
Ars Combinatoria, 159: 11–20
DOI:10.61091/ars159-02
http://www.combinatorialpress.com/ars
Received 15 March 2019, Accepted 28 May 2019, Published 30 June 2024

Article

Computing Edge Irregularity Strength of Star and Banana Trees Using
Algorithmic Approach

Muhammad Shahzad1, Muhammad Ahsan Asim2,*, Roslan Hasni3, and Ali Ahmad4

1 Faculty of Computing Sciences, Gulf College, Muscat, 133, Oman
2 Division of Computing, Analytics and Mathematics, School of Science and Engineering,

University of Missouri-Kansas City, MO 64110, USA
3 Special Interest Group on Modeling and Data Analytics (SIGMDA), Faculty of Ocean

Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia

4 Department of Information Technology and Security, College of Computer Sciences and
Information Technology, Jazan University, Jazan, 45142, Saudi Arabia

* Correspondence: maaym7@umkc.edu

Abstract: After the Chartrand definition of graph labeling, since 1988 lot of graph families have been
labeled through mathematical techniques. A basic approach in those labeling was to find a pattern
among the labels and then prove them using sequences and series formulae. In 2018 Asim applied
computer-based algorithms to overcome this limitation and label such families where mathematical
solutions was either not available or solution was not optimum. Asim et al. in 2018 introduced
the algorithmic solution in the area of edge irregular labeling for computing better upper-bound of
complete graph es(Kn) and tight upper-bound for complete m-ary tree es(T m,h) using computer-based
experiment. Later on more problems like complete bipartite and circulant graphs were solved using
the same technique. Algorithmic solutions opened new horizon for researchers to customize these
algorithms for other types of labeling and for more complex graphs. In this article to compute edge
irregular k-labeling of star S m,n and banana tree BT m,n, new algorithms are designed, and results are
obtained by executing them on the computers. To validate the results of computer-based experiment
with mathematical theorems, inductive reasoning is adopted. Tabulated results are analyzed using the
law of double inequality and is concluded that both families of trees observe the property of edge
irregularity strength and are tight for

⌈
|V |
2

⌉
-labeling.

Keywords: Edge irregular labeling, graph algorithm, star, banana trees, complete m-ary tree Tm,h

2010 Mathematics Subject Classification: O5C78

1. Introduction

A graph G = (V, E) is a connected, undirected, and simple graph with the vertex set V(G) and the
edge set E(G). The degree or valency of a vertex v in graph G is defined as the number of edges that
connect to v, and it is represented as deg(v). The minimum degree of a graph G is denoted by δ(G)
while the maximum degree is denoted by ∆(G). Similarly tree is also defined as an undirected graph
in which every two vertices are connected by exactly one path and to be more precise any acyclic

http://dx.doi.org/10.61091/ars159-02
http://www.combinatorialpress.com/ars

Shahzad et al. 12

connected graph is a tree. This article deals with vertex k-labeling of two types of trees namely star
S m,n and banana tree BT m,n by using the combinatorial properties of graphs that satisfy on trees as
well in the context of labeling.

Graph labeling is the process of assigning integers to the vertices or edges or both, of a graph
by satisfying certain condition(s). In 1988, Chartrand et al. [1] introduced the concept of edge k-
labeling, where edges in a graph are assigned labels with the condition that the weights of vertices
must be unique. In 2014, Ahmad et al. [2] introduced vertex k-labeling also known as edge irregular
k-labeling as an extension of Chartrand’s work. According to this definition, vertices are labeled in
a way that weights of all edges remain unique, i.e., for any distinct pair of edges e and e′ weights
wt∅(e) , wt∅(e′). While the weight for any edge is calculated by adding the labels of its adjacent
vertices wt∅ (e) = ∅ (x) + ∅ (xy) + ∅(y). The edge irregularity strength of a graph G, denoted as es(G),
represents the minimum value of k for which G can have an edge irregular k-labeling. Theorem 1
of [2], established the lower bound for the edge irregularity strength of any graph G. Meanwhile an
upper bound or tightness of es (G) for different graph families is proved in many papers [1, 3–9].

