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Abstract

In this paper, we study the circular choosability recently intro-
duced by Mohar(5] and Zhu [11]. In this paper, we show that the
circular choosability of planar graphs with girth at least 12348 j5 at
most 2 + 2, which improves the earlier results.
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1 Introduction

Our terminology and notation will be standard. The reader is referred to
[2] for the undefined terms. Throughout this paper a graph G(V, E) has a
finite vertex set V' and a finite edge set E. The length of the shortest cycle
of a graph G is called the girth of G. We write g(G) for the girth of G.
Suppose G = (V, E) is a graph and p,q (p > 2q) are positive integers. A
(, g)-coloring of a graph G is amappingc: V — {0,1,,...,p—1}, such that
for any edge uv of G, ¢ < |c(u) —c(v)| < p—gq. Note that a (p, 1)-coloring of
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a graph G is the same as a p-coloring of G. The circular chromatic number
is defined as

Xc(G) =inf { 5 : there is a (p, g)-coloring of G}.

It is known [7, 12] that for any graph G, x(G) — 1 < x¢(G) < x(G)-

Let C be a set of integers (called colors). A list assignment L is a
mapping L which assigns to each vertex v of G a subset L(v) of C. An
L-coloring of G is a mapping ¢ : V — C such that for each vertex v,
c(v) € L(v) and for each edge uv,c(u) # c(v). The chooosability (1] or
list chromatic number x;(G) of G is the least integer k such that for any
list assignment L for which |L(v)| = k for every vertex v of G, there is an

L-coloring of G.
Zhu [11] gave the circular version of the list coloring as follows.

Suppose that p,q (p > 2g) are positive integers and ¢ > 1 is a real
number. A t-(p,q)-list assignment L of G is a list assignment such that, for
every vertex v, L(v) € {0,1,---,p—1} and |L(v)| > tg. An L-(p,q)-coloring
of G is a (p, g)-coloring ¢ of G such that for any vertex v, c(v) € L(v). We
say that G is circular t-(p, g)-choosable if for any t-(p, g)-list assignment L,
G has an L-(p,q)-coloring. We say that G is circular t-choosable if G is
circular t-(p, g)-choosable for any positive integers p,g with p > 2¢. The
circular choosability (or the circular list chromatic number) of G is defined
as

X 1(G) =inf { t > 1: G is circular t-choosable}.

Observe that for an integer k, G is k-choosable means that G is circular
k-(p, 1)-choosable for any p. Hence xi(G) =min { k: G is circular k-(p,1)-
choosable for any p}.

The following propositions are taken from [11] and can be easily derived
from the definitions.

Proposition 1 [11] For any graph G, x(G) < Xc(G).
Proposition 2 [11] For any graph G, x:(G) ~ 1 £ x,1(G).

Zhu [11] proved that for finite k-degenerate graph G, x,i(G) < 2k. On
the other hand it was proved by Zhu [11] that for each € > 0, there is a
k-degenerate graph which is not circular (2k — €)-choosable. Since every
k-degenerate graph G satisfies xi(G) < k + 1, it follows that the difference
Xe1(G) = x1(G) can be arbitrarily large.



Mohar [5] proposed a problem: What is the smallest real number ¢ such
that every planar graph is circularly t-choosable? Inspired by Thomassen’s
proof for 5-choosability of planar graphs, it was proved that every planar
graph is circular 8-choosable in [8], also see [4]. Moreover, the following
theorem was given in [4].

Theorem 1 [4] For any n > 2, there erists a planar graph G, with
Xet(G) 26— '71?

A natural question is to ask what happens when we restrict ourselves to
planar graphs with high girth. The circular choosability of planar graphs
and some special planar graphs of large girth was studied in [4], [8] and
[10].

Theorem 2 [8] Let G be a planar graph with g(G) > 8n+2, then x.,i(G) <
2+ 1

In [4], the following theorem was given, which is slightly stronger than
Theorem 2.

