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Abstract: Coded caching technology can better alleviate network traffic congestion. Since many of
the centralized coded caching schemes now in use have high subpacketization, which makes scheme
implementation more challenging, coded caching schemes with low subpacketization offer a wider
range of practical applications. It has been demonstrated that the coded caching scheme can be
achieved by creating a combinatorial structure named placement delivery array (PDA). In this work,
we employ vector space over a finite field to obtain a class of PDA, calculate its parameters, and
consequently achieve a coded caching scheme with low subpacketization. Subsequently, we acquire a
new MN scheme and compare it with the new scheme developed in this study. The subpacketization
F of new scheme have significant advantages. Lastly, the number of users K, cache fraction M

N , and
subpacketization F have advantages to some extent at the expense of partial transmission rate R when
compared to the coded caching scheme in other articles.
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1. Introduction

As mobile networks continue to develop, the rapid growth in users and their rising need for video
content has a compounding effect on data traffic during peak hours [1], which causes network con-
gestion. Simultaneously, caching serves as an effective tool to alleviate traffic congestion. Caching
technology consists of two phases: placement and delivery [2]. During the placement phase, users
cache a part of contents from the server. In the delivery phase, upon receiving all user’s requests,
the server transmits signals enabling users to retrieve requested files using these signals along with
cached contents.

Previous research concentrated on either content placement or delivery design. In [2], Maddah-Ali
and Niesen first proposed the need for the joint design of placement and delivery phases in a caching
system. Compared to conventional uncoded caching schemes, significant gains can be obtained by
coding in the delivery phase. There are several recent works on coded caching schemes [3–10].

Yan et al. [11] proposed a new structure to characterize the caching system, i.e., Placement Deliv-
ery Array(PDA). Based on a PDA of size F × K, the caching scheme can support K users by dividing
each file into F equal packets. This work uses PDA structures to identify coded caching schemes.
Yan et al. [12] proved PDA is equivalent to the set of color classes of an S -strong-edge-coloring of a
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bipartite graph and through ideas of coloring construct two types of PDA. A caching scheme based on
grouping users, through sacrificing part of the transmission rate, attained lower subpacketization than
the MN scheme [13]. In [14], Shang-guan, Zhang, and Ge discerned an important connection between
PDAs and 3-uniform, 3-partite hypergraphs with the (6, 3)-free property as well as constructed PDAs
for which F increases subexponentially with K. In [3], constructing two new coded caching schemes,
using the bipartite graph framework and utilizing some basic ideas from the projective geometries
over finite fields. It is worth noting that all current deterministic centralized coding caching schemes
can be represented as PDAs.

1.1. Contributions

In this paper, we construct a PDA via vector space over finite field, then we obtain a new coded
caching scheme with low subpacketization. Through asymptotic analysis, we find that the subpacke-
tization in our new scheme increases sub-exponentially with the growth in the number of users. Via
numerical comparisons, it is evident that our new scheme has advantages on the number of users K
and subpacketization F.

1.2. Notations

• Calligraphic capital letters are used to represent sets, such asA.
• For a positive integer a, the set {0, 1, . . . , a − 1} is denoted as [0, a).
• Binomial coefficients are denoted by

(
n
k

)
where

(
n
k

)
= n!

k!(n−k)! , and
(

n
k

)
= 0 for n < k.

2. System Model

2.1. System Model

Let us consider a caching system as illustrated in figure 1. The caching system consisting of one
server containing N filesW = {Wi : i ∈ [0,N)} and K users K=[0,K). The server is connected to the
users through a shared error-free link. The files inW are of equal size, we assume each file is of unit
size. Additionally, each user has a cache of size M units.

An F-(K,M,N) coded caching scheme operates in two phases [2]:
1) Placement Phase: A file is subdivided into F equal packets (we will often refer to F as the

subpacketization), i.e., Wi = {Wi, j : j ∈ [0, F)}, and denote F=[0, F). Each packet is of size 1/F.
Each user is accessible to the files setW. Each packet is placed in different user caches determinately.
Denote Zk to represent the cache contents of user k.

2) Delivery Phase: Each user independently requests a file from W at random, the request is
denoted by d = (d0, d1, . . . , dK−1), i.e., user k requests file Wdk , where k ∈ K , dk ∈ [0,N). Once the
server receives the request d, it broadcasts a signal to users. Each user can attain its requested file
from the signal received in the delivery phase with the help of the contents within its cache.