Theorem 1. [2] Let G = (V, E) be a simple graph with maximum degree ∆ = ∆(G). Then

es (G) ≥ max
{⌈
|E (G) + 1|

2

⌉
,∆(G)

}
(1)

A tree is a type of undirected, connected graph without any cycles or loops. Tree one of the
important non-linear discrete structure heavily used in computer applications [10]. Tree are classified
in so many ways, a common category is rooted tree where one vertex is designated as a root (at level-
0) and every edge is directed away from the root towards other vertices that are placed in successive
levels through a unique path. An m-ary tree is defined as a rooted tree where each internal vertex
has at most m children [11]. Rooted trees are important in computer science, as their hierarchical
structure is suitable in file-systems, efficient access to large data sets, data encoding and so many
other Algorithms. The prominent uses of trees include Huffman coding and Tries [12], which are
employed to construct efficient codes for data transmission and storage. Tree algorithms are used in
workflow management and path determination in networks.

Interdisciplinary research among discrete mathematics and computer science has evolved many ap-
plications by implementing graphs and tree algorithms such as data representation, network analysis
and optimization, searching and traversal, data organization and retrieval, machine learning, bioinfor-
matics, linguistics theory and cryptology. Algorithms solve many problems, whereas other mathemat-
ical solutions are very complex or impossible. In 2018, Asim et al. [13] used algorithmic approach
for computing a tight upper-bound for vertex k-labeling of complete graphs as es (Kn)=Elog2V in
comparison to previously known loose upper-bound as es (Kn)=Fn.The Fn of Fibonacci numbers be
defined by the recurrence relation Fn = Fn−1 + Fn−2 [13]. Ahmad et al. [11] worked on a computer-
based experiment for the vertex k-labeling of the m–ary tree Tm,h. They performed experiments on
complete binary and ternary tree and finally devised general algorithm for vertex k-labeling on com-
plete m–ary tree as es

(
Tm,h
)
=
[

v
2

]
for any height h. Asim et al. [14] computed the vertex k-labeling of

circulant graphs using algorithmic approach. They used decomposition on complete graphs, by delet-
ing factors or Hamiltonian cycles to extract circulant graphs as subgraphs. Recently, Ahmad et al. [7]
computed the edge irregularity strength of bipartite graphs and wheel-related graphs using an algo-
rithmic approach. Using the experimental results they provided an upper-bound for edge irregularity
strength of a complete bipartite graph Km,n.

2. Methodology

This section introduces empirical techniques employed to reach conclusions based on the obser-
vations made through extensive literature review, and mathematical properties of graph labeling are

Ars Combinatoria Volume 159, 11–20

Computing Edge Irregularity Strength of Star and Banana Trees 13

studied to formulate specific claims on edge irregular k-labeling in star graphs and banana trees. In
the research instrumentation phase inductive technique is adopted to shape the objects of study from
specific to general by comparing the computer-generated results with mathematical theorems. This
involved developing and implementing algorithms on a computer, as well as collecting and analyzing
empirical data for various instances of amalgamated star and banana trees. Invariants of the trees
for both problems are inserted as input of the algorithms systematically to plot the curve of results
to compare with lower-bounds. The primary objective is to ensure the correctness of algorithms to
validate the k-labeling using double inequality among upper and lower bounds.

Both algorithms are designed using iterative approach to compute the results efficiently. Algo-
rithms solved the problems repeatedly in a step-by-step manner which enabled systematic and efficient
computations. The algorithms are implemented on computer at large-scale experiment by variating
the values of m and n as different treatments of the experiment. From the perspective of computational
complexity, efficiencies of the algorithms are analyzed in terms of scalability, time complexity, space
complexity. All these dependencies like availability of the algorithms and computational cost that are
not present in case of mathematical proofs for labeling any graph or tree, it is practical to solve such
problems that are still open due to absence of labeling patterns and unavailability of formulae. [15–19]

3. Edge Irregular k−labeling of star Sm,n

Consider m homogenous disjoint stars of any order n, for n ≥ 3. The amalgamation of stars can
be obtained by joining the central vertex of each star with an additional vertex, denoted by S m,n. The
example of a homogenous amalgamated star graph S 12,4 is shown in Figure 1, where m represents the
degree of additional vertex and n represents the degree of a central vertex of each star. This problem
is an extension or generalization of Asim et al. [20] work where they mathematically proved that the
es(S m,n) for any value of m but the value of n ≤ 3. This article provides the algorithmic solution of
es(S m,n) for any value of m ≥ 2 and n ≥ 3.

