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Abstract

In this paper we introduce the concept of geodesic graph at a
vertex of a connected graph and investigate its properties. We deter-
mine the bounds for the number of edges of the geodesic graph. We
prove that an edge of a graph is a cut edge if and only if it is a cut
edge of each of its geodesic graphs. Also we characterize a bipartite
graph as well as a geodetic graph in terms of its geodesic graph.
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1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph
without loops or multiple edges. The order and size of G are denoted by p
and g respectively. For basic graph theoretic terminology we refer to West
[1]. For vertices z and y in a connected graph G, the distance d(z,y) is
the length of a shortest z-y path in G. An z-y path of length d(z,y) is
called an z-y geodesic. A vertex v is said to lie on an z-y geodesic P if v
is a vertex of P including the vertices z and y. The diameter d(G) of a
connected graph G is the length of any longest geodesic. Two vertices u
and v in G are antipodal if d(u,v) = d(G). A graph G is geodetic if every
pair of vertices u and v are joined by a unique path of length d(x,v).

We need the following theorems in the sequel.
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Theorem 1. [3] The mazimum number of edges among all p vertez graphs

with no triangles is l_?;J
Theorem 2. [1] An edge is a cut edge if and only if it belongs to no cycle.
2. Geodesic Graphs

Definition 1. Let G be a connected graph. Let x be any vertez in G.
For any two vertices u and v, define a relation <, on V by u <z v if u lies
on an z-v geodesic.

In the following theorem, we prove that the relation <; is a partial order
onV.

Theorem 3. Let G be a connected graph. Then for any vertex x in G,
(V,£z) is a poset.

Proof.  Since G is connected, it is clear that any vertex u lies on a shortest
z-u path so that u <; u. Hence <. is reflexive.

Let u <; v and v <z u. Since u <, v, the vertex v lies on an z-v
geodesic so that d(z,u) < d(z,v). Similarly, since v <; u, the vertex v lies
on an z-u geodesic so that d(z,v) < d(z,u). Hence d(z,u) = d(z,v) and it
follows that © = v. Thus <, is antisymmetric.

Let v <; v and v <, w. Since u < v, the vertex u lies on an z-v
geodesic P and since v <; w, the vertex v lies on an z-w geodesic Q. Then
clearly the union of the geodesic P from z to v and the (v — w)-section of
the geodesic Q is an z-w geodesic so that u < w. Hence < is transitive.
Thus (V, <) is a poset. O

We will represent the poset by its Hasse diagram, the graph with vertex
set V(G) and an edge between z and y whenever z < y and there is no
vertex between z and y.

Definition 2. Let G be a connected graph. For any vertez z in G,
the geodesic graph at = of G, denoted by P:(G) is defined to be the Hasse
diagram of the poset (V, <;).

Remark 1.
(i) P:(G) is simply denoted by Px.

(ii) Since P, is defined to be the Hasse diagram of (V, £z), P; is a spanning
subgraph of G.

(iii) Every edge incident with x in G will also be an edge in P.
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Example 1.  For the graph G given in Figure 1, all the geodesic graphs
are given in Figure 2.
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Definition 3. Let G be a connected graph and = any vertez of G. Then
S is the spanning subgraph of G in which uv is an edge if and only if uv
lies on either an z-u geodesic or an z-v geodesic in G.

In the following theorem, we prove that the subgraph S, and the geodesic
graph P, of G are isomorphic.

Theorem 4. For a connected graph G,S; ~ P;.



Proof. We have V(S;) = V(P;) =V. Define f: V' — V by f(v) = v for
all v € V. Let uv be an edge of S; and hence uv is an edge of G and uv
lies on either an z-u geodesic or an z-v geodesic in G. Hence d(u,v) =1
in G and either v <, u or u <z v so that either u is a cover of v or v is a
cover of u. Hence u and v are adjacent in P;. The proof of the converse is

similar. Hence S; ~ P,. O

Because of Theorem 4, we are free to make use of the Definition 3 for
P,. Hence

Remark 2. If(z z1 ...Zn) 18 a geodesic in G, then it is a geodesic in
P.. In general, a geodesic (v1v2...vn), where v1 # z in G need not be a
geodesic in Py.

For the graph G in Figure 3, (u u; ug v) is an u-v geodesic in G but it
is not an u-v geodesic in F;.

