Degree sequence conditions for maximally edge-connected and super-edge-connected oriented graphs depending on the clique number #### Lutz Volkmann Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de #### Abstract An orientation of a simple graph G is called an oriented graph. If D is an oriented graph, $\delta(D)$ its minimum degree and $\lambda(D)$ its edge-connectivity, then $\lambda(D) \leq \delta(D)$. The oriented graph is called maximally edge-connected if $\lambda(D) = \delta(D)$ and super-edge-connected, if every minimum edge-cut is trivial. If D is an oriented graph with the property that the underlying graph G(D) contains no complete subgraph of order p+1, then we say that the clique number $\omega(D)$ of D is less or equal p. In this paper we present degree sequence conditions for maximally edge-connected and super-edge-connected oriented graphs D with clique number $\omega(D) \leq p$ for an integer $p \geq 2$. Keywords: oriented graph, edge-connectivity, super-edge-connectivity, degree sequence, clique number ## 1. Introduction and terminology We consider finite digraphs without loops and multiple edges. A digraph without any directed cycle of length 2 is called an *oriented graph*. For a digraph D the vertex set is denoted by V(D) and the edge set (or arc set) by E(D). If xy is an arc, then we also write $x \to y$ and say x dominates y. We define the *order* of D by n = n(D) = |V(D)| and the *size* by |E(D)|. For a vertex $v \in V(D)$ of a digraph D let $d^+(v) = d^+_D(v)$ its out-degree, $d^-(v) = d^-_D(v)$ its in-degree and $d(v) = d_D(v) = \min\{d^+(v), d^-(v)\}$ its degree. The minimum out-degree and minimum in-degree of a digraph D are denoted by $\delta^+ = \delta^+(D)$ and $\delta^- = \delta^-(D)$ and $\delta = \delta(D) = \min\{\delta^+(D), \delta^-(D)\}$ is its minimum degree. The degree sequence, out-degree sequence and in-degree sequence of D is defined as the nonincreasing sequence of the degrees, out-degrees and in-degrees of the vertices of D, respectively. A digraph D is strongly connected if for every pair u,v of vertices there exists a directed path from u to v in D. A digraph D is k-edge-connected if for any set S of at most k-1 edges the subdigraph D-S is strongly connected. The edge-connectivity $\lambda = \lambda(D)$ of a digraph D is defined as the largest value of k such that D is k-edge-connected. Because of $\lambda(D) \leq \delta(D)$, we call a digraph D maximally edge-connected if $\lambda(D) = \delta(D)$. A digraph is super-edge-connected or super- λ , if every minimum edge-cut is trivial, that means, that every minimum edge-cut consists of edges adjacent to or from a vertex of minimum degree. For two disjoint vertex sets X and Y of a digraph D let (X,Y) be the set of edges from X to Y. If D is a digraph, then its underlying graph G(D) is the graph obtained by replacing each arc of D by an undirected edge joining the same pair of vertices. If D is an oriented graph with the property that the underlying graph G(D) contains no complete subgraph