Theorem 3 [4] Let G be a planar graph with g(G) > 4n+2, then xc1(G) <
2+ 2,

The main result of this paper is as follows,

Theorem 4 Let G be a graph with g(G) > 3n+ 1. If every subgraphs of G
have average degree less than 2 + Eq_ﬁ, then x.1(G) <2+ %

Corollary 5 If G is a planar graph with girth at least -——‘L, or a graph
embeddable on the torus or Klein bottle with girth greater than , then
Xe,l (G) < 2 + 2

Proof. Clearly, 10248 > 3n + 1. And every subgraph of G has girth at
least as large as the girth of G, thus, if the conclusion fmls by Theorem
4, we have that: the average degree of G is at least 2 + 5n 1. It follows
that | E(G)| 2 §244|V(G)|. Let v,e be the number of vertices and edges of
G, respectively. Let f be the number of faces in an embedding of G on a
surface of Euler characteristic N. By Euler’s Formula,

Sn+l 2 .2 3
2 - N—U—€+f<€(5 +4 +m)—8(5(—a)-—m).
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For the surface mentioned, N < 2. Hence azas > 52, that is, g(G) <
M‘gi'—s, and equality holds only when N = 2. This contradiction completes
the proof. o.

Immediately, from Corollary 5 and Proposition 1, we obtain the follow-
ing corollary, which improves the result of Theorem 3.

Corollary 6 Let G be a planar graph with g(G) > -lo—'gﬂ, then x.(G) <
Xc,l(G) S 2 + %

2 Proof of Theorem 4

Now we give the idea of the proof of Theorem 4. If the conclusion fails,
that is, G is not circular (2 + Z)-choosable; We will show that the average
degree of G is large (at least 2 + g=y), Which gives a contradiction. The
method we will use is the discharging method, which is inspired by Borodin
et al. [3].

Firstly, we give a basic lemma in [4]. As in [4], in the following Lemma
1, G is given, integers p > 2q are given, t > 1 is also given, as is a t-
(p, g)-list assignment L. Moreover, some vertices uy, ug, - - -, ux are L-(p, q)-
precolored. Now we want to extend this L-(p, g)-coloring to G according
to some ordering of the vertices (vy = uy,***,Vk = Uk, Vk41, ", YV(@)|)-
Moreover, we require that in this ordering every non-precolored vertex has
at most one neighbor with higher index. We say a color a in L(v;) is
extendable if there exists some L-(p, g)-coloring ¢ of the subgraph induced
by {v1,72,---,v;} such that c(v;) = a and c respects the precoloring. Note
that if every vertex of G has at least one extendable color, then G has an
L-(p, g)-coloring.

Lemma 1[4] Suppose F = {wy,: -+, wi} is the set of neighbors of v; with
smaller index in the ordering. If w; has at least z; > 1 extendable colors
for each i, then v; has at least |L(v;)| =3 .z, <24(29— i) extendable colors.

We define a graph G to be t-critical if xc,1(G) >t and xci(H) <t for
every proper subgraph H of G. Let L(v) be the extendable colors of v. In
the following, G is a (2+ ;—":)-critical graph. Clearly, G has minimum degree
at least two.

A thread in a graph G is a path whose internal vertices have degree
2 in G. Its order is the number of its internal vertices. T'wo vertices are
weak neighbors or weakly adjacent if they are the endpoints of a thread
(this includes adjacent vertices, since threads may have order 0). In [4], the
following claim was proved.



Claim 1 [4] Every thread in G has order at most n — 1.
Clearly, we have the following claim.

Claim 2 No three vertices of G with degree at least 3 are pairwise weakly
adjacent, and no two threads have the same set of endpoints.

Proof. Otherwise, by Claim 1, G has a cycle of length at most 3n, which
contradicts with ¢(G) > 3n + 1. O

When u and v are weakly adjacent, let !, denote the order of a shortest
u,v-thread. (Note that if u,v are adjacent, then l,, =0). Let Y = {v €
V(G) : d(v) > 3}. A weak neighbor u of v is a weak Y-neighbor of v if
u € Y; Otherwise it is a weak 2-neighbor of v.

For v € V(G), let Ny (v) denote the set of weak Y -neighbors of v in G.

ForveY,let f(v) = —n—14+3 cn, @ (= lu)
The next two claims place lower bounds on f(v) and on 3, ¢y, () f(2).