Figure 1. Edge Irregular k-labeling of Homogeneous Amalgamated Star S12,4

Theorem 2. Let S m,n be a homogenous amalgamated star graph with m ≥ 2 and n ≥ 3, then

es(S m,n) ≥
⌈
|V |
2

⌉
.

Proof. The maximum degree of a homogenous amalgamated star graph S m,n may be m or n. From
Theorem 1, es(S m,n) ≥

⌈
(m∗n)+1

2

⌉
. For converse inequality, we prove the es(S m,n) and an algorithm is

designed which assigns the labels to the vertices by ensuring the condition that edge weights do not
repeat. Let |V | be the order of S m,n that is (m ∗ n) + 1 = |V |. The functionality of the algorithm is
explained below:

Ars Combinatoria Volume 159, 11–20

Shahzad et al. 14

This algorithm comprises on four steps to compute the labels of S m,n graph. The vertex with degree
m, known as the centroid vertex, is labeled as 1. Subsequently, the immediate vertices connected to
the centroid vertex, which can be considered first-level vertices, are assigned labels using a formula
based on the difference. This difference formula is calculated based on the values of m, n and |V |. The
labels of the first-level vertices are stored in an array, along with their corresponding edge weights.
In the same way, to assign the label to pendent vertices (second-level vertices), previously used edge
weights are excluded to maintain uniqueness. This provides es(S m,n) ≤

⌈
m∗n+1

2

⌉
. □

Algorithm 1 Star-Labeling (m, n)
1: Input: Two positive integers n and m, where m, n ≥ 2
2: Output: Labels of vertices {1, 2, . . . , k} stored in arrays L1 and L2.
3: V = m ∗ n + 1
4: Di f f =

⌊
⌈|V |/2⌉
m−1

⌋
5: L0 = 1
6: L1[1 − 3][1] = 0, 1, 2
7: for i = 2 to m do
8: L1[1][i] = L1[1][i − 1] + Di f f
9: L1[2][i] = ⌊L1[1][i]⌋

10: L1[3][i] = L1[2][i] + 1
11: end for
12: L1[3][m + 1] = NIL
13: h, j = 1, 2
14: for wt = 3 to V do
15: if (wt , L1[3][j]) then
16: L2[1][h] = wt
17: L2[2][h] = wt − L1[2][⌊(h + (n − 2))/(n − 1)⌋]
18: h = h + 1
19: else
20: j = j + 1
21: end if
22: end for

3.1. Computational Complexity

Computational complexity or precisely time complexity T(n) of an algorithm means quantification
of time taken by an algorithm to produce desired output from given input. Where T is time (dependent
factor) and n (independent factor) is amount of data to be handle. In our case m and n are two
invariants of the trees that defines the structure of star tree, how many vertices and how big and
difficult the problem can be. In the algorithm there are some atomic statements that always cost T(1)
but iterations in the algorithm actually determines the growth of function for T(m,n). The loop given
on line 5-9 cost T(m), similarly the loop given on line 12-21 cost T(V). Hence the total cost of the
algorithm can be represented using the expression m+V . The dominant factor in the time complexity
is V so on big O notation as the order of growth of function, it can be expressed as T (m,V) = O (V).

