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Abstract: We continue the study of Token Sliding (reconfiguration) graphs of independent sets
initiated by the authors in an earlier paper [Graphs Comb. 39.3, 59, 2023]. Two of the topics in
that paper were to study which graphs G are Token Sliding graphs and which properties of a graph
are inherited by a Token Sliding graph. In this paper we continue this study specializing on the
case of when G and/or its Token Sliding graph TSk(G) is a tree or forest, where k is the size of the
independent sets considered. We consider two problems. The first is to find necessary and sufficient
conditions on G for TSk(G) to be a forest. The second is to find necessary and sufficient conditions
for a tree or forest to be a Token Sliding graph. For the first problem we give a forbidden subgraph
characterization for the cases of k = 2, 3. For the second problem we show that for every k-ary tree T
there is a graph G for which TSk+1(G) is isomorphic to T . A number of other results are given along
with a join operation that aids in the construction of TSk-graphs.
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1. Introduction

In a reconfiguration variant of a computational problem (e.g., Satisfiability, Independent Set,
Vertex-Coloring, etc.), a transformation rule that describes an adjacency relation between feasible
solutions (e.g., satisfying truth assignments, independent sets, proper vertex-colorings, etc.) of the
problem is given. One of the main goals is to decide whether there is a sequence of adjacent feasible
solutions that “reconfigures” one given solution into another. Another way of looking at these re-
configuration problems is via the so-called reconfiguration graph—a graph whose nodes are feasible
solutions and two nodes are adjacent if one can be obtained from the other by applying the given rule
exactly once. The mentioned question now becomes deciding whether there is a path between two
given nodes in the reconfiguration graph. Recently, reconfiguration problems have been intensively
studied from different perspectives [1–4].

One of the most well-studied reconfiguration variants of Independent Set is the so-called Token
Sliding problem, which was first introduced by Hearn and Demaine [5] in 2005. We refer readers to [1,
2, 4] and the references therein for more details. Surprisingly, though Token Sliding has been well-
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investigated, the realizability and structural properties of its corresponding reconfiguration graph—the
one which we will refer to as the TSk-graph (which stands for Token Sliding (Reconfiguration) graph
(of a graph))—have not been studied until recently [6]. On the other hand, when considering either
general vertex subsets, (maximum) matchings, dominating sets, or proper vertex-colorings of a graph
as the “input feasible solutions”, their corresponding reconfiguration graphs have been very well-
characterized [3, 7, 8]. A closely related and important graph called the Fibonacci cube (which, from
the reconfiguration viewpoint, can also be called the Token Addition/Removal (Reconfiguration) graph
of paths) has indeed been studied since 1993 [9]. (See the survey [10] for more details.) Very recently,
research on the diameter of another closely related graph called the Token Jumping (Reconfiguration)
graph has been systematically initiated by Bousquet et al. [11] (and indeed several results presented
in [11] also hold for TSk-graphs).

For any graph-theoretic terminology and notation not defined here, we refer readers to [12]. Given
a graph G = (V, E) and a fixed integer k ≥ 2. For two sets X,Y , we sometimes use X + Y and X − Y to
indicate X ∪ Y and X \ Y . We abbreviate X ∪ {u} (resp., X \ {u}) by X + u (resp., X − u). We use NG(u),
or simply just N(u) when the graph G is clear from the context, to denote the (open) neighborhood
of u, i.e., set of all vertices in G that are adjacent to u. The closed neighborhood of u, denoted by
NG[u] or simply N[u], is the set NG(u) + u. The degree of u, denoted by degG(u), is nothing but the
size of NG(u). An independent set (or stable set) of G is a vertex subset I such that for every u, v ∈ I
we have uv < E(G). The TSk-graph of G, denoted by TSk(G), takes all size-k independent sets of
G as its nodes and two nodes I, J are adjacent (under Token Sliding (TS)) if there exist two vertices
u, v ∈ V(G) such that I − J = {u}, J − I = {v}, and uv ∈ E(G). Two graphs G and H are isomorphic,
denoted by G ≃ H, if there exists a bijective mapping f : V(G) → V(H) such that uv ∈ E(G) if
and only if f (u) f (v) ∈ E(H). A graph G is called a TSk-graph if there exists a graph H such that
G ≃ TSk(H). A forest is a graph having no cycles (i.e., it is acyclic) and a connected forest is a
tree. A TSk-tree/forest is a TSk-graph which is also a tree/forest. Figure 1 illustrates a TS2-tree on six
vertices (right). In [6], the authors studied various properties of the family of TSk-graphs. For a graph
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Figure 1. A Graph G with TS2(G) = D1,3,2. Each Node ab Represents a Size-2 Stable Set
of G

G, two of the questions studied were:

(Q1) What are necessary and sufficient conditions for G so that TSk(G) is a forest?
(Q2) What are necessary and sufficient conditions for G to be a TSk-graph?

In this paper, we study these two questions for the case when G is a tree or a forest.
The union G∪H of two (labelled) graphs G and H is the graph with V(G∪H) = V(G)∪V(H) and

E(G ∪ H) = E(G) ∪ E(H). When vertices and edges of G and H are considered distinct regardless of
their labels, we say that G ∪ H is the disjoint union of G and H, and write G + H instead of G ∪ H
to distinguish from their union. We respectively denote by Kn, Pn, and Cn the complete graph, path,
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and cycle on n vertices. Km,n (m ≤ n) is the complete bipartite graph whose two partite sets are of
sizes m and n respectively. K1,n is also called a star—a tree obtained by attaching n leaves to a central
vertex. A family of graphs that we will use in the sequel generalizes stars and paths. For fix positive
integers n, r, s, let Dr,n,s be the tree obtained from Pn by appending r leaves at one end and s leaves at
the other. Note that D1,1,s is the star K1,s+1 and D1,n,1 is the path Pn+2. Figure 1 illustrates D1,3,2 (right).
An n-ary tree is a rooted tree in which each node has at most n children. Any tree with maximum
degree at most n + 1 can be rooted at a vertex with degree at most n (e.g., a leaf) to produce a n-ary
tree. In particular, a 2-ary tree is nothing but the well-known binary tree.

In the next section, we begin by partially answering (Q1) when G is a tree/forest and k ∈ {2, 3} and
conclude the section by conjecturing for k ≥ 4. Then, before addressing (Q2) for some trees/forests,
in particular k-ary trees and Dr,n,s, we define an important graph operation which, under certain con-
ditions, can be used for combining two TSk-graphs by taking their union to obtain a new one. The
final section of the paper gives some concluding remarks.

2. Results on (Q1)

In this section, we prove necessary and sufficient conditions for a tree/forest G such that TSk(G) is
acyclic for k ∈ {2, 3}, partially answering (Q1).

We begin with some definitions and observations. The complement G of a graph G is the graph
with V(G) = V(G) and E(G) = {uv : uv < E(G)}. The size-m matching, denoted by mK2, is the
graph obtained by taking the disjoint union of m copies of K2. Observe that TS2(2K2) ≃ C4. We
label vertices in a Dr,n,s (r, n, s ≥ 1) as follows: Vertices of Pn are labelled p1, . . . , pn. The r leaves
attached to p1 are u1, . . . , ur and the s leaves attached to pn are v1, . . . , vs. D2,2,2 is shaped like an H
and TS2(D2,2,2) contains a cycle C8 whose vertex-set is {u1v1, u1 p2, u1v2, p1v2, u2v2, u2 p2, u2v1, p1v1}.
Indeed, respectively from Lemma 1 of [6] and Figure 2, if a n-vertex graph G is either Cn (n ≥ 5) or
a graph in the list G described in Figure 2 (which includes 2K2 and D2,2,2), the graph TS2(G) contains
a cycle. Additionally, we have:

Lemma 1. (a) For k ≥ 2, TSk(2K2 + nK1) contains a cycle C4 if n ≥ k − 2 otherwise it is acyclic.
(b) For k ∈ {2, 3}, s ≥ 1, TSk(D1,n,s) contains a cycle C4 if n ≥ 2k − 1 otherwise it is acyclic.
(c) For k ∈ {2, 3} and r, s ≥ 2, TSk(Dr,n,s) contains a cycle C8 if n ≥ 2k − 2 otherwise it is acyclic.