Figure 1. Caching system [2]
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2.2. Placement Delivery Arrays

In this subsection, we quickly review PDAs and see the correspondence between PDA and coded
caching scheme.

Definition 1. [11] For positive integers K, F,Z and S , an F×K array P = (p j,k), j ∈ [0, F), k ∈ [0,K),
composed of a specific symbol “ ∗ ” and S nonnegative integers, namely 0, 1, . . . , S − 1, is called a
(K, F,Z, S ) placement delivery array (PDA) if it satisfies the following conditions:

C1. The symbol “ ∗ ” appers Z times in each column;
C2. Each integer occurs at least once in the array;
C3. For any two distinct entries p j1,k1 and p j2,k2 , p j1,k1 = p j2,k2 = s is an integer only if

a. j1 , j2, k1 , k2, i.e., they lie in distinct rows and distinct columns;
b. p j1,k2 = p j2,k1 = ∗, i.e., the corresponding 2×2 sub-array formed by rows j1, j2 and columns

k1, k2 must be of the following form (
s ∗
∗ s

)
or

(
∗ s
s ∗

)
.

Placement Phase: After the server separates each file, each user has access to the set of filesW,
and the packets cached by user k ∈ K are recorded as

Zk = {Wi, j|p j,k = ∗, i ∈ [0,N)},

clearly, each user’s cache of size M = Z · 1
F · N.

Delivery Phase: When the server receives the request d, at the moment s ∈ S , the server sends the
following signal ⊕

p j,k=s, j∈F ,k∈K

Wdk , j,

in a (K, F,Z, S )-PDA P=(p j,k), j ∈ [0, F), k ∈ [0,K), each column represents a user, if p j,k = ∗, i.e.,
user k has cached the j-th packet of all the files. For user k, if p j,k = s, then user k does not cache
the j-th packet of Wdk , but in the moment s, the signal sent by server are all in the user’s cache except
Wdk , j, so the user k can get the requested packet.

Example 1. Given a (3,3,1,3) PDA corresponding to a (3,1,3) coded caching scheme.

P =


0 2 ∗

1 ∗ 2
∗ 1 0

 .
In the placement phase: We have W0 = {W0,0,W0,1,W0,2}, W1 = {W1,0,W1,1,W1,2}, W2 =

{W2,0,W2,1,W2,2}, and Z0 = {W0,2,W1,2,W2,2}, Z1 = {W0,1,W1,1,W2,1}, Z2 = {W0,0,W1,0,W2,0}.
In the delivery phase: Assume that the request vector is d = (0, 1, 2), and the server sends the

following coded signals: W0,0
⊕

W2,2,W0,1
⊕

W1,2,W1,0
⊕

W2,1. User 0 needs file W0 and solves
W0,0 and W0,1 through W0,0

⊕
W2,2 and W0,1

⊕
W1,2. User 1 needs file W1 and solves W1,2 and W1,0

through W0,1
⊕

W1,2 and W1,0
⊕

W2,1. User 2 requires file W2 and solves W2,2 and W2,1 through
W0,0

⊕
W2,2 and W1,0

⊕
W2,1.

Lemma 1. [11] In an F-(K,M,N) coded caching scheme, by a (K, F,Z, S )-PDA, using Algorithm 1,
with the cache fraction M

N =
Z
F and transmission rate R= S

F .
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Algorithm 1 Coded Caching scheme based on PDA on [2]
1: procedure PLACEMENT(P,W)
2: Split each file Wi ∈ W into F packets: Wi = {Wi, j : j ∈ [0, F)}
3: for k ∈ [0,K) do
4: Zk ← {Wi, j|p j,k = ∗, i ∈ [0,N)}
5: end for
6: end procedure
7: procedure DELIVERY(P,W,d)
8: for s = 0, 1, . . . , S − 1 do
9: Server sends

⊕
p j,k=s, j∈F ,k∈K Wdk , j

10: end for
11: end procedure

3. Construction Based on Vector Spaces over Finite Fields

3.1. Review of the Vector Spaces [15]

Let Fq be the finite field with q elements, where q is a prime power, and n is a positive integer, we
use

Fn
q = {(x1, x2, . . . , xn)|xi ∈ Fq, i = 1, 2, . . . , n}

to denote the n-dim row vector space over Fq formed by the set of all n-dim row vectors. Clearly, Fn
q

has altogether qn vectors.
Assume P be an m-dimensional vector subspace of Fn

q, we use the same letter P to denote a matrix
representation of the vector subspace P, i.e., P is an m × n matrix of rank m whose rows form a basis
of P.