3.2. Description of the Algorithm

Algorithm follows iteration as design architecture and mainly rely on two simple loops. Two
2D-Arrays, L1 and L2 are used to store the labels and edge weights of level-1 and level-2 vertices
separately. Centroid vertex and one of the incident vertices to centroid vertex is labeled as 1 and
stored in the array as seed value. Then using the difference formula Di f f =

⌊
⌈|V |/2⌉
m−1

⌋
all other labels

Ars Combinatoria Volume 159, 11–20

Computing Edge Irregularity Strength of Star and Banana Trees 15

Input List Calculated Values
m n V Lower Bound ⌈(V

2)⌉ Algorithmic Resultk = es(S m,n)
3 3 10 5 5
3 10 31 16 16
3 100 301 151 151
3 1000 3001 1501 1501
4 3 13 7 7
4 10 401 201 201
4 1000 4001 2001 2001
5 3 16 8 8
5 10 51 26 26
5 100 501 251 251
5 1000 5001 2501 2501

10 3 31 16 16
10 10 101 51 51
10 100 1001 501 501
10 1000 10001 5001 5001

100 3 301 151 151
100 100 10001 5001 5001
100 1000 100001 50001 50001
1000 3 3001 1501 1501
1000 10 10001 5001 5001
1000 100 100001 50001 50001
1000 1000 1000001 500001 500001

Table 1. Comparison of Upper Bound and Lower Bound

are computed in first level. For labeling pendant vertices (the second level), scheme is reversely
applied as weights are given to the edges first and then labels are computed by subtracting the label
of parent from the edge-weight. For this purpose and an efficient expression is devised as written on
line 15. In this whole process it is asserted that the edge weights remain unique and for this purpose
if condition is given on line 13.

3.3. Algorithmic Results

Results of Algorithm-1 are shown in Table 1 as the upper bound, while the lower bound is mathe-
matically calculated using Theorem 1. Both columns reflect the same values which means the algo-
rithm is working perfectly and computing the correct labels. The fact that the mathematically derived
lower bounds and the results from the algorithm match each other shows that the algorithm is work-
ing correctly and producing accurate labels. This proves that the algorithm is reliable and can be
trusted to accurately compute the desired labels. This also proves that computation error is zero, as
the algorithm produces the correct labeling without any errors.

4. Edge Irregular k-Labeling of Banana Tree
(
BTm,n

)
Let G1,G2,G3, . . . ,Gm be a family of m homogenous disjoint stars with order n. Let v be a new

vertex and the tree obtained by joining v to one pendant vertex of each star is called a banana tree. In
2021, Ahmad [16] worked on even branches of banana trees and proved that even values of m banana
tree admit the edge irregular k−labeling, while he left two open problems as given below:

Problem 1. [21] Let G � BT (n1, n2, n3, . . . , nm) be a banana tree. For n1 = m2 = · · · = nm = n ≥ 3

Ars Combinatoria Volume 159, 11–20

Shahzad et al. 16

Input List Calculated Values
m n V Lower Bound ⌈(V

2)⌉ Algorithmic Result k = es(BT m,n)
3 3 10 5 5
3 4 13 7 7
3 10 31 16 16
3 100 301 151 151
3 1000 3001 1501 1501
5 3 16 8 8
5 4 21 11 11
5 5 26 13 13
5 10 51 26 26
5 100 501 251 251
5 1000 5001 2501 2501
10 3 31 16 16
10 6 61 31 31
10 10 101 51 51
10 100 1001 501 501
10 999 9991 4996 4996
10 1000 10001 5001 5001

100 3 301 151 151
100 10 1001 501 501
100 100 10001 5001 5001
100 1000 100001 50001 50001

1000 3 3001 1501 1501
1000 10 10001 5001 5001
1000 100 100001 50001 50001
1000 1000 1000001 500001 500001

Table 2. Comparison of Upper Bound and Lower Bound

and m ≥ 5 odd, the graph G admits an edge irregular
⌈

m(n+1)+1
2

⌉
− labeling.

Problem 2. [21] Let H � BT (n1, n2, n3, . . . , nm) be a tree. For n1 = m2 = · · · = nm = n ≥ 3 and
m ≥ 3 odd, the graph H admits an edge irregular

⌈
m(n+1)+2

2

⌉
− labeling.

A comprehensively designed algorithm, using an iterative approach, has been implemented to
cover the labeling of all classes of banana trees. An iterative approach helps in solving complex
problems in a step-by-step manner. The algorithm is implemented on a computer, and a large-scale
experiment is conducted for different values of m and . The results of the algorithms are shown in
Table 2. Let BT m,n be a symmetry banana tree having m stars and n is the order of each star. Let |V |
be the order of BT m,n. The value of m and the value of n should be greater than 2. Note that m is the
number of vertices attached to the root and (n−2) is the number of leaves of each star. The banana
tree BT 4,7 is represented in Figure 2 as an example.