Proof. (a) If 1 ≤ n < k − 2, there is no size-k independent set in 2K2 + nK1, thus its TSk-graph is
obviously acyclic. Otherwise, let I ⊆ V(nK1) be an arbitrary independent set of size k−2, and let
E(2K2) = {ab, cd}. Then, {I +a+ c, I +a+d, I +b+ c, I +b+d} induces a C4 in TSk(2K2 +nK1).

(b) Observe that if n ≥ 2k − 1, D1,n,s contains an induced 2K2 + (k − 2)K1, which can be obtained
by taking u1 p1 and pnv1 as edges of 2K2 and the remaining k − 2 independent vertices from the
path D1,n,s − {u1, p1, p2, pn−1, pn, v1, . . . , vs} on n − 4 vertices. (Since n ≥ 2k − 1, this path has
an independent set of size at least ⌈(n − 4)/2⌉ ≥ ⌈(2k − 5)/2⌉ = k − 2.) Then, using a similar
argument as in (a) we have TSk(D1,n,s) contains a C4.
On the other hand, if 1 ≤ n ≤ 2k − 2 for k ∈ {2, 3}, since D1,n−1,s is always an induced subgraph
of D1,n,s for n ≥ 2, it follows that if TS2(D1,n−1,s) has a cycle then so is TS2(D1,n,s). Therefore,
it suffices to show that TSk(D1,2k−2,s) is acyclic for k ∈ {2, 3}. Indeed, based on the number of
tokens placed on the path u1 p1 . . . pn (which is at most three), one can verify that each component
of TSk(D1,2k−2,s) is either an isolated vertex, a path, or a star.

(c) Observe that if n ≥ 2k− 2, Dr,n,s contains the independent sets I + u1 + v1, I + u1 + pn, I + u1 + vs,
I + p1 + v1, I + p1 + vs, I + ur + v1, I + ur + pn, and I + ur + vs, where I = ∅ when n = 2 and
otherwise I is an independent set of the path p2 . . . pn−1 of size k − 2. (Note that p2 . . . pn−1 has
an independent set of size at most ⌈(n − 2)/2⌉ ≥ k − 2.) They indeed induce a C8 in TSk(Dr,n,s).
On the other hand, if 1 ≤ n ≤ 2k − 3 for k ∈ {2, 3}, using a similar case-analysis as in (b), one
can verify that each component of TSk(Dr,n,s) is either an isolated vertex, a path, or a star, and
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G TS2(G)

Figure 2. A List G of n-vertex Graphs G (4 ≤ n ≤ 7) such that if TS2(H) is Acyclic for
Some Graph H then H does not Contain any Member of G ∪ {Cn : n ≥ 5} as an Induced
Subgraph

therefore it is acyclic.

□
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We are now ready to show the necessary and sufficient conditions for a tree/forest G such that
TSk(G) is acyclic, where k ∈ {2, 3}.

Proposition 1. Let T be a tree. Then TS2(T ) is acyclic if and only if T is {2K2,D2,2,2}-free.

Proof. (⇒) Suppose to the contrary that either 2K2 or D2,2,2 is an induced subgraph of T . In the first
case it follows from the discussion above that TS2(T ) contains a C4 and in the second case that
it contains a C8.

(⇐) We assume that TS2(T ) contains a cycle and show that it must contain one of the two forbidden
subgraphs. Firstly, suppose that T is a path Pn. Since TS2(T ) contains a cycle, it follows from
Lemma 1(b) that n ≥ 5 and so T contains an induced 2K2.
We now assume T has a vertex of at least degree 3. We will construct a copy T ′ of T by
initially choosing a vertex a of maximum degree in T and letting T ′ = N[a]. Note that TS2(T ′)
is acyclic. We add edges from T to T ′ and show after each addition that either T ′ contains a
forbidden subgraph, so we are done, or that TS2(T ′) remains acyclic so that T , T ′.
Let b be a child of a of highest degree, c be a child of next highest degree, and d be any other
child. Since TS2(T ′) is acyclic T , T ′ and b must have r ≥ 1 children. Let e be a child of b with
maximum degree. We add N[b] to T ′ obtaining a copy of Dr,2,s, where s = degT (a) − 1 ≥ 2. If
r ≥ 2, we have the required forbidden induced subgraph. If r = 1 then by Lemma 1(b) TS2(T ′)
is acyclic, so there must be extra edges to add to T ′. If c has a child y then {b, c, e, y} induce a
2K2. Otherwise, e must have at least one child g. Adding eg to T ′ we obtain 2K2 as an induced
subgraph on {a, d, e, g}. This completes the proof.
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r ≥ 2 r = 1

Figure 3. Illustration for Proposition 1: Some trees T ′ Containing N[b] whose TS2-graphs
have a Cycle. Here r is the Number of Children of b. Copies of 2K2 and D2,2,2 are Marked
by Red Color

□

Corollary 1. Let T be a tree. Then TS2(T ) is acyclic if and only if T is either K1,s or D1,2,s for some
positive integer s.
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Proof. The proof of Proposition 1 can be viewed as an algorithm that takes a tree T and either ter-
minates with T = T ′ being one of the trees in the corollary or finds a forbidden induced graph in
T . □

Corollary 2. Let F be a forest. Then TS2(F) is a acyclic if and only if F is {2K2,D2,2,2}-free.

Proof. We prove that TS2(F) contains a cycle if and only if F contains one of the graphs in
{2K2,D2,2,2} as an induced subgraph.

Suppose that TS2(F) contains a cycle. Since the independent sets have size two, both vertices of
each independent set must lie in the same connected component T of F. By Proposition 1, the tree T
must have either 2K2 or D2,2,2 as an induced subgraph.

Conversely if F contains 2K2 or D2,2,2 as an induced subgraph then TS2(F) contains respectively a
C4 or a C8. □

Moving to the case of stable sets of size three, the conditions for trees and forests differ slightly.
We deal with the tree case first.

Proposition 2. Let T be a tree. Then TS3(T ) is acyclic if and only if T is {2K2 + K1,D2,4,2}-free.

Proof. The structure of the proof is the same as for Proposition 1. However, there are more cases to
consider.

(⇒) Suppose to the contrary that either 2K2 + K1 or D2,4,2 is an induced subgraph of T . In the first
case it follows that TS3(T ) contains a C4 and in the second case that it contains a C8.

(⇐) We assume that TS3(T ) contains a cycle and show that it must contain one of the two forbidden
subgraphs. The first part of the proof is essentially the same as for Proposition 1 with minor
modifications. Firstly suppose that T is a path Pn. Since TS3(T ) contains a cycle it follows from
Lemma 1(b) that n ≥ 7 and so T contains an induced 2K2 + K1.
We now assume T has a vertex of at least degree 3. We will construct a copy T ′ of T by
initially choosing a vertex a of maximum degree in T and letting T ′ = N[a]. Note that TS3(T ′)
is acyclic. We add edges from T to T ′ showing after each addition that either T ′ contains a
forbidden subgraph, so we are done, or that TS3(T ′) remains acyclic so that T , T ′.
Let b be a child of a of highest degree, c be a child of next highest degree, and d be any other
child. Since TS3(T ′) is acyclic T , T ′ and b must have r ≥ 1 children. Let e be a child of
b with maximum degree. If c has a child y then {b, c, d, e, y} induce a 2K2 + K1 and we are
done. Otherwise we add N[b] to T ′ obtaining a copy of Dr,2,s, where s = degT (a) − 1 ≥ 2. By
Lemma 1(c), TS3(T ′) is acyclic and so T , T ′. There are two cases:

(r ≥ 2) Let f be a second child of b and let g be a child of e. Adding eg to T ′ we obtain 2K2 + K1

as an induced subgraph on {a, d, e, f , g}.
(r = 1) Since e is the only child of b it must have children. Let t ≥ 1 be the number of children of e

and let h be the child of e of maximum degree. We add N[e] to T ′ obtaining a copy of Dt,3,s

and TS3(T ′) is acyclic by Lemma 1(c). There are two subcases:

(t ≥ 2) Let i be any other child of e. Since TS3(T ′) is acyclic h must have at least one child j.
We have now constructed an induced 2K2 + K1 on {a, d, h, i, j}.