Claim 3 Ifv €Y, then f(v) > 1.

Proof. As xc 1(G) > 2+ 2, there exist € > 0, two integers p, g with p > 2¢
anda (2+ 2 +¢)- hst-asmgnment L such that G has no L-(p, g)-coloring.
Observe that every proper subgraph H of G has an L-(p, g)-coloring since,
by the criticality of G, xcu(H) <2+ 2. Let t =2+ 2 +¢.

Let H be the graph obtained from G by deletmg v and all its weak
2-neighbors. By the criticality of G, H has an L-(p, g)-coloring.

Consider © € Ny(v). Applying the Lemma 1 for each u,v-thread.
If there exist vertex u € Ny(v) and an integer j, 1 < j < l,, such
that 1 + J—‘i > 2q, then assume that the vertex ordering in u,v-thread
is u, vy, vg, - ,vzw,v We choose the minimum j in this vertex ordering
such that 1+ J-ﬂ > 2q. Let H =G- {vl, -,v;} and consider the L-(p, q)-
colonng of H'. By Lemma 1, we have |L, (v,_1)| 214+ — 1)-2 >2q9—
and |L, (”j+1)| 1(vi,,+1 = v). Then |L, gv_.,)l 2tg—(29—-1) - (24 -
1-(-1)2)>tg—29+1— (29— (29— %)) > 1+ eg > 1. Thus this
L-(p, g)-coloring of H' can be extended to G, which is a contradiction. So
assume that for 1 < j < max{ly, :u € Ny(v)} it holds that 1+ ;2 < 2¢.

Then, by Lemma 1, if u; is a nexghbor of v belonging to a u, v—thread
of order l,, then |L. (u,)l >1+41,,%4 L. Therefore,

Lol 2= Y (a-0uiLen)

u€Ny (v)
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2 2q 2
u€Ny (v) u€Ny (v)

> d(v) +eq- f(v)?,%
>1- f(v)%.

If f(v) < 0, then v has at least 1 extendable color; It follows that G has an
L-(p, g)-coloring, a contradiction. So f(v) > 1. i

Claim 4 IfveY, then 3 ey, (v f(u) 2+ 2.

Proof. Similarly to previous claim, we begin with a t-(p, g)-list-assignment
L, where t = 2+ 2 + ¢, such that G is not L-(p, g)-colorable. Say that a
vertex u € Ny (v) i is v-free if f(u) < n—ly,. Let H be obtained from G by
deleting the vertex v, the v-free neighbors, and all their weak 2-neighbors.
By the criticality of G, there is an L-(p, g)-coloring of H.

If u is v-free, applying the Lemma 1 to each thread from u except u,v-
thread. Similarly to previous lemmas, if w € Ny (u)— {v}, we assume that,
for 1 < j < max{lyw : w € Ny(u),u € Ny(v)}, 1+ 72 < 2g. Then by
induction, if u; is a neighbor of u belonging to a thread of order l,,,, then
|Le(u;)] 2 1+ luw2. Therefore,

2
Ll za- > (u-(wen)
w€Ny (u)—{v}
29 2
sp22 4 - - “
e R D D luwn+ >, 1

w€Ny (u)-{v} wENy (u)—{v}
2
> d(u) 1+ eg+ (n — b — F(#)) 22

As f(u) € n — lyy, then |Le(u)| > 1. Applying the Lemma 1 to u-v
thread: uv}v} .-} . By induction, it holds that |Le(v})| > d(u) — 1+
g+ (n—lou — F(0)) 2 +i2, If d(u) —1+eq+ (n—lu — f(u)) 2 +iZ > 2,
for 1 < i < lyy, then let H' be obtained from G by deleting {u} and
the weak neighbors of u and their 2-neighbors except {v},,---,v}! }. We
get that |L,(v},)] = 1. Thus |L (v})| = d(u) — 1 +eg+ (n — Ly +i—
f(u))_‘l (2g = 1) > 2g — (29 — 1) = 1, then G has an L-(p,q)-coloring,
which obtains a contradiction. Thus we assume that for each v-free vertex

wand 1 <% < ly,, it holds that d(u) —1+eg+(n— l,,u—-f(u))—nﬂ+'1.—ng < 2q.
Thus if v} is a neighbor of v belonging to P,,, then

2 2
Lo@i)l 2 dw) — 1+ eg+(n =l = F@) 3+l
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> d(u) 1+ g+ (0~ f(u) 2L
> (= fu) 2.