of order p+1, then we say that the clique number $\omega(D)$ is less or equal p. A p-partite tournament is an orientation of a complete p-partite graph. For other graph theory terminology we follow Bondy and Murty [3] or Chartrand and Lesniak [4]. Sufficient conditions for digraphs to be maximally edge-connected or super- λ were given by several authors, for example by Balbuena and Carmona [2], Dankelmann and Volkmann [5], Fàbrega and Fiol [6], Fiol [7], Geller and Harary [8], Hellwig and Volkmann [9, 10, 11], Imase, Soneoka and Okada [12], Jolivet [13], Soneoka [14], Volkmann [16] and Xu [19]. However, closely related conditions for maximally edge-connected and superedge-connected oriented graphs have received little attention until recently, cf., Ayoub and Frisch [1], Fiol [7] and Volkmann [17, 18]. In this paper we will present some degree sequence conditions for maximally edge-connected and super- λ oriented graphs D with clique number $\omega(D) \leq p$ for an integer $p \geq 2$. ## 2. Preliminary results The following known results play an important role in our investigations. We start with a well-known result of Turán [15]. **Theorem 2.1 (Turán [15])** Let $p \ge 2$ be an integer. If D is an oriented graph with clique number $\omega(D) \le p$, then $$|E(D)| \le \frac{p-1}{2p} |V(D)|^2.$$ (1) **Theorem 2.2 (Volkmann [18])** Let $p \geq 2$ be an integer, and let D be an oriented graph with clique number $\omega \leq p$, $\lambda = \lambda(D)$ and $\delta = \delta(D) \geq 1$. If $\lambda < \delta$, then there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y = V(D)$ and $|(X,Y)| = \lambda$ such that $$|X| \geq 2 \left\lfloor \frac{p\delta^+(D)}{p-1} \right\rfloor \ \text{ and } \ |Y| \geq 2 \left\lfloor \frac{p\delta^-(D)}{p-1} \right\rfloor.$$ **Theorem 2.3 (Volkmann [18])** Let D be an oriented graph with $\lambda = \lambda(D)$ and $\delta = \delta(D) \geq 2$. If D is not super- λ , then there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y = V(D)$ and $|(X, Y)| = \lambda$ such that $|X| \geq 2\delta^+(D)$ and $|Y| \geq 2\delta^-(D)$. **Theorem 2.4 (Volkmann [18])** Let $p \geq 2$ be an integer, and let D be an oriented graph with clique number $\omega \leq p$, $\lambda = \lambda(D)$ and $\delta = \delta(D) \geq 2$. If D is not super- λ , then there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y = V(D)$ and $|(X,Y)| = \lambda$ such that $$|X| \ge 2\left\lfloor \frac{p\delta^+(D)}{p-1} \right\rfloor - 2 \text{ and } |Y| \ge 2\left\lfloor \frac{p\delta^-(D)}{p-1} \right\rfloor - 2.$$ #### 3. Main results If D is an oriented graph with clique number $\omega(D) \leq p$, then define $$2\left\lfloor \frac{p\delta^+(D)}{p-1} \right\rfloor = \mu^+(D) = \mu^+ \text{ and } 2\left\lfloor \frac{p\delta^-(D)}{p-1} \right\rfloor = \mu^-(D) = \mu^-.