(t = 1) If h has a single child k add hk to T ′ which is a copy of D1,4,s and again by Lemma 1(c)
TS3(T ′) is acyclic. So k has a child l. Adding kl to T ′ it contains an induced P7 and we
find the forbidden subgraph 2K2 + K1 on vertices {a, d, e, k, l}. Otherwise, h has at least
two children including vertices k and m. Adding edges hk and hm to T ′ we obtain the
forbidden subgraph D2,4,2. This completes the proof.

□
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Figure 4. Illustration for Proposition 2: Some trees T ′ Containing N[b] whose TS3-graphs
have a cycle. Here r and t are Respectively the Number of Children of B and its Child E.
Copies of 2k2 + K1 and D2,4,2 are Marked by Red Color

Corollary 3. Let T be a tree. Then TS3(T ) is acyclic if and only if for some positive integer s, T is
either K1,s, D1,n,s where n ≤ 4, or Dr,n,s where r ≥ 2 and n ≤ 3.

Proof. The proof of Proposition 2 can be viewed as an algorithm that takes a tree T and either ter-
minates with T = T ′ being one of the trees in the corollary or finds a forbidden induced graph in T
showing that TS3(T ) has a cycle. □

Corollary 4. Let F be a forest. Then TS3(F) is a forest if and only if F is {2K2+K1,D2,2,2+K1,D2,4,2}-
free.

Proof. We prove that TS3(F) contains a cycle if and only if F contains one of the graphs in {2K2 +

K1,D2,2,2 + K1,D2,4,2} as an induced subgraph.
Suppose that TS3(F) contains a cycle C. Since the independent sets have size three, there are

three cases to consider. Firstly, if the three vertices of each independent set in C lie in the same
connected component T of F, by Proposition 2, the tree T must have either 2K2 + K1 or D2,4,2 as an
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induced subgraph. Secondly, suppose two of the vertices of each stable set lie in the same connected
component T of F, which must have at least two connected components. Thus, C induces a cycle in
TS2(T ). So by Proposition 1, the tree T must have either 2K2 or D2,2,2 as an induced subgraph. Since
F has at least two components, F contains 2K2 + K1 or D2,2,2 + K1. Finally, suppose each vertex of
each stable set lies in a different component of F, which therefore has at least three components. At
least two of these components must be non-trivial, i.e., contain an edge. Therefore, F contains an
induced 2K2 + K1.

Conversely, suppose F contains 2K2 + K1, D2,2,2 + K1 or D2,4,2 as an induced subgraph. Then
TS3(F) contains a C4 in the first instance or a C8 in the other two. □

For k ≥ 4, we have the following proposition.

Proposition 3. Let F be a forest. For k ≥ 4, if F contains either 2K2 + (k− 2)K1, or D2,2,2 + (k− 2)K1,
or D2,4,2 + (k − 3)K1 as an induced subgraph, TSk(F) has a cycle.

Proof. One can verify that TS2(2K2) contains a C4, and TS2(D2,2,2) and TS3(D2,4,2) both contain a
C8. As a result, so do TSk(2K2 + (k − 2)K1), TSk(D2,2,2 + (k − 2)K1), and TSk(D2,4,2 + (k − 3)K1),
respectively. Consequently, TSk(F) has a cycle, as desired. □

We conclude this section with the following conjecture for k ≥ 4.

Conjecture 1. Let F be a forest. For k ≥ 4, if TSk(F) is a forest, F is {2K2 + (k − 2)K1,D2,2,2 + (k −
2)K1,D2,4,2 + (k − 3)K1}-free.

3. H-join and H-decomposition

Before considering (Q2), in this section, we describe an operation for combining TSk-graphs to
produce new ones. We first define a family of base graphs as follows. Let V be a set of k + 1 vertices
including two vertices labelled u and v. Then Bk(V, uv) is the graph with vertex set V and single edge
uv. We have TSk(Bk(V, uv)) = K2 whose two vertices are labelled by the independent sets V − u and
V − v. Next, we define the H-join operation and its inverse.

Definition 1. Vertex-labelled graphs G1 and G2 are H-consistent if the (possibly empty) intersection
of their vertex sets define the same (possibly empty) common induced subgraph H. The H-join of H-
consistent graphs G1 and G2 is the graph H(G1,G2) with V(H(G1,G2)) = V(G1) ∪ V(G2). The edges
E(H(G1,G2)) consist of E(G1)∪E(G2) plus all edges vw with v ∈ V(G1)\V(H) and w ∈ V(G2)\V(H).

Recall that a (vertex) cut-set in a connected graph G is a vertex set W such that G −W is discon-
nected. We extend this definition to the case where G is disconnected by allowing W = ∅. We say
that W decomposes G into two (not necessarily connected) induced subgraphs G1 and G2 for which
V(G1)∩V(G2) = W and V(G1)∪V(G2) = V(G). If G−W has more than two (connected) components,
the decomposition is not unique.

Definition 2. Let G be a vertex-labelled graph. Let W ⊂ V(G) = V(G) decompose the complement G
into G1 and G2. Let H be the subgraph of G induced by W. We say that G can be H-decomposed into
G1 and G2.

It follows from the definitions that if G = H(G1,G2) then G can be H-decomposed into G1 and G2,
and vice versa. It is easy to verify that the size-k independent sets of H(G1,G2) are the union of those
of G1 and those of G2.

As an example consider the two 4-vertex graphs G1 and G2 that are paths with edge sets
E(G1) = {ad, bc, cd} and E(G2) = {ad, ae, eb}. These share a common induced subgraph H with
V(H) = {a, b, d} and E(H) = {ad}. We have V(H(G1,G2)) = {a, b, c, d, e} and E(H(G1,G2)) =
{ad, ae, bc, cd, ce, be}. Note that TS2(G1) is the path with edges {ac− ab, ab− bd} and that TS2(G2) is

Ars Combinatoria Volume 159, 133–154



A Note on Acyclic Token Sliding Reconfiguration Graphs of Independent Sets 141
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Figure 5. The Graphs G1, G2, H(G1,G2), and their Corresponding TS2-graphs. Here
TS2(H(G1,G2)) = TS2(G1) ∪ TS2(G2)

the path with edges {ab − bd, bd − de}. It can be verified that TS2(H(G1,G2)) is the path with edges
{ac − ab, ab − bd, bd − de} which is the union of two paths TS2(G1) and TS2(G2). (See Figure 5.)

