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Abstract: Let G = (V, E) be a graph with vertex set V and edge set E. An edge labeling f : E → Z2

induces a vertex labeling f + : V → Z2 defined by f +(v) ≡
∑

uv∈E
f (uv) (mod 2), for each vertex

v ∈ V . For i ∈ Z2, let v f (i) = |{v ∈ V: f +(v) = i}| and e f (i) = |{e ∈ E : f (e) = i}|. An edge
labeling f of a graph G is said to be edge-friendly if |e f (1) − e f (0)| ≤ 1. The set {v f (1) − v f (0) :
f is an edge-friendly labeling of G} is called the full edge-friendly index set of G. In this paper, we
shall determine the full edge-friendly index sets of one point union of cycles.
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1. Introduction

In this paper, all graphs are simple and connected. We refer to [1] for terms and notation that are
not defined in this paper.

Since graph labelings was first introduced by Rosa, various labeling concepts have been intro-
duced [2]. For example, cordial labeling, edge-friendly labeling, harmonious labeling, felicitous
labeling, odd harmonious labeling and even harmonious labeling, semi-magic labeling, etc. Most
graph labeling methods can be traced to the method introduced by Rosa [3] in 1967, or Graham and
Sloane [4] in 1980.

Let G = (V, E) be a graph with vertex set V (or V(G)) and edge set E (or E(G)). A labeling
f : E → Z2 induces a vertex labeling f + : V → Z2 defined by f +(v) ≡

∑
uv∈E

f (uv) (mod 2), for each

vertex v ∈ V . Here Z2 is the field of order 2.
For i ∈ Z2, let v f (i) = |{v ∈ V: f +(v) = i}| and e f (i) = |{e ∈ E : f (e) = i}|. The number v f (1)− v f (0)

is denoted by I f (G) and is called the edge-friendly index of f .
An edge labeled by i is called an i-edge (under f ). A vertex labeled by i is called an i-vertex (under

f ). In this paper, an edge labeling (or a (0, 1)-edge labeling) means an edge labeling whose codomain
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is Z2. An edge labeling f of a graph G is said to be edge-friendly if |e f (1) − e f (0)| ≤ 1.

Definition 1. The full edge-friendly index set of G, denoted by FEFI(G), is the set {I f (G) :f is an
edge-friendly labeling of G}.

The concept of full edge-friendly index set was introduced in [5]. Since v f (1) + v f (0) = |V |,

I f (G) = 2v f (1) − |V | = |V | − 2v f (0). (1)

So the edge-friendly index of f of G is determined by the value of v f (1).

Definition 2. Let f be an edge labeling of a graph G of order p and size q. We fix the sequence
of vertices V = {v1, v2, . . . , vp} and the sequence of edges E = {e1, e2, . . . , eq} of G. The vector
f (E) = ( f (e1), f (e2), . . . , f (eq)) ∈ Zq

2 is called an edge labeling vector of f , where Zn
2 denotes the

Cartesian product of n copies of Z2. Similarly,

f +(V) = ( f +(v1), f +(v2), . . . , f +(vp)) ∈ Zp
2

is called a vertex labeling vector of f .

For any (row) vector X ∈ Zn
2, XT denotes the transpose of X.

Let M be the incidence matrix of a graph G according to fixed sequences of vertices and edges.
Let f be an edge-labeling of G = (V, E). It is easy to see that

f +(V)T = M f (E)T ,

which is a column vector of length p over Z2.
For a vector X ∈ Zp

2 , the number of 1’s in X is denoted by wt(X), the Hamming weight of X.
Hence, if f is an edge-friendly labeling of a graph G, then wt( f +(V)) is v f (1). For convenience, we
will identify f with f (E)T . Hence v f (1) = wt( f +(V)) = wt((M f )T ).

Let Hi be a graph and vi ∈ V(Hi) be fixed, 1 ≤ i ≤ t. A one point union of Hi, 1 ≤ i ≤ t, is the
graph obtained from the disjoint union of Hi by merging all vi into a single vertex which is called the
merged vertex or core vertex. So there will be many different one point unions of Hi’s.

If Hi = Cni is a cycle of order ni ≥ 3, then all one point unions of Hi, 1 ≤ i ≤ t, are isomorphic. So

we denote the one point union of Cni , 1 ≤ i ≤ t, by
t⊎

k=1
Cnk for t ≥ 2. In this paper, we shall study the

full edge-friendly index set of the graph
t⊎

k=1
Cnk .