Let 0 < m ≤ n, and q is a power of a prime, N(m, n) be the number of m-dim vector subspaces in

Fn
q. It is known that N(m, n) is equal to the Gaussian coefficient

[
n
m

]
q

,

[
n
m

]
q

=

n∏
i=n−m+1

(
qi − 1

)
m∏

i=1
(qi − 1)

,

by convention
[

n
0

]
q

= 1 for all integer n.

The following known results are used to serve our construction.

Lemma 2. Let 0 ≤ k ≤ m ≤ n and N(k,m, n) be the number of k-dim vector subspaces contained in
a given m-dim vector subspaces of Fn

q, then

N(k,m, n) = N(k,m) =
[

m
k

]
q

.

Lemma 3. Let 0 ≤ k ≤ m ≤ n. Then the number N′(k,m, n) of m-dim vector subspaces containing a

given k-dim vector subspace of Fn
q is equal to

[
n − k
m − k

]
q

.

Lemma 4. Consider a m-dim subspaces of Fn
q. Let 1 ≤ m < n, then[

n
m

]
q

=

[
n

n − m

]
q

.
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3.2. Construction of the Coded Caching Scheme

Construct a type of PDA based on the knowledge of vector space, where the set of the v-dim
subspace of the Fn

q is V and the set of the (v + h)-dim subspace of the Fn
q is U. Let V = K and U = F ,

then an F × K array P=(pU,V),U ∈ U,V ∈ V is obtained according to the following rules:

pU,V =

H H
⊕

V = U,

∗ else.

Remark 1. Each row does not have the same non-∗ element in array P. On the one hand, the non-∗

elements in each row are h-dim subspace H and have the quantity
[

v + h
h

]
q

. On the other hand,

given an (v + h)-dim subspace U, if the v-dim subspace V is contained in U, then there is element H,

and the number of V is
[

v + h
v

]
q

, i.e.,
[

v + h
h

]
q

=

[
v + h

v

]
q

. Clearly, Each column does not have

the same non-∗ element in array P.

Example 2. Consider the 3-dim vector space over F2 and the 1-dim subspace of F3
2 which are listed

as follows,

V1 = span{(1, 0, 0)},V2 = span{(0, 1, 0)},V3 = span{(0, 0, 1)},V4 = span{(1, 1, 0)},

V5 = span{(1, 0, 1)},V6 = span{(0, 1, 1)},V7 = span{(1, 1, 1)}.

Let V = {V1,V2,V3,V4,V5,V6,V7}. Consider the 2-dim subspace of F3
2 which are listed as follows,

U1 = span{(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0)},U2 = span{(1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 0, 0)},

U3 = span{(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)},U4 = span{(0, 1, 0), (0, 0, 1), (0, 1, 1), (0, 0, 0)},

U5 = span{(0, 1, 0), (1, 0, 1), (1, 1, 1), (0, 0, 0)},U6 = span{(0, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 0)},

U7 = span{(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)}.

Let U = {U1,U2,U3,U4,U5,U6,U7}. Use the elements in U as row index and the elements in V as
column index, then the elements in the array are represented as 1-dim subspace. By construction, we
can attain the following 7 × 7 array, actually, Hi = Vi, i ∈ {1, 2, 3, 4, 5, 6, 7}. It is easily apparent that
this refers to (7, 7, 4, 7)-PDA.

U
V

V1 V2 V3 V4 V5 V6 V7

U1 H2 H4 ∗ H1 ∗ ∗ ∗

U2 H3 ∗ H5 ∗ H1 ∗ ∗

U3 H6 ∗ ∗ ∗ ∗ H7 H1

U4 ∗ H3 H6 ∗ ∗ H2 ∗

U5 ∗ H5 ∗ ∗ H7 ∗ H2

U6 ∗ ∗ H4 H7 ∗ ∗ H3

U7 ∗ ∗ ∗ H5 H6 H4 ∗

Next, we will prove that the array constructed above satisfies the definition of PDA and give its
parameters.
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Lemma 5. The following relationships hold for the construction we have presented,

K = |V| =
[

n
v

]
q

,

F = |U| =
[

n
v + h

]
q

,

Z =
[

n
v + h

]
q

−

[
n − v

h

]
q

,

where Z is the number of elements “ ∗ ” in each column of the array P.

Proof. By using the known ideas presented in this section we can write,

K = |V| = N(v, n) =
[

n
v

]
q

,

F = |U| = N(v + h, n) =
[

n
v + h

]
q

.