The banana tree BT 4,7 comprises 4 stars, each with an order of 7, denoted as m = 4 and n = 7. The
total number of vertices (V) is determined by calculating V = m × n + 1, resulting in V = 29. To
find the value of K, the ceiling function

⌈
V
2

⌉
is applied, yielding

⌈
29
2

⌉
= 15. Therefore, K = 15. Next,

the distance formula is calculated as = K
m , equivalent to 15

4 = = 3.75. Let’s begin by assigning label
1 to the root vertex, and then proceed to assign labels to the vertices in the first level. The label 1 is
assigned to the leftmost vertex. Then, the difference is added twice to the neighboring vertex, resulting
in 7.5. However, only the integer value, 7, is considered while ignoring the decimal point. The label

Ars Combinatoria Volume 159, 11–20

Computing Edge Irregularity Strength of Star and Banana Trees 17

Figure 2. Edge Irregular k -labeling of Banana Tree BT4,7

of the third vertex is indeed obtained by adding the difference to the previous value, resulting in 7.5
+ 3.75 = 11.25, and it assigns the label as 11. Similarly, the label of the fourth vertex is calculated as
11.25 + 3.75 = 15, and it it assigns the label as 15.

Once all vertices have received labels, the edge weight is calculated by summing the labels of the
connected vertices. These edges are stored in a dataset to prevent repetition. Moving to the next level
of vertices, the leftmost vertex is assigned the label 2, while the remaining vertices inherit the label of
their parent vertex. Starting from the leftmost vertex, the labels progress as 2, 7, 11, and 15 from left
to right. The edge weight for all vertices in level 2 is calculated following the same process.

In the last level of vertices, starting from the leftmost side, the minimum possible labels are deter-
mined by calculating the difference from the parent vertex label to itself, ensuring the establishment
of unique edge weights between them. The dataset stores all the unique edge weights, which are cal-
culated from 2 to V+1, equivalent to 2 to 30 while ensuring no repetition of edge weights between any
two vertices. This process continues as it moves to the next star, progressing towards the rightmost
side until the last star is reached.

4.1. Computational Complexity

The computational complexity of an algorithm is denoted by T (n), where T represents the time
(dependent factor), and n is the input size (independent factor). In the ”Banana Tree” algorithm,
denoted as BT(m,n), m represents the number of stars, and n is the order of each star in the tree. The
algorithm includes some atomic statements that always incur a constant cost of T (1). However, the
growth of the function for T (n) is determined by the iterations in the algorithm. The iterations involve
two ’for loops,’ from line 5 to 11 and from line 14 to 27. The first iteration’s cost is m, and the second
iteration’s cost is V − 3, respectively. Thus, the total cost of the algorithm can be represented by the
expression m + V − 3. The dominant factor in the time complexity is V , so in Big O notation, it can
be expressed as T (m,V) = O(V).

4.2. Description of the Algorithm

Algorithm follows iteration as design architecture and mainly rely on two simple loops. Two
2D-Arrays, L1 and L2 are used to store the labels and edge weights of level-1 and level-2 vertices
separately. Root vertex and one of the left most incident vertices from the root vertex is labeled as 1
and stored in the array as seed value. Then using the difference formula Di f f = ⌈|V|⌉

2 all other labels
are computed in first level. For the second level, the labels are computed similarly to the last level,
except for the first vertex from the left side. The first vertex from the left side of the second level will
receive a value obtained by adding 1 to the label of the corresponding vertex in the previous level.
For labeling pendant vertices (the third level), scheme is reversely applied as weights are given to the
edges first and then labels are computed by subtracting the label of parent from the edge-weight. For
this purpose and an efficient expression is devised as written on line 17. In this whole process it is
asserted that the edge weights remain unique and for this purpose ‘if ’condition is given on line 15.

