THE ELLIPTIC CURVES 2 = z(z — 1)(z — \)
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ABSTRACT. Let p be a prime number and let Fp be a finite field. In the
first section, we give some preliminaries from elliptic curves over finite
fields. In the second section we consider the rational points on the elliptic
curves Ej ) : y? = z(z—1)(z—A) over F}, for primes p = 3 (mod 4), where
A #0,1. We proved that the order of Ej,x over Fp is p+1 if A = 2, 21
or p—1. Later we generalize this result to Fyn for any integer n > 2. Also
we obtain some results concerning the sum of z-and y-coordinates of all
rational points (z,y) on Ep » over Fp. In the third section, we consider
the rank of Ej : 2 = z(z — 1)(z — A) over Q.

AMS Subject Classification 2000: 11G05, 11G07, 11G20, 14H52.
Keywords: Elliptic curves over finite fields, rational points on elliptic curves, rank of

elliptic curves.
Date: 13 February 2007.

1. INTRODUCTION.

Mordell began his famous paper [10] with the words Mathematicians have
been familiar with very few questions for so long a period with so little accom-
plished in the way of general results, as that of finding the rational points on
elliptic curves. The history of elliptic curves is a long one, and exciting appli-
cations for elliptic curves continue to be discovered. Recently, important and
useful applications of elliptic curves have been found for cryptography [4,8,9],
for factoring large integers [7], and for primality proving [1,3].The mathematical
theory of elliptic curves was also crucial in the proof of Fermat’s Last Theorem
[17).

Let g be a positive integer, F, be a finite field and let F, denote the
algebraic closure of F, with char(F,)# 2,3. An elliptic curve E over F, is
defined by an equation

(1.1) E:y? = 2%+ a2® 4 bz,

where a,b € F, and b?(a® — 4b) # 0. The discriminant of E is defined by
A = 16b%(a? — 4b). The condition that A # 0 is equivalent to the curve being
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smooth. We can view an elliptic curve E as a curve in projective plane P?, with
a homogeneous equation y%z = z° + az?2? + br2®, and one point at infinity,
namely (0,1,0). This point oo is the point where all vertical lines meet. We
denote this point by O. Then the set of rational points (z,y) on E

(1.2) E(F,) = {(z,y) € Fy x Fq : y* = 2 + az® + bz} U {0}

is a subgroup of E. The order of E(F,), denoted by #E(F,) = N, is defined
as the number of the points on F and is given by the following formula:

3 2
(1.3) #EF)=q+1+ ) (-"‘3—"%—&) ,
z€F,

where (Fi,') denotes the Legendre symbol (for the arithmetic of elliptic curves
and rational points on them see [13,14,15,16]).

Let p be a prime number and let ¢ = p" for integern > 1. Let N = g+1—-a
(the integer a is called the trace of Frobenius). Then there is an elliptic curve
E defined over F, such that #E(F,) = N if and only if |a] < 2,/7, know the
Hasse interval, and a satisfies one of the following (see [16, p.92]):

(1) ged(a,p) =1
(2) nis even and a = 2,/
(3) n is even, p is not equivalent to 1(mod 3) and a = %,/
(4) nis odd, p=2,3 and a = £p(n+1)/2
(5) n is even, p is not equivalent to 1(mod4) and a =0
(6) nisoddanda=0
Let P € E(F,). Then the order of P is the smallest positive integer m such
that mP = O. A fundamental result from group theory is that the order of a
point always divides the order of the group E(Fg). An elliptic curve E over F,
is called supersingular if there are no points of order g, even with coordinates
in an algebraically closed field. For prime p > 5, E is supersingular if and only
if a = 0, in which case #E(F,) =p+ 1.
The formula defined in (1.3) can be generalized to Fgn for some integer
n>2. Let #E(F;) =g+ 1—a and let

(1.4) X2-aX+g=(X-a)(X-7).
Then the order of E over F» is given by

(1.5) #EF) =q" +1— (" + 8.
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2. RATIONAL POINTS ON 32 = z(z — 1)(z — A) OVER F,.