Now consider the graph G3 which is the path with edges {ad, cd, ce}. G1 and G3 share a com-
mon induced subgraph H with V(H) = {a, c, d} and E(H) = {ad, cd}. We have E(H(G1,G3)) =
{ad, bc, be, cd, ce}. Note that TS2(G3) is the path with edges {ac − ae, ae − de}. In this case,
TS2(H(G1,G3)) is the graph with edges {ab − ac, ac − ae, ae − de, de − bd, bd − ab, ab − ae} which is
the union of TS2(G1), TS2(G3), and the two additional edges de − bd, ab − ae. (See Figure 6.)
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cd
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cd
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bd

TS2(G1)
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ed

TS2(G3)
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bd ed

TS2(H(G1,G3))

Figure 6. The Graphs G1, G3, H(G1,G3), and their Corresponding TS2-graphs. Here
TS2(H(G1,G3)) , TS2(G1) ∪ TS2(G3)

As the last example in this section, consider the graphs G4 and G5 as follows. G4 is the cy-
cle with edges {ae, eb, bc, cd, ad} and G5 is the graph with edges {ae, eb, bc, ag, eg, bg}. G4 and G5

shares a common induced subgraph H with V(H) = {a, e, b, c} and E(H) = {ae, eb, bc}. We have
E(H(G4,G5)) = {ae, eb, bc, cd, ad, ag, eg, bg, dg}. In this case, TS2(H(G4,G5)) is the (non-acyclic)
graph with edges {ab − ac, ac − ce, ce − de, de − bd, ab − bd, ac − cg, ce − cg} which is the union of
TS2(G4) and TS2(G5). (See Figure 7.)

In the next proposition, we show how to compute the TSk-graph of an H-join, generalizing the
examples given above.

Proposition 4. Let k ≥ 2 and let G1 and G2 be two H-consistent graphs. TSk(H(G1,G2)) is the union
of TSk(G1), TSk(G2) and for every pair of k-element independent sets S 1 in G1 and S 2 in G2 satisfying

|S 1 ∩ V(H)| = |S 2 ∩ V(H)| = |S 1 ∩ S 2| = k − 1, (1)

the edge between S 1 and S 2.

Ars Combinatoria Volume 159, 133–154



David Avis and Duc A. Hoang 142
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bd

TS2(G4)
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ce cg

TS2(G5)
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ce de

bdcg

TS2(H(G4,G5))

Figure 7. The Graphs G4, G5, H(G4,G5) and their Corresponding (non-acyclic) TS2-graphs.
Here TS2(G4,G5) = TS2(G4) ∪ TS2(G5).

Proof. As remarked, the k-element independent sets of H(G1,G2) are the same as the union of
those of G1 and G2. Therefore, V(TSk(H(G1,G2))) = V(TSk(G1)) ∪ V(TSk(G2)). Next, consider
an edge in E(TSk(G1)) (respectively, E(TSk(G2))). It is a token-slide between two independent
sets S 1 and S 2 in G1 (respectively, G2). This remains as a token-slide in H(G1,G2). Therefore,
E(TSk(G1)) ∪ E(TSk(G2)) ⊆ E(TSk(H(G1,G2))). Now, consider an edge in E(TSk(H(G1,G2))) be-
tween two independent sets S 1 and S 2. If both of these are independent sets are in G1 (respectively,
G2) then the edge is also present in E(TSk(G1)) (respectively, E(TSk(G2))). Otherwise, we may as-
sume the edge in E(TSk(H(G1,G2))) has as endpoints an independent set S 1 in G1 (but not G2) and
an independent set S 2 in G2 (but not G1). We have S 1 ∩ S 2 ⊂ V(H) and since S 1 and S 2 are adjacent
|S 1∩S 2| = k−1. It follows that |S 1∩V(H)| = |S 2∩V(H)| = k−1 and so condition (1) is satisfied. We
have shown that each edge in E(TSk(H(G1,G2))) is either in TSk(G1), TSk(G2) or satisfies condition
(1), proving the proposition. □

For two H-consistent graphs G1 and G2, we say that H(G1,G2) is k-crossing free if there are no
k-element independent sets satisfying condition (1) of Proposition 4. For example, one can verify that
the graphs H(G1,G2) in Figure 5 and H(G4,G5) in Figure 7 are both k-crossing free, while the graph
H(G1,G3) in Figure 6 is not. The following result will be used for constructing TSk-trees/forests.

Corollary 5. Let k ≥ 2 and let G1 and G2 be two H-consistent graphs. H(G1,G2) is k-crossing free if
and only if

TSk(H(G1,G2)) = TSk(G1) ∪ TSk(G2). (2)

Proof. If H(G1,G2) is k-crossing free then (2) follows from Proposition 4. Otherwise, there exist
k-element independent sets S 1 is in G1 and S 2 is in G2 satisfying condition (1) of Proposition 4. This
implies that TSk(H(G1,G2)) contains an additional edge between S 1 and S 2. □

Therefore, if H(G1,G2) is k-crossing free and both TSk(G1) and TSk(G2) are acyclic, then so is
TSk(H(G1,G2)). The reason for allowing H to be empty in defining an H-join is that the corollary
then applies to vertex disjoint graphs G1 and G2, since in this case H(G1,G2) is trivially k-crossing
free. Therefore, we can create new reconfiguration graphs that are forests from those that are trees (or
forests).

The following result follows from the relationship between H-join and H-decomposition discussed
above.
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Corollary 6. If G can be H-decomposed into G1 and G2 and H(G1,G2) is k-crossing free then TSk(G)
can be decomposed into TSk(G1) ∪ TSk(G2).

4. Results on (Q2)

We currently have no general necessary and sufficient conditions for when a forest F is a TSk-
graph, but we present some partial results in this section. Firstly, we recall that in [6] it is shown that
Pn is a TSk-graph for all n ≥ 1 and k ≥ 2 and K1,n is a TSk-graph if and only if n ≤ k. In this section,
we show how to construct acyclic TSk-graphs from graphs that have a single edge using the join
operation that was introduced in Section 3. We show that it gives an alternate method of constructing
TSk-graphs which are paths and stars. Moreover, this operation can also be applied to construct more
general TSk-trees/forests, especially members of the classes k-ary trees and Dr,n,s.

4.1. Paths and Stars Revisited

Using just the base graphs and the H-join operation defined in Section 3, we can obtain large
families of TSk-trees/forests. We begin with paths. For any k ≥ 2, let Jk = {b1, . . . , bk} be an
independent set of size k and define the base graph Bi

k = Bk(Jk−2 ∪ {ai, ai+1, ai+2}, aiai+2) and let
G2 = Bi

k.

Proposition 5. For i ≥ 2, Gi and Bi
k are H-consistent with H being the independent set Jk−2∪{ai, ai+1}.

Define Gi+1 := H(Gi, Bi
k). Then

TSk(Gi+1) = TSk(Gi) ∪ TSk(Bi
k) ≃ Pi+1.

Proof. We will prove by induction, for i ≥ 2, that TSk(Gi) is the path Pi with vertices labelled Jk−2 ∪

{a j, a j+1}, j = 1, . . . , i. For the base case i = 2, we observe that indeed TSk(Bi
k) is a P2 with vertices

labelled Jk−2 ∪ {a1, a2} and Jk−2 ∪ {a2, a3}.
For the inductive step we observe that, for i ≥ 2, Gi and Bi

k are H-consistent with H the independent
set Jk−2 ∪ {ai, ai+1}. To verify that H(Gi, Bi

k) is k-crossing free, note that the only independent set we
need to consider in Bi

k is Jk−2 ∪ {ai+1, ai+2}. In the path Pi which is TSk(Gi), the candidate independent
sets are Jk−2 ∪ {a j, a j+1}, j = 1, . . . , i. Their intersection with Bi

k is Jk−2 which has cardinality k − 2.
Therefore, condition (1) of Proposition 4 is not satisfied, which indeed confirms that H(Gi, Bi

k) is
k-crossing free. We define Gi+1 := H(Gi, Bi

k). By Corollary 5, TSk(Gi+1) is the union of the above
labelled Pi with a P2 with endpoints Jk−2∪{ai, ai+1} and Jk−2∪{ai+1, ai+2}. This is the required Pi+1. □

An easy inductive argument based on the H-join in the proposition shows that, for i ≥ 2, Gi is
isomorphic to Pn+1 ∪ Jk−2, a result proved in Corollary 5(a) of [6]. (Observe that the vertex ai+1 in Gi

is adjacent to every a j for 1 ≤ j ≤ i − 1.)
Next we consider graphs Gi such that TSk(Gi) is the star K1,i. For k ≥ 2 and 1 ≤ i ≤ k, let

Ik = {a1, . . . , ak} be an independent set of size k, define the base graph Ci
k = Bk(Ik + bi, aibi) and let

G1 = C1
k .