Now, we will find the parameter Z. Consider an arbitrary V ∈ V. By lemma 3, we know that the

number of (v+h)-dim subspaces of Fn
q containing the fixed v-dim subspace V is

[
n − v

h

]
q

. Therefore,

we get

Z =
[

n
v + h

]
q

−

[
n − v

h

]
q

.

□

Lemma 6. There are
[

n
h

]
q

different non-∗ elements in array P.

Proof. If the h-dim subspace H of U appears in array P,
[

n − h
v

]
q

times will occur. In fact, the num-

ber of occurrences of a subspace H is denoted L: the number of (v + h)-dim subspaces U containing

h-dim subspaces, then L =
[

n − h
(v + h) − h

]
q

=

[
n − h

v

]
q

can be seen from the knowledge of vector

space, then

S =

[
v + h

v

]
q

[
n

v + h

]
q[

n − h
v

]
q

=

[
n
h

]
q

.

Let E be the set of h-dim subspaces, a bijection f is defined from E to [0, S ), where S =
[

n
h

]
q

.

Then we can get the array Γ = (aU,V)

aU,V =

 f (H) pU,V = H,

∗ else.

□

Lemma 7. In array Γ, if aUi1 ,V j1
= aUi2 ,V j2

=s ∈ S , Ui1 , Ui2 , V j1 , V j2 , then aUi1 ,V j2
= aUi2 ,V j1

=∗.
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Proof. If aUi1 ,V j1
= aUi2 ,V j2

=H, then V j1 ⊂ Ui1 ,V j2 ⊂ Ui2 and H
⊕

V j1 = Ui1 ,H
⊕

V j2 = Ui2 . Assume
that V j1 ⊂ Ui2 = H

⊕
V j2 , then H

⊕
V j1 = Ui1 ⊂ H

⊕
V j2 = Ui2 , so we have Ui1 = Ui2 , which is not

true by the select of Ui1 and Ui2 . Thus V j1 1 Ui2 . Similarly, V j2 1 Ui1 . This completes the proof. □

Theorem 1. For any positive integer n, v, h that satisfies v<n, h<n, v + h<n, there exists([ n
v

]
q

,

[
n

v + h

]
q

,

[
n

v + h

]
q

−

[
n − v

h

]
q

,

[
n
h

]
q

)
-PDA, note P. An

[
n

v + h

]
q

-
([ n

v

]
q

,M,N
)

coded

caching scheme can be implemented, where the cache fraction M
N and the transmission rate R are

as follows:

M
N
= 1 −

[
n − v

h

]
q[

n
v + h

]
q

,R =

[
n
h

]
q[

n
v + h

]
q

.

Proof. It can be seen from lemma 5, 6, and 7. □

4. Comparison

4.1. Asymptotic Analysis and Numerical Comparison of New Scheme With MN Scheme

For the coded caching scheme in Theorem 1, let t =
[

n
v

]
q

−

[
v + h

v

]
q

, We can get an MN coded

caching scheme, where the parameters are: K =
[

n
v

]
q

, M
N = 1 −

 n − v
h


q n

v + h


q

.

FMN =

( [
n
v

]
q[

n
v

]
q

−

[
v + h

v

]
q

)
, RMN =

[
v + h

v

]
q

1 +
[

n
v

]
q

−

[
v + h

v

]
q

.

We know that for the MN scheme, when M
N is a fixed constant, there are F = O(2K) and the rate

R = O(1). In our scheme, we keep the rate upper bounded by a constant, i.e., R = O(1), then our
scheme has subexponential subpacketization, i.e., F = qO((logK

q )2). The analysis proceeds as follows. In
the first place, we have

R =

h+v∏
i=h+1

(
qi − 1

)
n−h∏

i=n−v−h+1
(qi − 1)

≤ qv(2h−n+v+1),

we can assume v and 2h − n as constants, and we know,

qv(n−v) ≤ K =
[

n
v

]
q

≤ qv(n−v+1),

consider,

F
K
=

n−v∏
i=n−v−h+1

(
qi − 1

)
v+h∏

i=v+1
(qi − 1)

≤ qh(n−2v−h+1) ≤ q(n−v)(n−2v−h+1),
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then,
F ≤ Kq(n−v)(n−2v−h+1) = qlogK

q q(n−v)(n−2v−2h+1)q(n−v)h.