$$ **Theorem 3.1** Let $p \geq 2$ be an integer, and let D be an oriented graph of order n, edge-connectivity λ , clique number $\omega \leq p$, with out-degree sequence $d_1^+ \geq d_2^+ \geq \ldots \geq d_n^+ = \delta^+$ and in-degree sequence $d_1^- \geq d_2^- \geq \ldots \geq d_n^- = \delta^-$. Furthermore, let $\nu = 1$ when n is even and $\nu = 0$ when n is odd. If $$\sum_{i=1}^{\mu^+} d^+_{n+1-i} \geq \mu^+ \, \frac{p-1}{p} \, \frac{n+1+\nu}{4} \ \text{ and } \ \sum_{i=1}^{\mu^-} d^-_{n+1-i} \geq \mu^- \, \frac{p-1}{p} \, \frac{n+1+\nu}{4},$$ then $\lambda = \delta$. **Proof.** Suppose to the contrary that $\lambda < \delta$. Applying Theorem 2.2, we deduce that there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y = V(D)$ and $|(X,Y)| = \lambda$ such that $|X| \ge \mu^+$ and $|Y| \ge \mu^-$. We assume, without loss of generality, that $|X| \leq \frac{n}{2}$. Now let $S \subseteq X$ with $|S| = \mu^+$ such that S contains the μ^+ vertices of smallest out-degree in X. Then it follows from our hypothesis that $$\sum_{v \in S} d^+(v) \ge \sum_{i=1}^{\mu^+} d^+_{n+1-i} \ge \mu^+ \frac{p-1}{p} \frac{n+1+\nu}{4}.$$ This implies that $$d^+(u) \ge \frac{p-1}{p} \frac{n+1+\nu}{4}$$ for every $u \in X - S$ and hence $$\sum_{v \in X} d^+(v) \ge |X| \frac{p-1}{p} \frac{n+1+\nu}{4}.$$ (2) On the other hand, our assumption $\lambda < \delta$ and Turán's bound (1) lead to $$\sum_{v \in X} d^+(v) = |E(D[X])| + \lambda \le \frac{p-1}{2p} |X|^2 + \delta^+ - 1.$$ (3) Our assumption $|X| \leq \frac{n}{2}$ yields $2|X| \leq n - 1 + \nu$, and thus it follows from (2) that $$\sum_{v \in X} d^+(v) \ge |X| \frac{p-1}{p} \frac{2|X|+2}{4} = \frac{p-1}{2p} |X|^2 + \frac{(p-1)|X|}{2p}. \tag{4}$$ Combining (3) and (4) and using the bound $|X| \ge \mu^+$, we arrive at the contradiction $$\delta^{+} \geq \frac{(p-1)|X|}{2p} + 1 \geq \frac{(p-1)\mu^{+}}{2p} + 1$$ $$\geq \left\lfloor \frac{p\delta^{+}}{p-1} \right\rfloor \frac{p-1}{p} + 1 \geq \left(\frac{p\delta^{+}}{p-1} - 1 \right) \frac{p-1}{p} + 1$$ $$= \delta^{+} - \frac{p-1}{p} + 1 = \delta^{+} + \frac{1}{p} > \delta^{+},$$ and the proof of Theorem 3.1 is complete. The following family of examples will demonstrate that the conditions in Theorem 3.1 are best possible in the sense that $$\sum_{i=1}^{\mu^+} d_{n+1-i}^+ \ge \mu^+ \frac{p-1}{p} \frac{n+1+\nu}{4} - 1$$ and $$\sum_{i=1}^{\mu^{-}} d_{n+1-i}^{-} \ge \mu^{-} \frac{p-1}{p} \frac{n+1+\nu}{4} - 1$$ do not guarantee that the oriented graph is maximally edge-connected. **Example 3.2** Let $p \geq 3$ be an integer, and let D_1' and D_2' be two (p-1)-regular p-partite tournaments with the partite sets $\{u_1, v_1\}$, $\{u_2, v_2\}$, ..., $\{u_p, v_p\}$ and $\{x_1, y_1\}$, $\{x_2, y_2\}$, ..., $\{x_p, y_p\}$. In addition, let D be the p-partite tournament consisting of the disjoint union of D_1 and D_2 such that $\{u_i, v_i, x_i, y_i\}$ are the partite sets of D for $1 \leq i \leq p$ together with the edge set $$U = \{u_1x_2, u_2x_3, \dots, u_{p-2}x_{p-1}\}\$$ and all further possible edges from D_2 to D_1 . The resulting *p*-partite tournament D is of order n = n(D) = 4p such that $\delta^+(D) = \delta^-(D) = \delta(D) = p - 1$, $\mu^+(D) = \mu^-(D) = 2p$ and $$\sum_{i=1}^{\mu^{+}(D)} d_{n+1-i}^{+}(D) = \sum_{i=1}^{\mu^{-}(D)} d_{n+1-i}^{-}(D)$$ $$= (p-2)p + (p+2)(p-1) = 2p^{2} - p - 2$$ and $$\mu^{+}(D)\frac{p-1}{p}\frac{n+1+\nu}{4} = \mu^{-}(D)\frac{p-1}{p}\frac{n+1+\nu}{4} = 2p^2 - p - 1.