If w € Ny (v) is not v-free, then |L¢(u)] > 1. Applying Lemma 1 to u-v
thread and by the same method, if v} | is a neighbor of v belonging to P,

we can get |Le(vE )| 21+ LB > 1+ (n— f(u)2 > (n - f(u)Z.
Now consider ». We have

ILe(v)]  2tg— ) (2q —(n— f(u))?nﬁ)

'AENY(”)
>n2d 42 +eq > f(u)
n uENy(v)
> n+1- ) f(u —+Eq
u€ENy (v)
2q
>[n+1- ) fwy]=
u€Ny (v) n

So we have 3, n, (v) f(¥) 2 n+2. Otherwise, 3= ¢, () f(¥) < n+1.
Then |L.(v)| > 1 and G has an L-(p, g)-coloring, a contradiction. o

We complete the proof using a discharging method. Let d(v) be the
initial charge on the vertex v € V(G). We will move charge from vertex
to vertex, without changing the total. By the following two claims, we
will show that after discharging, it holds that d*(v) > 2 + 44022  for al)
v € V(G). Then

. 4d(v) — 2
2|E(G)| d*(v) 2 2+ ——"—=)
ve%(:c) 06;(6') n+5
=21 - VO + 55 5/ E@G),

and hence 5—,1‘4%|V(G)| <g +5|E(G)l Thus, the average degree of G is at
least 2 + 5n 1+ Which gives a contradiction.

Discharging rules.
a. Every v € Y gives each weak 2-neighbor the amount 2.
b. Every v € Y gives each weak Y-neighbor the amount

37 (v)+(n+2)(d(v)—-3
5n+4-5)d(v °
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Claim 5 Every v € Y receives from its weak Y-neighbors at least ££%.

Proof. If every u € Ny(v) sends v at least -5%(_%, then v receives from
Ny (v) at least gtz 3 ny vy F(8) 2 3%, by Claim 4.
Otherwise, for some u € Ny(v), it holds that M‘W <

£, That is (n + 2)(d(w) — 3) < f(u)(d(x) — 3). Then we conclude
that d(u) > 4 and f(u) > n+ 2. Thus, u by itself gives at v at least

3f(u)+(n+2)(d(u)-3 3(n4+2)+(n+2)(d(w)-3) __ 2

T EYdlu > Sl = g%, Moreover, all other
amounts to v are nonnegative, since if y € Ny(v), then d(y) > 3 and
fly) =2 1. w

01“3(’0(; After the discharging, it holds that d*(v) > 2 + 4522, for all
veE .

Proof. If d(v) = 2, then v sends out nothing and receives 53 from each

of its two weak Y-neighbors. So d*(v) = 2+ g5 = 2 + 82,

Now consider v € Y. By the discharging rule, vertex v sends out

3-;3;5 Yo weNy (v) low to its weak 2-neighbors and 3 (")"'(gﬂ)a(d(")'a) to its

weak Y-neighbors. By Claim 5, v also receives at least g';—;% from its weak
Y-neighbors. Then

d*(v)  2d(v)-

3y, YO HEAEE) -3

5n+5weNy(u) 5n+5
n+2
5n45
3
= d(v) - [Fn=14 D (n—lwy+lw)]
Sn+5 weNy(v)
_(n+2)(d(v) —4)
5n+5
_ d(v) 1
_.5n+5[5n+5 3n (n+2)]+5n+5[3n+3+4(n+2)]
_ (n+8)d(v) +7n+11
- 5n+5 ’

Since d(v) > 3, we have

(n +3)d(v) + Tn + 11 = (d(v) — 3)n + 3d(v) + 3 + 10n + 8 > 4d(v) + 10n + 8.

Therefore, -(’L"ﬁ‘!é%& >2+ %. Then we complete the proof of
Claim 6 and so the Theorem 4. m]
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