Proposition 6. For k ≥ 2 and 1 ≤ i ≤ k, Gi and Ci+1
k are H-consistent with H being the independent

set Ik. Define Gi+1 := H(Gi,Ci+1
k ). Then

TSk(Gi+1) = TSk(Gi) ∪ TSk(Ci+1
k ) ≃ K1,i+1.

Proof. We will prove by induction, for i ≥ 1, that TSk(Gi) is the star K1,i with centre labelled Ik and
leaves labelled Ik + b j − a j, j = 1, . . . , i. For the base case i = 1, we observe that indeed TSk(Ci

k) is a
K1,1 with centre labelled Ik and leaf labelled Ik + b1 − a1.

For the inductive step we observe that, for i ≥ 1, Gi and Ci+1
k are H-consistent with H the inde-

pendent set Ik. To verify that H(Gi,Ci+1
k ) is k-crossing free, note that the only independent set we
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need to consider in Ci+1
k is Ik + bi+1 − ai+1. In the above labelled K1,i which is TSk(Gi), the candidate

independent sets for condition (1) of Proposition 4 are Ik + b j − a j, j = 1, . . . , i. Their intersec-
tion with Ik + bi+1 − ai+1 has cardinality k − 2. Therefore, condition (1) is not satisfied. We define
Gi+1 := H(Gi,Ci+1

k ). By Corollary 5, TSk(Gi+1) is the union of the above labelled K1,i and a K1,1 with
centre also labelled Ik and leaf labelled Ik + bi+1 − ai+1. This is the required K1,i+1. □

4.2. k-ary Trees

In this section, we show that for each k ≥ 2, every k-ary tree is a TSk+1-graph (Proposition 7).
Next, we show that any tree T is an induced subgraph of some TS2-forest (Proposition 8). Moreover,
we state and prove necessary and sufficient conditions for T to be an induced subgraph of some TS2-
tree (Proposition 9). Additionally, when T = K1,n, we describe a sufficient condition for T to be an
induced subgraph of some TSk-tree (Proposition 10).

We begin by defining a canonical vertex labelling. In this subsection, for any integer n, define
In := {a1, . . . , an} and Jn := {b1, . . . , bn}.

Definition 3. Let k ≥ 2 and G be a graph for which T := TSk+1(G) is a k-ary tree. We say that G and
T are canonically labelled if

(a) the root of T is labelled Ik+1,
(b) the d ≤ k children of the root are labelled Ik+1 − ai + bi, i = 1, . . . , d,
(c) the labels b j, j = d + 1, . . . , k (if any) are not used, and
(d) all other nodes in T receive a label S such that |Ik+1 ∩ S | ≤ k − 1.

It is clear that labelling K1,d, d ≤ k according to (a) and (b) with root the centre of the star is
a canonical labelling. In this subsection, we will show that every k-ary tree has canonical labelling
hence proving it is a TSk+1-graph. First, we give a lemma that shows how to combine canonically
labelled k-ary trees to get a larger k-ary tree that is canonically labelled.

Lemma 2. For integers k ≥ 2 and 1 ≤ i ≤ d ≤ k, let Gi be a graph for which TSk+1(Gi) a canonically
labelled k-ary tree. We can construct a canonically labelled k-ary tree T isomorphic to the tree formed
by choosing a new root and adjoining it to the root of each Ti.

Proof. The proof consists of showing that we can make a series of H-joins between the leaves of a
canonically labelled K1,d and the roots of the canonically labelled trees Ti, i = 1, . . . , d, after a suitable
relabelling. Suppose the root of Ti has ni ≤ k children. We relabel the vertices in the underlying
graphs as follows:

(i) relabel vertices of the Gi not in Ik+1 ∪ Jk to be distinct, ie, for 1 ≤ i ≤ j ≤ d, we have V(Gi) ∩
V(G j) ⊆ Ik+1 ∪ Jk,

(ii) for i = 1, . . . d, j = 1, . . . , ni set b j ← bi
j, where the bi

j were previously unused, and
(iii) for i = 1, . . . d, set ai ← ak+1 and ak+1 ← bi.

By an abuse of notation, for simplicity we let for i = 1, . . . , d, Gi and Ti refer to the relabelled graphs
and trees. Item (i) ensures that the only labels shared between two trees are in Ik+1 ∪ Jk, (ii) ensures
that all labels from Jk in the Ti are given unique labels to avoid clashes, and (iii) gives the root of Ti a
correct label to be a child of a new root labelled Ik. We note that after relabelling bi only appears in
Ti, ai does not appear in Ti and the only labels shared between the Ti are in Ik. Furthermore all tree
vertices have unique labels.

Next take a canonically labelled graph G0 such that TSk+1(G0) ≃ K1,d, with the centre of the star
labelled Ik+1. For i = 1, . . . , d, we claim that the H-join Gi := H(Gi−1,Gi) is well-defined, k-crossing
free, and TSk+1(Gi) is canonically labelled. To see this, note at that iteration i, V(Gi−1) ∩ V(Gi) =
Ik+1 − ai + bi which is the label of the root of Ti and a leaf of TSk+1(Gi−1). Definition 3(d) implies that
condition (1) of Proposition 4 is not satisfied. Therefore by Corollary 5, TSk+1(Gi) is obtained from
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TSk+1(Gi−1) by appending Ti to the corresponding leaf in TSk+1(Gi−1). The conditions of Definition
3 are satisfied so TSk+1(Gi) is canonically labelled. At the end of iteration d, T := TSk+1(Gd) is the
required tree. □

The construction described in the proof is illustrated in Figure 8. We may now prove the main

a1a2a3

b1a2a3 a1b2a3

a1a2a3

b1a2a3 a1b2a3

T1

T2

Relabel

a3a2b1

b11a2a3 a3b
1
2b1

a1a3b2

b21a2a3 a1b
2
2b2

k = 2

a1a2a3

K1,2

Figure 8. Construction of D2,3,2 from two K1,2s

result of this section.

Proposition 7. For every k-ary tree T , there is a canonically labelled graph G such that T ≃

TSk+1(G).

Proof. Suppose that the root r of T has d ≤ k children. We prove the proposition by induction on the
height t of T , which is the length of the longest path to a leaf from the root. If t = 1 then T ≃ K1,d

and so has a canonically representation as described following Definition 3. Otherwise, by deleting r
we obtain d subtrees Ti, i = 1, . . . , d, which are also k-ary trees, with height less than t. Therefore, by
induction each Ti can be represented by a canonically labelled graph Gi. It follows from Proposition 2
that we can perform d H-joins to obtain a canonically labelled graph G for which T ≃ TSk+1(G). □

As noted in Section 4 of [6], K1,k+1 is an example of a k-ary tree that is not an TSk-graph so the
proposition is tight. Nevertheless, if we add a sufficient number of isolated vertices to K1,t, for t > k,
it becomes a TS2-graph—a result we will now prove in general. We will need a special labelling of a
tree that will be defined next.

Definition 4. A tree T is well-labelled if

(a) the root r of T is labelled ab,
(b) the d children of r have roots labelled ri = bci, i = 1, . . . , d − 1 and rd = acd,
(c) the only labels containing a and b are ab, acd, bci, 1 ≤ i ≤ d − 1, and
(d) for i = 1, . . . , d label ci only occurs in the subtree with root ri.