Ars Combinatoria Volume 159, 11–20

Shahzad et al. 18

Algorithm 2 Banana-Labeling (m, n)
1: Input: Two positive integers n and m, with m, n ≥ 2
2: Output: Labels of vertices {1, 2, . . . , k} stored in arrays L1 and L2.
3: V ← m ∗ n + 1
4: Diff←

⌈
|V |
2

⌉
5: L0← 1
6: L1[1 . . . 5][1]← Diff, 1, 2, 2, 3
7: for i = 2 to m do
8: L1[1][i]← L1[1][i − 1] + Diff
9: L1[2][i]← ⌊L1[1][i]⌋

10: L1[3][i]← L1[2][i] + 1
11: L1[4][i]← L1[2][i] + 1
12: L1[5][i]← L1[2][i] + L1[2][i]
13: end for
14: L1[3][m + 1] = NIL
15: j, h, q← 2, 1, 2
16: for wt = 4 to V − 1 do
17: if (wt , L1[4][j] and wt , L1[5][q]) then
18: L2[1][h]← wt
19: L2[2][h]← wt − L1[3]

[⌊
h+(n−3)

(n−2)

⌋]
20: h = h + 1
21: else
22: if wt , L1[4][j] then
23: j = j + 1
24: else
25: q = q + 1
26: end if
27: end if
28: end for

Ars Combinatoria Volume 159, 11–20

Computing Edge Irregularity Strength of Star and Banana Trees 19

4.3. Algorithmic Results

Table 2 presents the results of Algorithm-2, representing the upper bound, while Theorem 1 is
applied to mathematically calculate the lower bound. Both columns show the same values, indicating
that the algorithm is working perfectly and has computed the correct labels. The fact that the mathe-
matically derived lower bounds and the results from the algorithm match each other demonstrates the
algorithm’s accuracy and correctness. This proves the reliability of the algorithm, as it can be trusted
to accurately compute the desired labels. Furthermore, it is worth noting that there are no errors while
computing the labels, which reinforces the algorithm’s precision. The consistent production of correct
labeling without any errors adds to the confidence in the algorithm’s accuracy and reliability.

5. Conclusion

Through the implementation of iterative algorithms and the utilization of research methodolo-
gies, the accuracy and correctness of the labeling results have been established. The comparison of
computer-generated results with the established mathematical known results, along with the validation
of lower bounds, further confirms the effectiveness of the algorithmic approach in computing edge ir-
regular K-labeling. To justify the correctness of the algorithmic approach, results are implemented on
the computer and shown as tabular facts in Table 1 for es(S m,n) and in Table 2 for es(BT m,n). These
tables depict that both trees are tight for edge irregular

⌈
|V |
2

⌉
-labeling. This statement can be written

mathematically by combining the results of the experiment and Theorem 1 in the form of double in-
equality. For amalgamated star graph S m,n, we have

⌈
|V |
2

⌉
≤ es(S m,n) ≤

⌈
|V |
2

⌉
and similarly for banana

tree BT m,n, we have
⌈
|V |
2

⌉
≤ es(BT m,n) ≤

⌈
|V |
2

⌉
. In the future, these algorithms can be customized for

other types of trees that maybe more complex, irregular in shapes, temporal in nature to use in them
in the applications like decision trees and knowledge trees.

References

1. Chartrand, G., Jacobson, M. S., Lehel, J., Oellermann, O. R., Ruiz, S., et al., 1988. Irregular
networks. Congr. Numer., 64, pp.187–192.

2. Ahmad, A., Al-Mushayt, O. and Baca, M., 2014 . On edge irregularity strength of graphs. Applied
Mathematics and Computation, p.243, pp.607–610.

3. Hasni, R., Tarawneh, I., Siddiqui, M. K., Raheem, A. and Asim, M. A., 2021. Edge irregular
k-labeling for disjoint union of cycles and generalized prisms. Malaysian Journal Mathematical
Science, 15(1), pp.77–88.

4. Tarawneh, I., Hasni, R., Ahmad, A.and Asim, M. A., 2021. On the edge irregularity strength for
some classes of plane graphs. AIMS Mathematics, 6(3), pp.2724–2731.