$$ However, since U is a minimum edge-cut, we deduce that $\lambda(D) = p - 2 .$ A proof similar to this one of Theorem 3.1 leads to the next result. **Theorem 3.3** Let $p \geq 2$ be an integer, and let D be an oriented graph of order n, edge-connectivity λ , clique number $\omega \leq p$ and degree sequence $d_1 \geq d_2 \geq \ldots \geq d_n = \delta$. Furthermore, let $\nu = 1$ when n is even and $\nu = 0$ when n is odd. If $$\sum_{i=1}^{2\left\lfloor\frac{p\delta}{p-1}\right\rfloor}d_{n+1-i}\geq \left\lfloor\frac{p\delta}{p-1}\right\rfloor\,\frac{p-1}{p}\,\frac{n+1+\nu}{2},$$ then $\lambda = \delta$. Example 3.2 shows that the condition $$\sum_{i=1}^{2\left\lfloor\frac{p\delta}{p-1}\right\rfloor}d_{n+1-i} \geq \left\lfloor\frac{p\delta}{p-1}\right\rfloor \frac{p-1}{p} \frac{n}{2}$$ does not guarantee that the oriented graph is maximally edge-connected. Next we will prove an analogue to Theorem 3.3 for oriented graphs to be super- λ . For this analogue we define $$\mu = \max \left\{ 2\delta, 2 \left\lfloor \frac{p\delta}{p-1} \right\rfloor - 2 \right\}.$$ **Theorem 3.4** Let $p \geq 2$ be an integer, and let D be an oriented graph of order n, edge-connectivity λ , clique number $\omega \leq p$ and degree sequence $d_1 \geq d_2 \geq \ldots \geq d_n = \delta \geq 2$. Furthermore, let $\nu = 1$ when n is even and $\nu = 0$ when n is odd. If $$\sum_{i=1}^{\mu} d_{n+1-i} \ge \mu \, \frac{p-1}{p} \, \frac{n+2+\nu}{4},$$ then D is super- λ . **Proof.** Suppose to the contrary that D is not super- λ . Applying Theorems 2.3 and 2.4, we deduce that there exist two disjoint sets $X, Y \subset V(D)$ with $X \cup Y = V(D)$ and $|(X,Y)| = \lambda$ such that $|X|, |Y| \ge \mu$. We assume, without loss of generality, that $|X| \leq \frac{n}{2}$. Now let $S \subseteq X$ with $|S| = \mu$ such that S contains the μ vertices of smallest degree in X. Then it follows from our hypothesis that $$\sum_{v \in S} d(v) \ge \sum_{i=1}^{\mu} d_{n+1-i} \ge \mu \frac{p-1}{p} \frac{n+2+\nu}{4}.$$ As above, this implies that $$\sum_{v \in X} d(v) \ge |X| \frac{p-1}{p} \frac{n+2+\nu}{4}.$$ (5) On the other hand Turán's bound (1) yields $$\sum_{v \in X} d(v) \le \frac{p-1}{2p} |X|^2 + \delta. \tag{6}$$ Our assumption $|X| \leq \frac{n}{2}$ yields $2|X| \leq n - 1 + \nu$, and thus it follows from (5) that $$\sum_{v \in X} d^+(v) \ge |X| \frac{p-1}{p} \frac{2|X|+3}{4} = \frac{p-1}{2p} |X|^2 + \frac{3(p-1)|X|}{4p}. \tag{7}$$ If $p \ge 4$, then we arrive togehter with (6), (7) and the inequality $|X| \ge 2\delta$ to the contradiction $$\delta \ge \frac{3(p-1)|X|}{4p} \ge \frac{3\delta(p-1)}{2p} > \delta.$$ If p=2, then $|X| \ge \mu$ shows that $|X| \ge 4\delta - 2$. But if $|X| = 4\delta - 2$, then the hypothesis $\delta \ge 2$ and (6) lead to the contradiction $$4\delta^{2} - 2\delta = \delta |X| \le \sum_{v \in X} d(v) \le \frac{p-1}{2p} |X|^{2} + \delta$$ $$= \frac{1}{4} (4\delta - 2)^{2} + \delta = 4\delta^{2} - 4\delta + 1 + \delta.