Y Y
Ul U2 v U1l ug
U \ = 4 u < g
T T
G P,
Figure 3

If uv is an edge of G, then clearly uv is an edge of an u-v geodesic so
that uv is an edge of P,. Hence E(G) C UzevE(P:). Since the edges of
P, are in G, we make the following remark.

Remark 3. For any connected graph G, E(G) = Uzev E(FPy).
Theorem 5. For every vertez z in a connected graph G, P, is a connected
bipartite graph.

Proof.  Let u,v be any two distinct vertices of P;. Then u and v are also
vertices of G. Since G is connected, there exits a shortest path from z to u,
say P = (z u1 ug...un ). Then by Remark 2, it is a shortest path from
z to u in P,. Similarly there is a shortest path @ = (z v; v2...vp, v) from
z to v. Let v; = u; be the last vertex common to both P and Q. Then
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(% Up Un—1...Yj Vjy1...Um v) is a path connecting v and v in P;. Thus
P, is connected.

Let Vi = {u € V : d(z,u) iseven in P;} and Vo = {u € V : d(z,u)
is odd in P;}. Suppose there is an edge uv joining two vertices u,v of V;.
Then either uv lies on an z-u geodesic or an z-v geodesic. In either
case d(z,u) = d(z,v) + 1 or d(z,v) = d(z,u) + 1, which is not possible
since both d(z,u) and d(z,v) are even. Similarly there cannot be an edge
joining two vertices of V5. Hence P, is bipartite. O

Corollary 1. If = is o vertex of a connected graph G such that
P, = G, then G 1is bipartite.

Corollary 2.  For any vertez x in a connected graph G, p—1 < |E(P;)| <
2
kil
Proof. Since P, is a connected graph for every vertex z in G,
p—1 < |E(P;)|. Also, since P, is a bipartite graph, it is triangle free so
2
that by Theorem 1, |E(B;)| < [I;-J o

The bounds in Corollary 2 are sharp. For any odd cycle G on p vertices,
the graph P, is the path on p vertices for any vertex « so that [E(FP;)| =
p — 1. For the graph G = Cy, the cycle on four vertices, P, = G so that

|BE(P)| =4 = I_%EJ Also, for the geodesic graph P, given in Figure 3,
both the inequalities are strict.

Theorem 6. Let G be a connected graph. A vertez v in G is a pendent
vertez of G if and only if v is a pendent vertex of P, for every vertex z in
G.

Proof.  Let v be a pendent vertex of G. Then P, is a spanning subgraph of
G and is connected, by Theorem 5, so v is a pendent vertex of P, for every
vertex z in G. Let v be a pendent vertex of P; for every vertex z in G. If v is
not a pendent vertex of G, then deg (v) > 2. It follows from Remark 1 (iii)
that v is not a pendent vertex of P,, which is a contradiction. a

Theorem 7. Let e be a cut edge of G. Then e is an edge of P, for every
vertez z in G.

Proof. Let e = uv be a cut edge of G. Let G; and G; be the components
of G if the edge uv were removed. Since uv is the only edge between vertices
in G and Gg, any path (in particular, any geodesic) from a vertex in G; to
a vertex in Gy must contain the edge uv. Therefore uv € P, for any vertex

z in G. O
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The converse of Theorem 7 is false. For the graph G in Figure 4, the
edge vy v is an edge in every P,. However vjv; is not a cut edge of G.

1)1 Q;z
U3 U4 Vs
G
Figure 4

In the following theorem, we give the condition for which the converse
of Theorem 7 is true.

Theorem 8. An edge of G is a cut edge of G if and only if it is a cut
edge of P, for every vertezz in G.

Proof. If e is a cut edge of G, then by Theorem 7, e is an edge of P;
for every vertex = in G. If e is not a cut edge of P; for some vertex z in
G, then by Theorem 2, the edge e lies on a cycle C in P, and since P; is
a spanning subgraph of G, the edge e lies on the cycle C in G, which is a
contradiction to e is a cut edge of G. Thus e is a cut edge of P, for every
T.

Conversely, let e = uv be a cut edge of P; for every vertex z in G. If uv
is not a cut edge of G, then by Theorem 2, uv is an edge of some cycle in
G. Let C be a smallest cycle in G containing the edge uv. Now we consider
two cases.

Case i. Let C be an even cycle. Then every edge of C is an edge of P,
and hence C is also in P,. Thus uv is an edge of the cycle C in P, and so
uw is not & cut edge of Pu, which is a contradiction to the assumption.

