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Abstract

An orientation of a simple graph G is called an oriented graph.
If D is an oriented graph, 6(D) its minimum degree and A(D) its
edge-connectivity, then A(D) < §(D). The oriented graph is called
maximally edge-connected if A(D) = 6(D) and super-edge-connected,
if every minimum edge-cut is trivial. If D is an oriented graph with
the property that the underlying graph G(D) contains no complete
subgraph of order p+ 1, then we say that the clique number w(D) of

D is less or equal p.
In this paper we present degree sequence conditions for maxi-

mally edge-connected and super-edge-connected oriented graphs D
with clique number w(D) < p for an integer p > 2.
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1. Introduction and terminology

We consider finite digraphs without loops and multiple edges. A digraph
without any directed cycle of length 2 is called an oriented graph. For a
digraph D the vertex set is denoted by V(D) and the edge set (or arc set) by
E(D). If zy is an arc, then we also write 2 — y and say = dominates y. We
define the order of D by n = n(D) = |V(D)| and the size by |E(D)|. For a
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vertex v € V(D) of a digraph D let d*(v) = (v) its out-degree, d~(v) =
dD(v) its in-degree and d(v) = dp(v) = mm{d'*' ,d~(v)} its degree. The
minimum out-degree and minimum in-degree of a digraph D are denoted
by 6+ = 67(D) and 6~ = 6~ (D) and § = §(D) = min{6*(D), 6~ (D)} is its
minimum degree. The degree sequence, out-degree sequence and in-degree
sequence of D is defined as the nonincreasing sequence of the degrees, out-
degrees and in-degrees of the vertices of D, respectively.

A digraph D is strongly connected if for every pair u, v of vertices there
exists a directed path from u to v in D. A digraph D is k-edge-connected
if for any set S of at most k£ — 1 edges the subdigraph D — § is strongly
connected. The edge-connectivity A = A(D) of a digraph D is defined as the
largest value of k such that D is k-edge-connected. Because of A(D) < (D),
we call a digraph D mazimally edge-connected if \(D) = §(D). A digraph is
super-edge-connected or super-), if every minimum edge-cut is trivial, that
means, that every minimum edge-cut consists of edges adjacent to or from
a vertex of minimum degree.

For two disjoint vertex sets X and Y of a digraph D let (X,Y) be the
set of edges from X to Y. If D is a digraph, then its underlying graph
G(D) is the graph obtained by replacing each arc of D by an undirected
edge joining the same pair of vertices. If D is an oriented graph with the
property that the underlying graph G(D) contains no complete subgraph
of order p + 1, then we say that the cligue number w(D) is less or equal p.
A p-partite tournament is an orientation of a complete p-partite graph. For
other graph theory terminology we follow Bondy and Murty (3] or Char-
trand and Lesniak {4].

Sufficient conditions for digraphs to be maximally edge-connected or
super-\ were given by several authors, for example by Balbuena and Car-
mona [2], Dankelmann and Volkmann [5], Fabrega and Fiol (6], Fiol [7],
Geller and Harary [8], Hellwig and Volkmann (9, 10, 11], Imase, Soneoka
and Okada [12}, Jolivet [13], Soneoka [14], Volkmann [16] and Xu [19]. How-
ever, closely related conditions for maximally edge-connected and super-
edge-connected oriented graphs have received little attention until recently,
cf., Ayoub and Frisch [1], Fiol [7] and Volkmann (17, 18]. In this paper we
will present some degree sequence conditions for maximally edge-connected
and super-) oriented graphs D with clique number w(D) < p for an integer
p22.

2. Preliminary results

The following known results play an important role in our investigations.
We start with a well-known result of Turdn [15].
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Theorem 2.1 (Turén [15])) Let p > 2 be an integer. If D is an oriented
graph with clique number w(D) < p, then

1B(D)| < & IV(D)I2 (1)

Theorem 2.2 (Volkmann [18]) Let p > 2 be an integer, and let D be an
oriented graph with clique number w < p, A = A(D) and § = §(D) > 1. If
A < 4, then there exist two disjoint sets X,Y C V(D) with XUY = V(D)
and |(X,Y)| = A such that

|X|>2[“"s (D)J and |Y|22Ff)—+11))J.

Theorem 2.3 (Volkmann [18]) Let D be an oriented graph with A =
A(D) and 6 = §(D) > 2. If D is not super-), then there exist two dis-
joint sets X,Y C V(D) with XUY = V(D) and |(X,Y)| = X such that
|X| = 26%(D) and |Y| > 26— (D).