It is known that every elliptic curve E over F, is isomorphic to an elliptic
curve in Legendre form E) : y? = z(z —1)(z — }) for some A € F, with A # 0, 1.
Let p be a odd prime and let F, be a finite field, and let A € F, with A #0, 1.
In this section we consider the number of rational points on elliptic curve

(2.1) Epy:y=z(z—1)(z—N)

over F,. When p = 1(mod 4), there is no rule. Therefore we only consider the
case p = 3(mod 4).

Theorem 2.1. If A =2, %1 or p—1, then the order of E; ) over Fp isp+1,
that is, Ey » is supersingular.

Proof. Let A =2, P;'—l or p—1 and let z € F, be any point. Now consider the
cubic equation

z(z—1)(x-A)=0.
This equation has three solutions £ = 0,z = 1 and = = A. Therefore we have
y? = 0(mod p) & y = O(mod p), that is, there are three points (0,0),(1,0) and
(X,0) on Ep x. Therefore for these values of z, we have

ESEL

F,
Set F9 = {0,1,A}. Then z(z — 1)(z — A) is zero for z € Fj. So we get
z(z-1)(z— )
2.2) ) (—(—ﬁ—) —o.
z€Fg P

For the other values of z, i.e. = € F, — Fy, we have both z and —z. Each
of these values gives two points, the one makes z(x — 1)(z — A) a square, i.e.
z(z —1)(z — )\)) =1
Fp -
So there are two values of y since y?> = z(z — 1)(z — ) is a square. There are
223 (since #(F, — F3) = 23) points z in F, — FY such that z(z ~ 1)(z - \) is
a square. Let F} denote the set of the points = in F, such that z(z - 1)(z - })
is a square. Then we get

z(z - 1)(x — A) p-3
(2.3) > ( ( F) ) ===
P
z€FF
The other value gives no points since
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So there are no values of y since y? = z{z — 1)(z — A) is not a square. There
are ’;—3 points z such that z(z — 1)(z — A) is not a square. Let F denote the
set of the points z in F, such that z(z — 1)(z — A) is not a square. Then we get

(z-1)(z - A) p-3
(2.4) E Gt | S0 [ S Sk
zeFy ( By ) 2
Applying (2.2), (2.3) and (2.4), we get

z(x(z—gp(:t—).)) _ ( -1):1: )\))

z€F, zeWuF*uF,,

-3
= o+___2_

2
= 0.

Therefore the order of Ep » over F,, is p + 1 since

#EaE) =i X (FETRE)

z€F,
by (1.3). m

Example 2.1. Let p = 11. Then we have the following teble for elliptic curves
Eny:y?=z(z - 1)(z — A) over Fyy :

A Ena #E11,2(F11)
2| y¥*=2%-322+2z 12
3| ¥*=2-422+3z 16
4 | y¥*=2%-522+4z 16
5| v¥*=2%-6x2+5z 8
6 | Y¥=2%—T2z2+62 12
7| P2=23-8224+7z 16
8| y?=2%-922+82 8
9 | y¥*=2%-102%+9z 8
10 | y2 = 2% — 1122 + 10z 12

It is clear that Eyy2,Ey16 and Eyyj0 are supersingular elliptic curves
since their orders are 12.

From now on we assume that A = 2, %1 or p — 1 throughout the paper.
Now we generalize Theorem 2.1 to Fp» for integer n > 2.
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Theorem 2.2. The order of Ep s over Fpn is

(p% — 1) ifn=0(mod4)
#Epa(Fpr) =< p*+1 ifn=1,3(mod4)
(p? +1)® ifn=2(mod4).

Proof. We know that Ey, » is supersingular, that is #Ep »(Fp) = p+1. Therefore
a = 0. Then by (1.4), we get

X% +p=(X - iyP)N(X +iyD).