Case ii. Let C be an odd cycle of length 2n + 1. Let = be a vertex on
the cycle C such that d(z,u) = d(z,v) = n. If uv is an edge of P, then
either uv lies on an z-u geodesic or an z-v geodesic in G. In either case
d(z,v) < d(z,u) or d(z,u) < d(z,v), which is a contradiction. Hence uv is
not an edge of P, and so it is not a cut edge of Pz, which is a contradiction
to the assumption. Hence the theorem. (]

In the following theorems we determine P for a few classes of graphs.

Theorem 9. For any connected graph G, G is bipartite if and only if
P, = G for every vertez z in G.
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Proof. Let G be a bipartite graph. To prove P, = G for every vertex z
in G, it is enough to prove that every edge of G is an edge of P, for every
vertex z in G. If uv is an edge of G and not an edge of P, for some vertex
z, then the edge uv is neither in any z-u geodesic nor in any z-v geodesic in
G. Let w be the last vertex common to an z-u geodesic say P and an z-v
geodesic say Q in G. Then the union of the (w—u) and (w —v) - sections of
the geodesics P and @ respectively and the edge uv is a cycle C in G. We
claim that C is an odd cycle in G. Otherwise, C is an even cycle in G. Let
z be the antipodal vertex to w in C. Then all the edges of C lie on an z-z
geodesic and hence all the edges of C are in Py, which is a contradiction
to the assumption that uv is not an edge of P,. Thus C is an odd cycle in
G, which contradicts that G is a bipartite graph. Hence P, = G for every
vertex z in G. The converse follows from Corollary 1. a

Corollary 3. If G is a tree or an even cycle, then P, = G for every
vertezz in G.

Remark 4. If G is an odd cycle say (vy v2...v2n41 v1) of length 2n +
1, it is obvious that P; is a path for any vertez x in G. In fact P, =
(Vn+1 Vn Vn—1...V2 V1 V2n41...Uns2). Thus we see that Corollary 3 is

not true for an odd cycle.

Remark 5. For a graph G with A = p — 1, it follows from Remark 1
(iii) and Theorem 5 that the geodesic graph Py is a star at z if and only if
deg £ = p— 1. Thus it follows that a graph G is complete if and only if its
geodesic graph Py is a star at = for every vertez z in G.

Theorem 10. A graph G is geodetic if and only if Py is a tree for every
vertez z in G.

Proof. Let G be a geodetic graph. Then it follows from Theorem 5
that P, is a connected bipartite graph for every vertex z and hence it
contains no odd cycles. Suppose that P, contains an even cycle, then G
also contains that even cycle, since P, is a spanning subgraph of G. Let
C be an even cycle of G of smallest length. Hence there are two different
geodesics between any two antipodal vertices of C, which is a contradiction
to G is a geodetic graph. Thus P; is a tree for every vertex z in G.
Conversely, let P; be a tree for every vertex z in G. Let u and v be
two vertices of G and P and Q be any two different geodesics from u to v.
Denote by w the last vertex common to both P and Q. Since P and @ are
shortest paths, the (w — v)- sections of both P and Q are shortest (w — v)
- paths. Now, since the lengths of both P and Q are same, the lengths of
both the (w — v)- sections of P and Q are same. Hence both the (w — v)-
sections of P and @ together form an even cycle C in G and hence C is
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also an even cycle in P,, which contradicts that P, is a tree. Thus G is a
geodetic graph. [}

It is proved in Theorem 7 that each cut edge of a graph G is an edge of
P, for every vertex z in G. This leads to the question “Which edges in a
graph G belong to P; for every vertex z in G7”

Theorem 11. An edge e of a graph G is an edge of Py for every vertez
z in G if and only if e is not in any odd cycle of G.

Proof. Let e = uv be an edge of P for every vertex z in G. If wv is
an edge of some odd cycle of G, let C be a smallest odd cycle of length
27 + 1 in G having uv as an edge. Let z be a vertex of C' such that
d(z,u) = d(z,v) = n. Then clearly the edge uv is neither in any z-u
geodesic nor in any z-v geodesic so that uv is not an edge of the geodesic
graph Py, which is a contradiction. The converse is proved by an argument
as in the proof of Theorem 9. O

Remark 6. For a bipartite graph G, it follows from Theorem 11 that
every edge of G is also an edge of Py for every vertez z in G.
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