Theorem 2.4 (Volkmann [18]) Let p > 2 be an integer, and let D be
an oriented graph with clique number w < p, A = A(D) and é = §(D) > 2.
If D is not super-), then there exist two disjoint sets X,Y C V(D) with
XUY =V(D) and |(X,Y)| = A such that

|X|>2[p5 (D)J ~2 and |Y|22[%J 2.

3. Main results

If D is an oriented graph with clique number w(D) < p, then define

+(D -(D
2 [%J =p*(D) = p* and 2 [%J =p" (D) =p~
Theorem 3.1 Let p > 2 be an integer, and let D be an oriented graph
of order n, edge-connectivity A, clique number w < p, with out-degree
sequence d'*' > dy >...>d} =6 and in-degree sequence df > dy >
2d; =6 Furthermore, let v =1 when n is even and v = 0 when n
is odd. If

wt u

-1 -
Ed:+1—i 2t p_lntity and zd;+1—i 2 pu p_lntl+y +V,
p 4 i=1 p 4

i=1

then A = 6.
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Proof. Suppose to the contrary that A < §. Applying Theorem 2.2, we
deduce that there exist two disjoint sets X, Y C V(D) with XUY = V(D)
and |(X,Y)| = X such that |X| > pt and [Y]| > p~.

We assume, without loss of generality, that |X| < 2. Nowlet S C X
with |S| = ut such that S contains the ut vertices of smallest out-degree
in X. Then it follows from our hypothesis that

1n+1+v
St > Sz wr B2
veS i=1 P
This implies that ) )
n+l4v
a2 ==
p
for every u € X — S and hence
ln+l4v
Y at) 2 X s = )

veX
On the other hand, our assumption A < § and Turén’s bound (1) lead to

Y dtw) = |[EDX])| +r< B IXI2 +6+ - (3)
veX
Our assumption |X| < % yields 2|X| < n -1+ v, and thus it follows from
(2) that

> dt() >|X|

veX

Combining (3) and (4) and using the bound |X| > ut, we arrive at the
contradiction

- - +

5 (@

> %
p6+Jp 1 (pfi* )p—l

> +1> -1)—=+1
[p—l P p—-1 P +

st-P= st il
p p
and the proof of Theorem 3.1 is complete. O

The following family of examples will demonstrate that the conditions
in Theorem 3.1 are best possible in the sense that

p-ln+l+v
IL IR LIS L

i=1
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and

_p—1n+1+u
Sz L

do not guarantee that the oriented graph is maximally edge-connected.

Example 3.2 Let p > 3 be an integer, and let D] and Dj be two (p — 1)-
regular p-partite tournaments with the partite sets {u1,v1}, {u2,vs},...,
{up,vp} and {z1,u1}, {z2,92},..., {Zp,¥p}. In addition, let D be the p-
partite tournament consisting of the disjoint union of D; and Dj such that
{ui,vi, zi, y:} are the partite sets of D for 1 < ¢ < p together with the edge
set

U= {ula:g, U2T3y .00y up_gzp_l}

and all further possible edges from D, to D;. The resulting p-partite tour-
nament D is of order n = n(D) = 4p such that §+(D) =6 (D) = 6(D) =
p—1,p*(D) = p~(D)=2p and

wt(D) s (D)

Z d'rT+1-i(D) = Z d’r_v,+1—i(D)
i=1

i=1
P-2)p+(p+2)(p-1)=2>-p-2

and
1n+1+u _ -1ln+4+1+4v
ur(D) 2= —7 = u~(D) == ——I—-—%?-P—L

However, since U is a minimum edge-cut, we deduce that A(D) =p -2 <
p-1=4(D).

A proof similar to this one of Theorem 3.1 leads to the next result.

Theorem 3.3 Let p > 2 be an integer, and let D be an oriented graph
of order n, edge-connectivity A, clique number w < p and degree sequence
dy 2dp >...2d, =4. Furthermore, let v =1 when n is even and ¥ = 0
when n is odd. If

2| %)
-1
Zl: dn+1-z_l I-’_fle Pp n+;+u,

then A = 4.
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Example 3.2 shows that the condition

2| 1]
|

Z dny1-i 2
i=1

does not guarantee that the oriented graph is maximally edge-connected.

P |p-1n
p—1 p 2

Next we will prove an analogue to Theorem 3.3 for oriented graphs to
be super-A. For this analogue we define

e 253

Theorem 3.4 Let p > 2 be an integer, and let D be an oriented graph
of order n, edge-connectivity A, clique number w < p and degree sequence
dy >dy >...>dy, =86 > 2. Furthermore, let v = 1 when n is even and
v =0 when n is odd. If

—1n+2+v
Zdn+1—t >p? 4

then D is super-A.