Set o = i,/p and f = —i\/p. Let n = 0(mod 4), say n = 4m for an integer
m > 1. Then

o+ = (B +(=ivE)"
#m (V)™ + (-1) ' (vp)*™
p2m +p2m
= 2p?m
= 2p%.

Therefore by (1.5), we get

#Epa(Fpe) =p" +1- (@™ + ") =p" +1-2p% = (p¥ - 1)%.
Similarly, it can be shown that #E, s(Fpr) = p™ + 1 if n = 1,3(mod 4) and
#EpA(Fpr) = (p? +1)? if n = 2(mod 4). O

Example 2.2. Let p =19 and A = 20. Then the order of Eg10 : y* = 23— 11
z2 + 10z over Fign is
16983302400 jorn=8
_ 322687697780 forn=9
#E19,10(F107) = | ' 116400058808220 forn=11
6131071210000 forn=10.

Let |z] and [y] denote the z—and y—coordinates of all points (z,y) on
E,» :y? = z(z—1)(z — A), respectively. Then we can give the following results
concerning the sum of {z] and [y].

Theorem 2.3. The sum of x— coordinates on Eyp » is

P - 1+ (£2)

=] =)
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Proof. Recall that
1 fz(z—1)(z—-A)iszeroin F,
1+ (&%)) =¢ 2 if z(x—1)(z — M) is a square in F,,
P 0 if z(z— 1)(z — A) is not a square in F,,.

Let (ﬂ’”—"l,,);(’—"i\l) = 0. Then z(x — 1)(z — A) is zero in F,. Hence the
equation z(z — 1)(z — A) = 0 has three solutions z = 0,1, A. Therefore y? =
0(modp) < y = 0(modp). So for such a point z € Fg, we have a point (z,0)
on E, ». Therefore we get (x +0).z = z is added to the sum.

Let (i(’—’%,)i“—‘l) = 1. Then z(z — l)(:z: — ) is a square in Fp,. Let
z(z - 1)(z— ) = k? for some k € F;. Then y* = k*(mod p) & y = +k(modp),
that is, for any point (z,k) on Ep,,\, the point (z,—k) is also a point on Ej .
Therefore for each point = € F}, we have (1 + 1).z = 2z is added to the sum.

Finally, let (ﬂ’—'%‘;"l) = —1. Then z(z — 1)(z — ) is not a square in
F,. Therefore the equation 3% = z(z— 1)(z ~— A)(mod p) has no solution. Hence
for each point (z,y) we have (1 + (—1)).z = 0. This completes the proof. O

Theorem 2.4. The sum of y—coordinates on Ep ), is

Y Epa(p) = Z5E.
[v]

Proof. We proved in Theorem 2.1 that the cubic equation z(z — 1)(z —\) =0
has three solutions 2 = 0,z = 1 and £ = A\. We also proved that for the other
values of z, i.e. z € Fp — ng, we have both z and —z. One of these gives two

points. The one makes z(z — 1)(z — A) a square, i.e. (ﬂ’;}_)éﬂ) =1. So
there are two values of y since y2 = z(z — 1)(z — A) is a square. Let z € Ff,
then z(z — 1)(z — A) = t2 for any t € F;. Then we have 3 = t?(modp) «
y = +t(modp), that is y = t and y = —t = p — t. The sum of these values
of yis t + (p — t) = p. We know that there are "-5—3 points z € F} such that
y? = z(z — 1)(z — ) is a square. Therefore, the sum of y—coordinates of all
points (z,y) on Ey» is p232. Hence we conclude that the sum of [y] on E,»
is £25%. D

Theorem 2.5. Let E, 5 denote the set of the family of all supersingular elliptic
curves over Fp, i.e. Epn = {Epr: A= 2,L;—1,p— 1}. Then