5. Tarawneh, I., Hasni, R., Siddiqui, M. K.and Asim, M. A., 2019. On the edge irregularity strength
of disjoint union of graphs. Ars Combinatoria, 143, pp.239–249.

6. Tarawneh, I., Hasni, R.and Asim, M. A., 2018. On the edge irregularity strength of disjoint union
of star graph and subdivision of star graph. Ars Combinatoria, 141, pp.93–100.

7. Ahmad, A., Asim, M. A., Assiri, B.and Fenovcikova, A. S., 2020. Computing the edge irregularity
strength of bipartite graphs and wheel related graphs. Fundamenta Informaticae, 173(1), pp.1–13.

8. Jendrol, S., Miskuf, J.and Sotak, R., 2010. Total edge irregularity strength of complete graphs and
complete bipartite graphs. Discrete Mathematics, 310(3), pp.400–407.

9. Ashraf, F., Baca, M., Kimakova, Z.and Semanicova-Fenovcıkova, A., 2016. On vertex and edge
H-irregularity strengths of graphs. Discrete Mathematics Algorithm and Applications, 8(4), Arti-
cle No. 1650070.

Ars Combinatoria Volume 159, 11–20

Shahzad et al. 20

10. Rosen, K. H., 2012. Discrete Mathematics and Its Applications (7th ed.). McGraw-Hill Compa-
nies, Inc.

11. Ahmad, A., Asim, M. A., Baca, M.and Hasni, R., 2018. Computing edge irregularity strength of
complete m-ary trees using algorithmic approach. U.P.B. Sci. Bull., Series A, 80(3), pp.145–152.

12. Sedgewick, R.and Flajolet, P., 2013. An Introduction to the Analysis of Algorithms (2nd ed.).
Addison-Wesley Professional.

13. Asim, M. A., Ahmad, A.and Hasni, R., 2018. Iterative algorithm for computing irregularity
strength of complete graph. Ars Combinatoria, 138, pp.17–24.

14. Asim, M. A., Hasni, R., Ahmad, A., Assiri, B.and Fenovcikova, A. S., 2021. Irregularity strength
of circulant graphs using algorithmic approach. IEEE Access, 9, pp.54401–54406.

15. Wu, Q., 2019. MOOC learning behavior analysis and teaching intelligent decision support method
based on improved decision tree C4.5 algorithm. International Journal of Emerging Technologies
in Learning (iJET), 14(12), p.29.

16. Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B.and Wesslen, A., 2000. Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers.

17. Al-Raeei, M.and El-Daher, M. S., 2020. An algorithm for fractional Schrödinger equation in case
of Morse potential. AIP Advances, 10(3), p.035305.

18. Xu, Z. K., Liu, G., Pan, Y., Qi, K., Sun, K.and Meng, Z. Y., 2019. Revealing fermionic quantum
criticality from new Monte Carlo techniques. Journal of Physics: Condensed Matter, 31(46),
pp.463001–463001.

19. Hu, H., Khatri, K.and Zaia, J., 2016. Algorithms and design strategies towards automated glyco-
proteomics analysis. Mass Spectrometry Reviews, 36(4), pp.475–498.

20. Asim, M. A., Ahmad, A.and Hasni, R., 2019. Edge irregular k-labeling for several classes of trees.
Utilitas Math, 111, pp.75–83.

21. Ahmad, A., 2021. Computing an edge irregular k-labeling of star related trees. Ars Combinatoria,
155(1), pp.169–179.

© 2024 the Author(s), licensee Combinatorial Press.
This is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Ars Combinatoria Volume 159, 11–20

http://creativecommons.org/licenses/by/4.0

	Introduction
	Methodology
	Edge Irregular bold0mu mumu kkkkkkbold0mu mumu ------labeling of star bold0mu mumu SSSSSSbold0mu mumu mmmmmm,bold0mu mumu nnnnnn
	Computational Complexity
	Description of the Algorithm
	Algorithmic Results

	Edge Irregular k-Labeling of Banana Tree (bold0mu mumu BTBTBTBTBTBTbold0mu mumu mmmmmm,bold0mu mumu nnnnnn)
	Computational Complexity
	Description of the Algorithm
	Algorithmic Results

	Conclusion