Proof. Suppose to the contrary that D is not super-A. Applying Theorems
2.3 and 2.4, we deduce that there exist two disjoint sets X,Y C V(D) with
XUY = V(D) and |[(X,Y)| = A such that | X|, Y] > p.

We assume, without loss of generality, that [X| < 2. Now let S C X
with |S| = p such that S contains the p vertices of smallest degree in X.
Then it follows from our hypothesis that

-1n+2
Y d(v) 2 Ed,,+1_, > p_ "_#
veS i=1
As above, this implies that
1n+2+
> di) 2 x| == =, (5)
veX
On the other hand Turén’s bound (1) yields
Y dw) <k |X|2 +34. (6)

veX



Our assumption |X| < % yields 2|X| < n — 1 + v, and thus it follows from
(5) that

-1 2X +3 1 3 -1 X

veX
If p > 4, then we arrive togehter with (6), (7) and the inequality [X| >
24 to the contradiction
5> 3@-DIX] | 35-1)
4p 2p
If p = 2, then |X| > u shows that |X| > 46 — 2. But if | X| = 46 — 2,
then the hypothesis § > 2 and (6) lead to the contradiction

46%-25 = 8X|< ) d(v) < <P |X|2 +6
veX

- %(46—2)2+6=462—46+1+6.

Thus | X| > 46 — 1 and therefore (6) and (7) yield the contradiction

3(p D)X|
4p

If p=3 and § > 4, then (6), (7) and the bound |X| > 2( 3] — 2 lead to
the contradiction
3(p—1)|X| |X| 30 3 3
S —=— - =
b2 3 2|7 12 >¢
If p= 4 = 3, then |X| > 2§ = 6. But in the case |X| = 6, inequality (6)
yields the contradiction 18 < 15 and thus [X| > 7. Applying now (6) and
(7), we obtain the contradiction
Sp—-DIX]|
3=6> ————
4p 2
In the remaining case that p = 3 and § = 2, it follows from (6) and (7)

that 2=4 > L—l and thus | X| < 4. Because of | X| > 26, we conclude that
IX| =4, Smce p = 3, we finally arrive the contradiction

8=46<) d(v)<5+6="1.
veX

> - (46 1)>4.

Since we have discussed all posible cases, the proof of Theorem 3.4 is com-
plete. O
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The next family of examples will demonstrate that the condition in
Theorem 3.4 is best possible in the sense that

n
-1n+4+14v

Zdn+1—i > u £ R —
i=1 4

does not guarantee that the oriented graph is super-edge-connected.

Example 3.5 Let p > 3 be an integer, and let D] be a (p — 1)-regular
p-partite tournament with the partite sets {u1,m}, {u2,v2},..., {up,vp}
such that {ug,us,...,up} — u1. In addition, let D; be a (p — 1)-regular
p-partite tournament with the partite sets {z1,11}, {z2,%2},..., {Zp,¥p}
such that z, — {z1,22,...,Zp-1}. If D1 = D] —u; and Dy = Dy —z,, then
let D be the p-partite tournament consisting of the disjoint union of D; and
Dy such that {v1,z1,%1}, {4p,Vp,¥p} and {u;, v, 7,34} for 2<i<p-—1
are the partite sets of D together with the edge set

U = {ugx, u3T2, usZs,. .., UpTp-1}

and all further possible edges from Dj to D,. The resulting p-partite tour-
nament D is of order n = n(D) = 4p — 2 such that §*(D) = 6= (D) =
J(D) =p— 1, p(D) =2p—2 and

u(D)

Y dns1-i(D) = (2p - 2)(p—1) = 2" - 4p+2

i=1
and

p—1ln+l+v _ P14
w(D) — 1 = (2p 2)-—p n
= 2p%-4p+2.

However, since U is a minimum edge-cut, we deduce that D is not super-\.

Using the definitions

+ — + pé* -
,ul—max{26 ’2lp—1J 2}

- -5 | P | _
Ny —-max{26 ’2lp—1J 2},

and applying again Theorems 2.1, 2.3 and 2.4, we obtain the following ana-
logue to Theorem 2.4 with the same arguments.

and
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Theorem 3.6 Let p > 2 be an integer, and let D be an oriented graph
of order n, edge-connectivity A, clique number w < p, with out-degree se-
quence d'l" >df >...>d} = 6% and in-degree sequence di 2dy 2...2
d; = 6~. Furthermore, let v = 1 when n is even and v = 0 when = is odd.
If

Zdn+1 -1 =

i=1

+2+V -p—=1n+2+v
and Zdn+1-¢_ 1Ty T

I
i=1

then D is super-A.

Example 3.5 shows that Theorem 3.6 is best possible in the same sense
as Theorem 3.4.
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