We note that there is nothing special about the ordering of the subtrees of r. The subtree rooted
at ri can play the role of rd by relabelling those two subtrees with the exchanges a ↔ b and ci ↔ cd,
which leaves T well-labelled. As an example, for d ≥ 1 we can well-label K1,d simply by using (a)
and (b). Consider the graph G defined by V(G) = {a, b} ∪ {ci : 1 ≤ i ≤ d} and E(G) = {aci, cicd : 1 ≤
i ≤ d − 1} ∪ {bcd}. Furthermore let J = {cic j : 1 ≤ i < j ≤ d − 1}. Then it is not hard to verify that
TS2(G) ≃ K1,d + (d − 1)(d − 2)K1, where the K1,d is well-labelled and the K1 are labelled by the set J.
This motivates the following definition.
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Definition 5. A tree T is well-labelled by a labelled graph G if there is an integer n such that TS2(G) ≃
T + nK1 and T is well-labelled.

We now show the following general result.

Proposition 8. For every tree T there is a graph G and integer n such that T is well-labelled by G
and TS2(G) ≃ T + nK1.

Proof. The proof is by induction on N, the number of nodes in a given tree T . As noted above, the
proposition is true for all stars K1,t and these act as base cases. For the inductive step, assume the
proposition is true for all trees on N nodes and consider a tree T with N + 1 nodes. If T is a star we
are done. Otherwise, let r be the root of T and assume r has degree d with its children ri being roots
of subtrees Ti, 1, . . . , d. We may also assume that Td is a subtree of T with height at least one. We
now construct two trees from T . The first, T 1 consists of T with subtree Td deleted and a pendant
vertex added to its root r. The second, T 2 consists of Td with a pendant vertex added to its root
rd. By induction, there are integers n1, n2 and graphs G1,G2 which well-label T 1 and T 2 such that
TS2(G1) ≃ T 1 + n1K1 and TS2(G2) ≃ T 2 + n2K1. Apart from the vertex labels used in Definition 4,
we may assume the vertex labels in G1 and G2 are different.

We will show that G1 and a relabelled G2 can be H-joined and that this will identify the pendant
edges added to T 1 and T 2 to give us back T . In T 1 we note that root r is labelled ab, and by relabelling
subtree roots if necessary, that the added pendent vertex can be labelled acd. In T 2 the root rd is also
labelled ab and we can again assume the added pendant vertex is labelled acd. In T 2 we interchange
the labels b ↔ cd and set ci ← c′i , i = 1, . . . , d − 1, for labels c′i that are unused in either T 1 or T 2.
Let G3 and T 3 denote the relabelled G2 and T 2. Setting H = {a, b, cd}, we have V(G1) ∩ V(G3) = H.
H induces the same subgraph, containing the single edge bcd, in both G1 and G3. G1 and G3 are
H-consistent and since k = 2 and their vertex sets are otherwise disjoint, condition (1) of Proposition
4 is not satisfied. Let G4 = H(G1,G3). Applying Corollary 5 we have that

T 4 := TS2(G4) ≃ TS2(G1) ∪ TS2(G3)
≃ {T 1 + n1K1} ∪ {T 3 + n2K1} ≃ T + (n1 + n2)K1.

is well-labelled by G4. This proves the proposition. □

The proof of the proposition is illustrated in Figure 9. The proposition tells us that for every tree T
there is a graph G for which TS2(G) is forest containing T as an induced subgraph. Therefore, there
can be no forbidden induced subgraph characterization of which forests are TS2-graphs. However,
this does not imply that there can be no forbidden induced subgraph characterization of which trees
are TS2-graphs. Indeed, in the next propositions, we present some of such characterizations.

Proposition 9. Let T be a tree. Then there exists a TS2-tree containing T if and only if T is a 3-ary
tree.

Proof. (⇐) In the proof of Proposition 8, we see that isolated vertices are only added when the
base case of a star appears as a subproblem. Therefore, it suffices to consider only the case
T = K1,t, 1 ≤ t ≤ 4. As we have noted, neither K1,3 nor K1,4 are TS2-graphs. It is not hard to
see that there is a G1 such that TS2(G1) ≃ K1,3 + K1. However, by adding an extra vertex to
G1, we can construct a graph G2 such that TS2(G2) ≃ D1,3,2. Furthermore, we can construct a
graph G3 by applying H-join to two copies of G2 with slightly different vertex-labellings such
that TS2(G3) is isomorphic to a P7 with two pendant vertices attached to the midpoint of the
path. (See Figure 10.) Thus, if follows that when T = K1,t, 1 ≤ t ≤ 4, we can embed it as an
induced subgraph of a tree T ′ = TS2(G), for some graph G (see Figure 10). Our proof of the if
direction is complete.
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Figure 9. Illustrating Proposition 8

(⇒) We show that if T is a k-ary tree but not a 3-ary tree for k ≥ 4 then there does not exist any
TS2-tree T ′ containing T (as an induced subgraph). (By definition, any k-ary tree is also a ℓ-ary
tree for ℓ ≥ k.) Let x be a vertex of T whose degree is at least five. (Since T is a k-ary tree but
not a 3-ary tree, such a vertex x exists.)
Suppose to the contrary that T ′ exists, i.e., there exists a graph G′ such that T ′ ≃ TS2(G′)
contains T . Without loss of generality, assume that x is labelled by ab, where {a, b} is a size-
2 stable set of G′. By the pigeonhole principle, we may further assume that three neighbors
x1, x2, and x3 of x are labelled ac, ad, and ae, respectively. Since T ′ is a tree, it follows that
cd, ce, and de are respectively the labels of y1, y2, and y3 where yi is not adjacent to any of⋃

j{x j}+ x+
⋃

j,i{y j} for 1 ≤ i, j ≤ 3. It follows that T ′ contains the labelled graph F ≃ K1,3+3K1

and therefore G′ must contain the labelled graph G ≃ K1,3 + K1, both described in Figure 11, as
an induced subgraph.
Since T ′ ≃ TS2(G′) is a tree and G′ contains G, it follows that G′ has exactly one non-trivial
component C (having more than two vertices) and C contains G, otherwise G′ must contain an
induced 2K2 and by Proposition 1 its TS2-graph is not a tree, a contradiction.

– Case 1: a ∈ V(C). By definition, the distance from a to any of b, c, d, e in G′ must be at
least two. If there is a path of length at least two between a and one of c, d, e not passing
through b, the graph G′ contains a 2K2, a contradiction. Thus, any path between a and one
of c, d, e must go through b. Moreover, if there is a path of length at least three between a
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Figure 10. Taking H-join of Two Copies of G2, where H is the Path adcb, Results a Graph
G3 such that TS2(G3) is Isomorphic to a P7 with Two Pendant Vertices Attached to the
Midpoint of the Path
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Figure 11. The Graphs F and G in the proof of Proposition 9

and b not passing through any of c, d, e, again the graph G′ contains a 2K2, a contradiction.
Since a ∈ V(C), it follows that a and b must have a common neighbor in G′, say f . Observe
that for each y ∈ V(C) − {a, b, c, d, e, f }, y must be adjacent to b in G′, otherwise G′ either
contains 2K2 or D2,2,2 and again by Proposition 1 its TS2-graph is not a tree, a contradiction.
However, this implies that TS2(C) must be a forest and since G′ has exactly one non-trivial
component C, we have TS2(G′) is also a forest, a contradiction.

– Case 2: a < V(C). In this case, there are two types of size-2 stable sets of G′: those
containing a and those do not. Since G′ contains G, each type has at least one member.
Moreover, since a is isolated (the only non-trivial component is C and a is not in it), no
member from one type is adjacent to a member from another type in TS2(G′), which means
TS2(G′) is indeed disconnected, a contradiction.

In the above cases, we proved that some contradiction must happen. Our proof is complete.
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□

Indeed, for K1,n, in general we have

Proposition 10. There exists a TSk-tree T containing K1,n if n ≤ 2k.

Proof. From either [6] or Proposition 6, the proposition holds for n ≤ k. (Indeed, in this case,
T = K1,n.) Thus, it suffices to consider k+1 ≤ n ≤ 2k. For each i ∈ {1, . . . , n−k}, let Ai = {1, . . . , k}− i.