From qv(n−v) ≤ K, it follows that n − v ≤ 1
v logk

q, we have,

F ≤ qlogK
q q

n−2v−2h+1
v logK

q q
1

v2 (logK
q )2
,

therefore F = qO((logK
q )2).

The following analysis continues as:

F
FMN

=

[
n

v + h

]
q

( [
n
v

]
q[

n
v

]
q

−

[
v + h

v

]
q

)
v+h=n−1
=

[
n

n − 1

]
q

( [
n
v

]
q[

n
v

]
q

−

[
v + h

v

]
q

)

=
qn−1 + qn−2 + · · · + 1(

K
K−K qn−v−1

qn−1

) <
qn−1 + qn−2 + · · · + 1

α
K
α

where α = qn−1
qn−qn−v .

R
RMN

=

1 +
[

n
v

]
q

−

[
v + h

v

]
q[

n − h
v

]
q

v+h=n−1
=

1 + K − K qn−v−1
qn−1

qv + qv−1 + · · · + 1
≈ K

(
qn − qn−v

(qv + qv−1 + · · · + 1)(qn − 1)

)
.

We can see that when the new scheme in Theorem 1 and the MN scheme have the same number of
users and cache fraction, we can see that the subpacketization F of the new scheme is about at least
qn−1+qn−2···+1

α
K
α

times less than FMN , and the transmission rate R is about at most K
α(qv+qv−1+···+1) times that

of RMN , where α = qn−1
qn−qn−v .

Next, a numerical comparison of the new scheme and the MN scheme is shown in Table 1 (let
q = 2, (n, h, v) = (4, 1, 2), (5, 2, 2), (6, 3, 2), (6, 2, 3), (7, 4, 2), (7, 3, 3), (8, 2, 5)), Table 1 shows that the
subpacketization F in the coded caching scheme in Theorem 1 is much smaller than the subpack-
etization in the MN scheme at the expense of a portion of the transmission rate R, under the same
conditions of the number of users K and the cache fraction M

N .

Table 1. Comparison of the New Scheme with the MN Scheme

K M
N F F R R

Th MN Th MN Th MN Th MN
35 0.8000 15 6.7245 × 106 1 0.2414

155 0.7742 31 6.9284 × 1034 5 0.2893
651 0.7619 63 5.5647 × 10153 22.1429 0.3119
1395 0.8889 63 7.3757 × 10209 10.3333 0.1249
2667 0.7559 127 inf 93 0.3228

11811 0.8819 127 inf 93 0.1339
97155 0.9725 255 inf 42.3333 0.0282
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Here we compare the new scheme to the scheme in [12], as shown in Table 2, Table 2 indicates that
while surrendering a portion of the transmission rate R, the coded caching scheme presented in The-
orem 1 exhibits advantages to a certain extent with regard to the number of users K, subpacketization
F, and cache fraction M

N .

Table 2. Comparison of the New Scheme With the Scheme in [12]

scheme parameters K F M
N R

(n,h,v,q)Th (4,1,2,2) 35 15 0.8000 1.0000
(m,a,b,λ) [12] (9,2,3,2) 28 56 0.8750 0.1607

(n,h,v,q)Th (5,1,3,2) 155 31 0.9032 1.0000
(m,a,b,λ) [12] (9,4,3,3) 126 84 0.9524 0.1071

(n,h,v,q)Th (6,3,2,2) 651 63 0.7619 22.1429
(m,a,b,λ) [12] (12,4,3,2) 495 220 0.7818 3.0000

(n,h,v,q)Th (6,2,3,2) 1395 63 0.8889 10.3333
(m,a,b,λ) [12] (13,5,2,2) 1287 78 0.8718 3.6667

(n,h,v,q)Th (7,2,4,2) 11811 127 0.9449 21.0000
(m,a,b,λ) [12] (16,7,3,3) 11440 560 0.9375 3.2500

(n,h,v,q)Th (8,2,5,2) 97155 255 0.9725 42.3333
(m,a,b,λ) [12] (19,8,3,3) 75582 969 0.9422 12.0000

5. Conclusion

This study presents the construction of PDA in vector space over finite field, which yields a novel
coded caching scheme with low subpacketization. A new MN scheme is generated when number of
users K and the cache fraction M

N are equal. The new scheme has a significant advantage in terms of
the subpacketization F when compared to the new MN scheme based on theoretical and numerical
analyses. Upon doing a numerical comparison of the coded caching scheme presented in literature
[12], when a portion of transmission rate R, the number of users K, the subpacketization F, and the
cache fraction M

N all demonstrate certain advantages to some degree.
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