D #Epa=3p+3.
A
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Proof. We know that there are three supersingular elliptic curves E, 5 : Y=
z(z — 1)(z — A) over F,. We also proved in Theorem 2.1 that the order of E;
over Fp is p+1, i.e. #Epa(Fp) = p+ 1. Therefore the total number of the

points (z,y) on all elliptic curves Eyp » in Ep 5 over Fp is Npa =3(p+1). O

3. RANK OF E) : y> = z(z — 1)(z — A) OVER Q.

Ranks of elliptic curves have an important role on the theory of elliptic
curves and are studied by many authors (see [2,5,6,11,12]). Recall that the
quadratic twist of an elliptic curve E : y2 = 23 + az? + br is E@ : dy? =
3 + az? + bz. In this section we consider the rank of elliptic curve E : y2 =
z(z — 1)(z — A) over Q for A € Q — {0,1}. First we give the following Lemmas
from [12].

Lemma 3.1. Suppose that E is an elliptic curve over a fieldF, that K;, K>, - - -,
K, are distinct separable extensions of F of degree at most 2, and that for
i=1,2,---,n, there are points P, € E(K;) of infinite order. Suppose also that
if K; # F, then o(P;) = —P;, where o is the non-trivial element of Gal(K;/F).
Let K denote the compositum K\ Ky -+ K. Then {P,,P,,:-+, P,} is an inde-
pendent set in E(K).

Now let k(z) € Z[z). We say that k(2) is square free if k(z) is not divisible
by the square of any non-constant polynomial in Z[z]. Let g(z) € Q[z]. A
square free part of g(z) is a square free k(2) € Z[2] such that g(2) = k(z)j2(z)
for some j(z) € Q[z]. Let Q* denote the multiplicative group of rational units,
and let Q*2 denote the subgroup consisting of perfect squares. Then we can
give the following Lemma.

Lemma 8.2. Suppose f(z) € Q[z] is a separable cubic, and let E is the el-
liptic curve E : y*> = f(z). Let hi(z) = z, suppose we have non-constant
ha(2), ha(z),- -+ , he(z) € Q[z], let ki(z) be a square free part of ﬁ%‘.gll, and
suppose that ky(2), ka2(z), -+ , k.(z) are distinct modulo Q*2. Then the rank of
EU@) (Q (2, k@), VF(2))) is at least r and if C is the curve defined
by the equations s? = ki(z) fori=1,2, .- ,r, then for all but at most finitely
many rational points (7,01,02,- - ,0;) € C(Q), the rank of EV()(Q) is at

least r.

In Lemma 3.2, h; is a linear fractional transformation that permutes the
roots of f. Hence k;(z) is linear. Further ky(2) =1 and if hi(2) = 9;’_‘_1}‘3 with
a, 3,6 € Q, then ki(z) = f(a)(z + &) and

F(hi(z)) _ _ki(2)
f(2) (z+0)*
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Let E : y? = z(x — 1)(z — )) be an elliptic curve over Q and let

3.1) h(z) = z
me) = G
hs(z) = (,\2%—1)1_:-7

A2 - 2)

he(z) = marn-»

be the linear fractional transformations in Q[z] that permutes the set {0,1, A}.
Then the square parts of k; in Q2] are

(3:2) ki(z) = 1
k2(z) (1-N[A-2)z+1]
ks(z) = M1=X2)[(A-A+1)z-)]
ki(z) = A[(A+1)z-)]
ks(z) MA=-1)[(1 - 22z + A7)
ks(z) = M1-XA)[(A2=A+1)z-)?].

Theorem 3.1. Lett € Q — {0, £1}, and let k= ¢t2. Let
1-%
(3.3) fr(z)=2(z-1) (z R 2)

and let Ey, : y? = fi(z). Set wi(u) = ﬁm—)—;(ﬁﬁy for Wi(u) = (k+1)%u+
2k(2k2+3k+1)u3+2(3k4+3k3+k2+k+1)u2+2k(k —1)(2k+1)u+k®-2k3+1.
Let By : v2 = (k +1)2u® 4 4k(2k% + 3k + 1)ud + 2(7k* + Tk + 2k + k + 1)u? +
4(2K5 + k% — 2k — k)u + (k® — 1)2. Then Ex and E) are elliptic curves over
Q, mnk(Ek(Q)) 2 1, for all but possibly finitely many (u,v) € Ek(Q), the
quadratic twist of Ey by (fi o wi)(u) has rank at least 4 over Q and there are
infinitely many non-isomorphic quadratic twists of By of rank at least 4 over

Q.