$$ Thus $|X| \ge 4\delta - 1$ and therefore (6) and (7) yield the contradiction $$\delta \geq \frac{3(p-1)|X|}{4p} \geq \frac{3}{8}(4\delta - 1) > \delta.$$ If p=3 and $\delta \geq 4$, then (6), (7) and the bound $|X| \geq 2\lfloor \frac{3\delta}{2} \rfloor - 2$ lead to the contradiction $$\delta \geq \frac{3(p-1)|X|}{4p} = \frac{|X|}{2} \geq \left\lfloor \frac{3\delta}{2} \right\rfloor - 1 \geq \frac{3\delta}{2} - \frac{3}{2} > \delta.$$ If $p = \delta = 3$, then $|X| \ge 2\delta = 6$. But in the case |X| = 6, inequality (6) yields the contradiction $18 \le 15$ and thus $|X| \ge 7$. Applying now (6) and (7), we obtain the contradiction $$3=\delta\geq\frac{3(p-1)|X|}{4p}\geq\frac{7}{2}.$$ In the remaining case that p=3 and $\delta=2$, it follows from (6) and (7) that $2=\delta\geq \frac{|X|}{2}$ and thus $|X|\leq 4$. Because of $|X|\geq 2\delta$, we conclude that |X|=4, Since p=3, we finally arrive the contradiction $$8 = 4\delta \le \sum_{v \in X} d(v) \le 5 + \delta = 7.$$ Since we have discussed all posible cases, the proof of Theorem 3.4 is complete. \Box The next family of examples will demonstrate that the condition in Theorem 3.4 is best possible in the sense that $$\sum_{i=1}^{\mu} d_{n+1-i} \ge \mu \frac{p-1}{p} \frac{n+1+\nu}{4}$$ does not guarantee that the oriented graph is super-edge-connected. **Example 3.5** Let $p \geq 3$ be an integer, and let D_1' be a (p-1)-regular p-partite tournament with the partite sets $\{u_1, v_1\}$, $\{u_2, v_2\}$,..., $\{u_p, v_p\}$ such that $\{u_2, u_3, \ldots, u_p\} \to u_1$. In addition, let D_2' be a (p-1)-regular p-partite tournament with the partite sets $\{x_1, y_1\}$, $\{x_2, y_2\}$,..., $\{x_p, y_p\}$ such that $x_p \to \{x_1, x_2, \ldots, x_{p-1}\}$. If $D_1 = D_1' - u_1$ and $D_2 = D_2' - x_p$, then let D be the p-partite tournament consisting of the disjoint union of D_1 and D_2 such that $\{v_1, x_1, y_1\}$, $\{u_p, v_p, y_p\}$ and $\{u_i, v_i, x_i, y_i\}$ for $2 \leq i \leq p-1$ are the partite sets of D together with the edge set $$U = \{u_2x_1, u_3x_2, u_4x_3, \dots, u_px_{p-1}\}\$$ and all further possible edges from D_2 to D_1 . The resulting p-partite tournament D is of order n=n(D)=4p-2 such that $\delta^+(D)=\delta^-(D)=\delta(D)=p-1$, $\mu(D)=2p-2$ and $$\sum_{i=1}^{\mu(D)} d_{n+1-i}(D) = (2p-2)(p-1) = 2p^2 - 4p + 2$$ and $$\mu(D) \frac{p-1}{p} \frac{n+1+\nu}{4} = (2p-2) \frac{p-1}{p} \frac{4p}{4}$$ $$= 2p^2 - 4p + 2.$$ However, since U is a minimum edge-cut, we deduce that D is not super- λ . Using the definitions $$\mu_1^+ = \max \left\{ 2\delta^+, 2 \left\lfloor \frac{p\delta^+}{p-1} \right\rfloor - 2 \right\}$$ and $$\mu_1^- = \max\left\{2\delta^-, 2\left\lfloor\frac{p\delta^-}{p-1}\right\rfloor - 2\right\},$$ and applying again Theorems 2.1, 2.3 and 2.4, we obtain the following analogue to Theorem 2.4 with the same arguments. **Theorem 3.6** Let $p \geq 2$ be an integer, and let D be an oriented graph of order