Let Ik = {a1, . . . , ak} and Bn = {b1, . . . , bn}. We construct a graph G0 such that TSk(G0) ≃ K1,n +

(n − k)(k − 1)K1. Let Ik = {a1, . . . , ak} and Bn = {b1, . . . , bn}. Let V(G) = Ik + Bn. Vertices in Bn form
a graph Kn − M where M is the matching that contains bibk+i for 1 ≤ i ≤ n − k. Additionally, for
each i ∈ {1, . . . , k}, we add an edge in G0 between ai and both bi and bk+i. Observe that V(TSk(G0))
consists of Ik, the sets Ik − ai + bi (1 ≤ i ≤ k), Ik − ai + bk+i (1 ≤ i ≤ n− k), and (Ik − ai + bi)− a j + bk+i

(1 ≤ i ≤ n − k and j ∈ Ai). Moreover, one can verify that the independent sets (Ik − ai + bi) − a j + bk+i

are isolated in TSk(G0) and the remaining independent sets form a K1,n in which Ik is adjacent to every
other set. In short, G0 is indeed our desired graph.

For each i ∈ {1, . . . , n − k}, we construct a graph Gi whose TSk-graph is a star K1,k−1 as follows.
Let V(Gi) = (Ik − ai + bi) +

⋃
j∈{1,...,k}−i{ci

j}. Vertices in
⋃

j∈Ai
{ci

j} form a clique in Gi of size k − 1. We
also add an edge in Gi between a j and ci

j for each j ∈ Ai. From either [6] or Proposition 6, one can
verify that TSk(Gi) ≃ K1,k−1 as desired. For each i ∈ {1, . . . , n − k} and j ∈ Ai, we construct a graph
Gi

j whose TSk-graph is a K2 as follows. Let V(Gi
j) = (Ik − ai + bi) − a j + bk+i + ci

j. The only edge in
Gi

j is the one joining ci
j and bk+i. From either [6] or Proposition 5, one can verify that TSk(Gi

j) ≃ K2

as desired.
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1
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1
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4
2a3b4

a1a2a3a4

TS4(G)
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c41
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c43
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G

b1a2a3c
1
4

c41a2a3b4

a1a2c
4
3b4

b1b5a3a4

b1a2b5a4

b1a2a3b5

b8a2a3b4

a1b8a2b4

a1a2b8b4

Figure 12. Construction of a Graph G such that TS4(G) is a Tree Containing K1,8. Vertices
of G in the Yellow Box form a Clique Having all Dashed Edges Removed. The Red Induced
Subgraph of G forms a Graph G0 whose TS4(G0) ≃ K1,8 + 12K1

Now, we construct a graph G whose TSk-graph is a tree containing K1,n as follows. For conve-
nience, we assume that for each i ∈ {1, . . . , n − k} the set Ai = {1, . . . , k} − i can be enumerated as
{ j1, . . . , jk−1}. We define K i

j0
= Gi and K i

jp
= H jp(K

i
jp−1
,Gi

jp
) for jp ∈ Ai where H jp is the stable

set (Ik − ai + bi) − a jp + ci
jp

for p ∈ {1, . . . , k − 1}. Observe that the graphs K i
jp−1

and Gi
jp

are H jp-
consistent, which implies that K i

jp
are well-defined. Moreover, one can also directly verify that the

sets (Ik−ai+bi)−a j+ci
j and (Ik−ai′+bi′)−a j′+ci′

j′ always differ in at least two members, which means
the condition (1) of Proposition 4 is not satisfied. In short, for each i ∈ {1, . . . , n − k}, we obtain the
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graph K i
jk−1

whose TSk-graph is isomorphic to the one obtained from K1,k−1 by replacing each edge
with a P3. Next, we define K0 = G0 and K i = Hi(K i−1,Gi) where i ∈ {1, . . . , n − k} and Hi is the
subgraph induced by (Ik − ai + bi) + bk+i. Observe that the graphs K i are well-defined because K i−1

and Gi are Hi-consistent. Moreover, we have Ik and each (Ik − ai + bi) − a j + ci
j for 1 ≤ i ≤ n − k and

j ∈ Ai always differ in at least two members. It follows that the condition (1) of Proposition 4 is not
satisfied. In short, we finally obtain the graph G = Kn−k whose TSk-graph is indeed a tree containing
K1,n as desired. □

Unfortunately, we have not been able to show whether the reverse statement of Proposition 10 also
holds. We conclude this section with the following open problems:

Problem 1. For every k ≥ 3 and tree T , is there a graph G such that TSk(G) is a forest containing T
as an induced subgraph?

Problem 2. For every k ≥ 3 and (k + 1)-ary tree T , is there a graph G such that TSk(G) is a tree
containing T as an induced subgraph?

Problem 3. Does there exist a TSk-tree T containing K1,n for n > 2k?

4.3. Dr,n,s

We now consider graphs in the Dr,n,s family for whose TSk-graphs are trees and show how they
can be constructed by the H-join operation. We remark that when n = 1, Dr,n,s is nothing but a star
K1,r+s and this case was considered in [6] and revisited in Proposition 6. Furthermore, it follows from
Proposition 7 that for n, k ≥ 2 and 1 ≤ r ≤ s ≤ k− 1, Dr,n,s is a (k− 1)-ary tree and so by Proposition 7
it is a TSk-graph. The reverse statement does not hold in general: there exists a TSk-graph Dr,n,s even
when s ≥ k. For example, one of such graphs, as already proved in [6], is D1,3,2 (r = 1, s = k = 2,
and n = 3). (See also Figure 1.) Indeed, as we will see in Proposition 11, it is the unique TS2-graph
among all trees D1,n,2 for n ≥ 1. Additionally, for the sake of completeness, we will also show in
Proposition 12 that the reverse statement indeed holds when n = 2.

We are now characterizing which D1,n,2-graphs are TS2-graphs and show that this property is non-
hereditary for this simple class of trees. We then consider the Dr,2,s-graphs characterizing those that
are TSk-graphs.

Assume for some G, TS2(G) is a forest containing a K1,3. There are four stable sets in G corre-
sponding to the vertices of the K1,3. There are two ways of labelling the K1,3 but in each case there are
five vertices, say a, . . . , e, of G involved. Up to permutations of the labels, the corresponding stable
sets in G are either {ab, ac, bd, ae} or {ab, ac, ad, ae}. Using these definitions we have the following
lemma.

Lemma 3. Let H be the subgraph of G induced by a, b, . . . , e. The edges of H are

(a) ad, de, eb, bc, cd, if the K1,3 is labelled {ab, ac, bd, ae}, or
(b) bc, bd, be if the K1,3 is labelled {ab, ac, ad, ae}.

Proof. (a) This labelling of K1,3 immediately gives edges ad, bc, be and non-edges ab, ac, ae, bd.
That leaves three edges of H to be decided:

(i) ce must be a non-edge else there is an edge ae, ac in the K1,3.
(ii) cd is an edge else there is a cycle ab, bd, cd, ad in TS2(G), so it is not a tree.

(iii) de is an edge else there is a cycle de, bd, ab, ae in TS2(G).

Note that ce must also be a vertex in TS2(G).
(b) This labelling of K1,3 immediately gives edges bc, bd, be and non-edges ab, ac, ad, ae. There

are no other edges in H as c, d, e form a stable set. This implies that TS2(G) must also contain
vertices cd, ce and de.

□
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Figure 13. If TS2(G) is a Forest Containing a K1,3 then G must Contain One of the Induced
Subgraphs H

Using the lemma we show that precisely one of the D1,n,2-graphs is a TS2-graph, incidentally
proving the non-hereditary property mentioned above for this class of graphs.

Proposition 11. D1,n,2 is a TS2-graph if and only if n = 3.