526



Proof. Let p = 2. Then by (3.2) we get

(3.4) ka(p) — A(l-2) [()\2 -+ 1). 2A _ ,\]
ka(ps) 1-2A) [(A 2.2+ J

_ — 23—
AL =) [»’ 2)\"&?1; 23 ]

(1-2) [2,\3-41\:;;1 Ail]
A2X2 -3)% 4+ )
202 -3 +1
A [A(2)2 - 3A +1)]
202 =32 +1

= )\
and also

(3.5) ka(p)

(-0 [3-2).55 +1]
(A= 1)%(— 2)\+1)

A+1
Let =24 =¢% Then BH =t* @ A= -;,_—t;whlchlsm(33) Soif A= m,-,
then kg(p) and ka(u) are both squares. Therefore (y, (A — 1)t, (A = 1)t) € B
and Q (z, \/kz(z),\/kg(z)) € Q(u) since k; and k3 are both squares. Note
that the curve Ey is the curve v? = kq(wi(u)) and also (0,k% — 1) € Ek(Q).
So Q(Ex) = (u, VEm@) =Q (z VE@), VEa(2), VE () ) by Lemma
3.2 and hence the rank of E,(;f wour)(u)(Q(Ey)) is at least 4. Also the rank of
E{»wR)(Q) is at least 4 for all but infinitely many (u,v) € Ex(Q). Let
fr 0 hi(2) = fi(2)ki(2)j?(2), where ji(z) € Q[z] for i =1,2,3,4. Since ki(z) is
square free parts of h;(2), the points on Ek feown)(#)(Q(u, v)) are

(wk(u)il) )
—(k+1)u?+k -1 )
(hx o wi(u), (t [(k+ 1)u? + 2(k% — 1)u + k3 — 1]) ) )
—(k+1)u2+k -1 ?
(h2 o wi(u), <t [(k+1)u2 +2(k2 + k+1)u+ k3 - 1]) ) )

3
(haowk(u),(—(k+1)u:+k3_l) )

Note that these four points are independent points in E{/****)(Q(Ey)) by
Lemma 3.1.
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Let E} : 4? = (z - @)(z - 8)(z — 7) be an elliptic curve for o = —2(k2 -
1)K+ k+1),8 = —2(k? = 1)(3k* + k — 1) and v = —2(k? + k + 1)(3k* +
2k+1). Then Ek is a Weierstrass model for Ek Therefore there is a birational
isomorphism ¥ from E to E,: given by

3 : Ex(Q) = E}(Q)

such that 9(0, k% — 1) = I, identity element of E}(Q) and 9(B;) = B, where
By = (t+1)(k+t+1), -t +1)(k+t+1)(k+2)(tk—2k+1)) and B} =
(2(k® — 1), 8tk(k + 2)(k® — 1)). It is easily seen that the denominator of the
z-coordinates of nﬁ,; has no non-zero rational roots for n = 2,3,4,5,6,7,8,9
and 12. Therefore ﬁ,: has infinite order for every t € Q — {0, £1}.

Let k € Q- {0, 1} is the square of a rational number. Then (fx 0w )(u) is
always separable, so for each square s € Z, the hyperelliptic curve ( fyow)(u) =
st? has genus 5, and thus has only finitely many rational solutions (u, z), that
is, for each such k and s differ by a rational square is finite. Therefore for each
w, there are infinitely many non-isomorphic quadratic twists of Ej of rank at
least 4 over Q since By (@) is infinite. O
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