n, edge-connectivity λ , clique number $\omega \leq p$, with out-degree sequence $d_1^+ \geq d_2^+ \geq \ldots \geq d_n^+ = \delta^+$ and in-degree sequence $d_1^- \geq d_2^- \geq \ldots \geq d_n^- = \delta^-$. Furthermore, let $\nu = 1$ when n is even and $\nu = 0$ when n is odd. If $$\sum_{i=1}^{\mu_1^+} d_{n+1-i}^+ \geq \mu_1^+ \, \frac{p-1}{p} \, \frac{n+2+\nu}{4} \ \text{ and } \ \sum_{i=1}^{\mu_1^-} d_{n+1-i}^- \geq \mu_1^- \, \frac{p-1}{p} \, \frac{n+2+\nu}{4},$$ then D is super- λ . Example 3.5 shows that Theorem 3.6 is best possible in the same sense as Theorem 3.4. # References - [1] J.N. Ayoub and I.T. Frisch, On the smallest-branch cuts in directed graphs, *IEEE Trans. Circuit Theory* CT-17 (1970), 249-250. - [2] C. Balbuena and A. Carmona, On the connectivity and superconnectivity of bipartite digraphs and graphs, Ars Combin. 61 (2001) 3-21. - [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd., London and Basingstoke (1976). - [4] G. Chartrand and L. Lesniak, Graphs and digraphs, 3rd ed., Chapman & Hall, 1996. - [5] P. Dankelmann and L. Volkmann, Degree sequence conditions for maximally edge-connected graphs and digraphs, J. Graph Theory 26 (1997) 27-34. - [6] J. Fàbrega and M.A. Fiol, Bipartite graphs and digraphs with maximum connectivity, Discrete Appl. Math. 69 (1996), 271-279. - [7] M.A. Fiol, On super-edge-connected digraphs and bipartite digraphs, J. Graph Theory 16 (1992), 545-555. - [8] D. Geller and F. Harary, Connectivity in digraphs, Recent Trends in Graph Theory, Proc. 1st New York City Graph Theory Conf. 1970, Lecture Notes in Mathematics, 186 (1971), 105-115. - [9] A. Hellwig and L. Volkmann, Maximally edge-connected digraphs, Australas. J. Combin. 27 (2003), 23-32. - [10] A. Hellwig and L. Volkmann, Neighborhood and degree conditions for super-ege-connected bipartite digraphs, Result. Math. 45 (2004), 45-58. - [11] A. Hellwig and L. Volkmann, Neighborhood conditions for graphs and digraphs to be maximally edge-connected, Australas. J. Combin. 33 (2005), 265-277. - [12] M. Imase, T. Soneoka and K. Okada, Connectivity of regular directed graphs with small diameters, IEEE Trans. Comput. 34 (1985), 267-273. - [13] J.L. Jolivet, Sur la connexité des graphes orientés, C.R. Acad. Sci. Paris 274 A (1972), 148-150. - [14] T. Soneoka, Super edge-connectivity of dense digraphs and graphs, Discrete Appl. Math. 37/38 (1992), 511-523. - [15] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452. - [16] L. Volkmann, Degree sequence conditions for super-edge-connected graphs and digraphs, Ars Combin., (67) (2003), 237-249. - [17] L. Volkmann, Degree sequence conditions for maximally edge-connected oriented graphs, Appl. Math. Letters 19 (2006), 1255-1260. - [18] L. Volkmann, Sufficient conditions for maximally edge-connected and super-edge-connected oriented graphs depending on the clique number, Ars Combin., 10 pp., to appear. - [19] J.M. Xu, A sufficient condition for equality of arc-connectivity and minimum degree of a digraph, *Discrete Math.* 133 (1994), 315-318.