2 + 2(k^2 - 1)u + k^3 - 1]}\right)^3\right),$$

$$\left(h_2 \circ w_k(u), \left(\frac{-(k+1)u^2 + k^3 - 1}{t[(k+1)u^2 + 2(k^2 + k + 1)u + k^3 - 1]}\right)^3\right),$$

$$\left(h_3 \circ w_k(u), \left(\frac{-(k+1)u^2 + k^3 - 1}{v}\right)^3\right).$$

Note that these four points are independent points in $E_k^{(f_k \circ w_k)(u)}(\mathbb{Q}(\widetilde{E}_k))$ by Lemma 3.1.

Let $\widetilde{E}_k^*: y^2 = (x-\alpha)(x-\beta)(x-\gamma)$ be an elliptic curve for $\alpha = -2(k^2-1)(k^2+k+1)$, $\beta = -2(k^2-1)(3k^2+k-1)$ and $\gamma = -2(k^2+k+1)(3k^2+2k+1)$. Then \widetilde{E}_k^* is a Weierstrass model for \widetilde{E}_k . Therefore there is a birational isomorphism ϑ from \widetilde{E}_k to \widetilde{E}_k^* given by

$$\vartheta: \widetilde{E}_k(\mathbb{Q}) \to \widetilde{E}_k^*(\mathbb{Q})$$

such that $\vartheta(0, k^3 - 1) = I$, identity element of $\widetilde{E}_k^*(\mathbb{Q})$ and $\vartheta(\widetilde{P}_k) = \widetilde{P}_k^*$, where $\widetilde{P}_k = ((t+1)(k+t+1), -(t+1)(k+t+1)(k+2)(tk-2k+1))$ and $\widetilde{P}_k^* = (2(k^3-1), 8tk(k+2)(k^3-1))$. It is easily seen that the denominator of the x-coordinates of $n\widetilde{P}_k^*$ has no non-zero rational roots for n=2,3,4,5,6,7,8,9 and 12. Therefore \widetilde{P}_k^* has infinite order for every $t \in \mathbb{Q} - \{0,\pm 1\}$.

Let $k \in \mathbb{Q} - \{0, 1\}$ is the square of a rational number. Then $(f_k \circ w_k)(u)$ is always separable, so for each square $s \in \mathbb{Z}$, the hyperelliptic curve $(f_k \circ w_k)(u) = st^2$ has genus 5, and thus has only finitely many rational solutions (u, z), that is, for each such k and s differ by a rational square is finite. Therefore for each w, there are infinitely many non-isomorphic quadratic twists of E_k of rank at least 4 over \mathbb{Q} since $\widetilde{E}_k(\mathbb{Q})$ is infinite.

REFERENCES

- A.O.L. Atkin and F. Moralin. Eliptic Curves and Primality Proving. Math. Comp. 61 (1993), 29-68.
- [2] A. Brumer and K. Kramer. The Rank of Elliptic Curves. Duke Math. Journal 44(1977), 715-743.
- [3] S. Goldwasser and J. Kilian. Almost all Primes can be Quickly Certified. In Proc. 18th STOC, Berkeley, May 28-30, 1986, ACM, New York (1986), 316-329.
- [4] N. Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag, 1994.
- [5] T.J. Kretschmer. Construction of Elliptic Curves with Large Rank. Math. Comp. 46 (1986), 627-635.
- [6] F. Lemmermeyer and R.A. Mollin. On the Tate-Shafarevich Groups of $y^2 = x(x^2 k^2)$. Acta Math. Universitatis Comenianae LXXII(1)(2003), 73-80.
- [7] H.W.Jr. Lenstra. Factoring Integers with Elliptic Curves. Annals of Maths. 126(3) (1987), 649-673.
- [8] V.S. Miller. Use of Elliptic Curves in Cryptography, in Advances in Cryptology-CRYPTO'85. Lect. Notes in Comp. Sci. 218, Springer-Verlag, Berlin (1986), 417-426.
- [9] R.A. Mollin. An Introduction to Cryptography. Chapman&Hall/CRC, 2001.
- [10] L.J. Mordell. On the Rational Solutions of the Indeterminate Equations of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.
- [11] K. Nagao. Construction of High-Rank Elliptic Curves. Kobe J. Math. 11(1994), 211-219.
- [12] K. Rubin and A. Silverberg. Rank Frequencies for Quadratic Twists of Elliptic Curves. Experimental Math. 10(2001), 559-569.
- [13] R. Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Theorie des Nombres de Bordeaux 7(1995), 219-254.

- [14] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
- [15] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics, Springer, 1992.
- [16] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman&Hall /CRC, Boca London, New York, Washington DC, 2003.
- [17] A. Wiles. Modular Elliptic Curves and Fermat's Last Theorem. Annals of Maths. 141(3) (1995), 443-551.

ULUDAG UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, GÖRÜKLE, 16059, BURSA-TURKEY

E-mail address: tekcan@uludag.edu.tr

URL: http://matematik.uludag.edu.tr/AhmetTekcan.htm