Proof. We first consider 1 ≤ n ≤ 3 and show that D1,3,2 is a TS2-graph while D1,1,2 = K1,3 and D1,2,2

are not. (We note that the results for the first two graphs have also been proved in [6].) According to
Lemma 3, if D1,n,2 is a TS2-graph of some graph G, the unique star K1,3 in D1,n,2 can be labelled in
one of two ways. However, we may immediately eliminate the possibility of the labelling in Lemma
3(b). This is because, as pointed out in the proof, there must be additional vertices in D1,n,2 = TS2(G)
labelled cd, ce and de which are non-adjacent since c, d, e form a stable set in G. This implies that
n ≥ 6. So we may assume that if D1,n,2 is a TS2-graph, the K1,3 must be labelled as in Lemma 3(a)
with corresponding induced subgraph H of D1,n,2. From the proof of Lemma 3(a) there must be an
additional vertex ce in D1,n,2 however this cannot be adjacent to any of the other four vertices. This
implies that n ≥ 3 and so neither D1,1,2 nor D1,2,2 can be TS2-graphs. However, we may extend H to
G by adding a vertex f adjacent to all vertices except e, as illustrated in Figure 1. This introduces the
new stable set e f which is adjacent to both ae and ce. Therefore, D1,3,2 is isomorphic to TS2(G). We
note that G is the unique graph (up to label permutations) for which this is true, due to the uniqueness
of the labelling of K1,3.

It remains to consider n ≥ 4 and show that D1,n,2 is not a TS2-graph. Suppose to the contrary
that there exists a graph G such that D1,n,2 = TS2(G). Again, D1,n,2 must contain a copy of K1,3 with
exactly two ways of labelling (up to label permutations) by size-2 independent sets of G.

• Case 1: K1,3 is labelled {ab, ac, bd, ae}. Since ac and ae are not adjacent, ce must be a vertex of
D1,n,2 = TS2(G). We consider the following cases:

– Case 1.1: the distance between ce and any vertex of {ac, bd, ae} is at least three. Since
the roles of c and e are equal, we assume without loss of generality that ce is adjacent
to some vertex c f . Observe that a and f are not adjacent in G, otherwise ac and c f are
adjacent, which means the distance between ac and ce is two, a contradiction. Since ce
and c f are adjacent, so are ae and a f . Moreover, b f must be a vertex, otherwise there is
an edge between ab and a f in D1,n,2 = TS2(G) which creates a C3 having {ab, ae, a f } as its
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vertex-set, a contradiction. Since ab and ac are adjacent, so are c f and b f . Now, d f must be
a vertex, otherwise bd and b f are adjacent which contradicts D1,n,2 = TS2(G). Since ab and
bd are adjacent, so are a f and d f . From the proof of Lemma 3(a)(ii) c and d are adjacent in
G, so d f and c f are adjacent, which again contradicts D1,n,2 = TS2(G).

– Case 1.2: the distance between ce and one of {ac, bd, ae} is exactly two. Observe that
bd and ce has no common neighbor, otherwise that neighbor must be labelled as one of
{bc, be, dc, de}: the first two can be ignored because ab and ac (resp., ab and ae) are adjacent,
the last two can be ignored because ab and bd are adjacent. Again, since the roles of c and
e are equal, we assume without loss of generality that ae and ce has a common neighbor e f .
Since n ≥ 4, ce must have another neighbor which is different from e f , which can be either
cg or eg for some vertex g of G.

* If it is cg then ag must be a vertex, otherwise cg and ac must be adjacent, which creates
a C6 whose vertex-set is {ac, ab, ae, e f , ce, cg}, a contradiction. Since ce and cg are
adjacent, so are ae and ag, which contradicts D1,n,2 = TS2(G).

* If it is eg then ag must be a vertex, otherwise eg and ae must be adjacent, which creates
a C4 whose vertex-set is {ae, e f , ce, eg}, a contradiction. Since ce and eg are adjacent,
so are ag and ac, which contradicts D1,n,2 = TS2(G).

• Case 2: K1,3 is labelled {ab, ac, ad, ae}. As before, cd, ce, and de must be vertices in D1,n,2.
Without loss of generality, since the roles of c, d, e are equal, we may assume that only ae is
adjacent to another vertex of D1,n,2. As shown in the proof of Lemma 3(b), D1,n,2 must also
contain vertices cd, ce, de. Let P be the path between ae and cd. Since the roles of c and d are
equal, we can assume without loss of generality that cd is adjacent to a vertex c f in P. Observe
that if a f is not a vertex ac and c f are adjacent contradicting the choice of ae. So a f is a vertex
and since cd and c f are adjacent so are ad and a f , which contradicts D1,n,2 = TS2(G).

□

We remark that if we add a vertex g to G in Figure 1 joining it to all vertices except d the corre-
sponding TS2-graph is obtained by adding the edge between bd and dg to TS2(G). Note that this tree
is not in the class Dr,n,s.

In the next proposition we consider two arbitrary stars whose centers are connected by an edge.

Proposition 12. Dr,2,s (1 ≤ r ≤ s) is a TSk-graph if and only if s ≤ k − 1.

Proof. (⇐) It follows directly from Proposition 7.
(⇒) Suppose that Dr,2,s (r ≤ s) is obtained from P2 = p1 p2 by attaching r leaves u1, . . . , ur at p1 and

s leaves v1, . . . , vs at p2 for some s ≥ k. We show that this graph is not a TSk-graph for any
fixed k ≥ 2. Suppose to the contrary that there exists a graph G such that Dr,2,s ≃ TSk(G), i.e.,
there exists a bijective mapping f : V(Dr,2,s) → V(TSk(G)) such that uv ∈ E(Dr,2,s) if and only
if f (u) f (v) ∈ E(TSk(G)). Without loss of generality, let f (p2) = I = {a1, . . . , ak}, where I is
a size-k independent set of G. Since p2 has s + 1 neighbors, from the pigeonhole principle, it
follows that there must be some i ∈ {1, . . . , k} such that f (u) = I − ai + x and f (v) = I − ai + y,
where u, v ∈ N(p2). Observe that J = (I − ai − a j) + x + y < { f (p2), f (u), f (v)} must be a size-k
independent set of G, where j ∈ {1, . . . , k} − i and therefore there exists z ∈ V(Dr,2,s) − {p2, u, v}
such that f (z) = J. We consider the following cases:

– Neither u nor v is p1. In this case, we must have z < N(p2), otherwise it must be adjacent to
p2, but then f (z) = J and f (p2) = I must be adjacent in TSk(G), a contradiction. It follows
that z ∈ N(p1)− p2 and thus f (p1) must be in {I−ai+ x, I−ai+y, I−a j+ x, I−a j+y}. Since
neither u nor v is p1, the first two can be ignored. Now, if f (p1) = I − a j + x, the vertices
x and a j must be adjacent in G, which contradicts the fact that f (u) ∈ TSk(G). A similar
contradiction can be derived for the case f (p1) = I − a j + y. Thus, f (p1) cannot be defined.
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– u is p1. Again, z < N(p2). Thus, z ∈ N(p1) − p2, which implies that y and a j must be
adjacent in G. This contradicts f (v) ∈ TSk(G). Thus, f (z) cannot be defined.

In both cases, we showed that some contradiction must occur. Our proof is complete.
□

5. Conclusions

In this paper, we considered two token sliding problems for trees and forests. The two questions
studied seem remarkably complicated, even for this simple class of graphs. For the first question,
finding necessary and sufficient conditions on G for TSk(G) to be a forest, we could only get a com-
plete solution for k = 2, 3. For the second question, finding necessary and sufficient conditions for a
tree or forest to be a token sliding graph, we could get more general results. Nevertheless, as noted
in Section 4 several interesting important questions remain. We expect the join and decomposition
operations introduced there will be of use for similar questions for more general graphs. Finally, we
remark that all the acyclic TSk-graphs described in this paper can be obtained by successive H-joins
starting only with the simple base graphs described in Section 3. Is it true that every acyclic TSk-graph
can be obtained in this way?
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