For 1 ≤ k ≤ t, let Cnk = vk,1vk,2 · · · vk,nk−1vk,nkvk,1. Let ek, j = vk, jvk, j+1 for 1 ≤ j ≤ nk, where
vk,nk+1 = vk,1. Let vk,1 ∈ V(Cnk) be the chosen vertex to be merged. We denote the core vertex of the

graph Gt =
t⊎

k=1
Cnk by c (or v0,0). Note that Gt is of order

(
t∑

k=1
nk

)
− t + 1 and of size

t∑
k=1

nk. Following

is the one point union of C3, C4 and C6, i.e., C3 ⊎C4 ⊎C6.
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In the rest of the paper, we will use the notation defined above.

2. Some Extrema of Edge-Friendly Indices

In this section, necessary and sufficient conditions that give the extrema values of v f (0) or v f (1)
are obtained. Following is Lemma 2.1 of [5, 6].

Lemma 1. Let f be any edge labeling of a graph G = (V, E), then v f (1) must be even.

Suppose there are s odd numbers among n1, . . . , nt, where 0 ≤ s ≤ t. Without loss of generality,
we may assume that n1, . . . , ns are odd and the others are even. Note that, s = 0 means that there is
no odd number; s = t means that there is no even number. Now

v f (1) + v f (0) = |V(Gt)| =
s∑

k=1

nk +

t∑
k=s+1

nk − t + 1 ≡ s − t + 1 (mod 2). (2)

It is obvious that |V(Gt)| ≥ v f (0) ≥ 0 for any edge labeling f of Gt. By Lemma 1 and the equation
above, we have

v f (0) ≡ s − t + 1 (mod 2). (3)

Hence v f (0) ≥ 1 if t − s is even for any edge labeling f of Gt. A natural question is that whether there
is an edge-friendly labeling of Gt attaining the lower bound and whether there is an edge-friendly
labeling of Gt attaining the upper bound.

Lemma 2. Suppose there are s odd numbers among n1, . . . , nt. There is an edge-friendly labeling f
of Gt such that

(1) v f (0) = 1 if and only if t − s is even;

(2) v f (0) = 0 if and only if t − s is odd.

Proof. The necessity of (1) and (2) come from Eq. (3).
Note that Gt is Eulerian. Let R be an Euler tour of Gt. We label the edge of Gt by 0 and 1

alternatively along R. Clearly the induced label of each vertex except the core is 1 and the label of the
core c is (t − s) mod 2. Hence we have the sufficiency of (1) and (2). □

Obtaining the maximum value of v f (0) is equivalent to obtaining the minimum value of v f (1). □

Remark 1. If there are r numbers among n1, . . . , nt such that the sum of these numbers is ⌊|E(Gt)|/2⌋,
then the sum of the remaining numbers is ⌈|E(Gt)|/2⌉. So, the statement ‘there are r numbers among
n1, . . . , nt such that the sum of these numbers is ⌊|E(Gt)|/2⌋’ is equivalent to the statement ‘there are r
numbers among n1, . . . , nt such that the sum of these numbers is ⌈|E(Gt)|/2⌉’.

Lemma 3. There is an edge-friendly labeling f of Gt such that v f (1) = 0 if and only if there are r
numbers among n1, . . . , nt such that the sum of these numbers is ⌊|E(Gt)|/2⌋.

Necessity. Consider the subgraph Ei induced by all i-edges of Gt under f , i = 0, 1. Since there is no
1-vertex, each cycle of Gt is entirely edge-labelled by 1’s or entirely edge-labelled by 0’s. Hence E1

is a one point union of some subcycles of Gt. Hence E0 is also a one point union of some subcycles
of Gt, namely E0 is the one point union of r subcycles. Since f is edge-friendly, |E(E0)| = ⌊|E(Gt)|/2⌋
or ⌈|E(Gt)|/2⌉. Thus we have the necessary condition by Remark 1.

[Sufficiency] Suppose there are r numbers among n1, . . . , nt such that the sum of such numbers is
⌊|E(Gt)|/2⌋. We label the edges of the corresponding cycles by 0 and label the other edges of Gt by 1.
Thus this labeling is an edge-friendly labeling and the labels of all vertices are 0’s. □
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3. Full Edge-Friendly Index Sets

The main results are given in this section. For a given one point union of cycles Gt =
t⊎

i=1
Cni , we fix

the sequences of vertices and edges with respect to the lexicographic order. Thus the incident matrix
of Gt is

M =



Z1 Z2 · · · Zt−1 Zt

B1 O · · · · · · O

O B2
. . .

... O
...
...
. . .

. . .
...

O O · · · Bt−1 O
O O · · · O Bt


,

where Bk =



1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0

0 0 1 . . . 0 0 0
...
...
. . .
. . .
. . .
...
...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1


(nk−1)×nk

, Zk =
(
1 0 · · · 0 1

)
1×nk

, and each O is a zero matrix

of certain size, 1 ≤ k ≤ t.
We define some notation and recall some known results first. For positive l, let 1l be the row

vector of length l whose entries are 1’s, and 0l be the row vector of length l whose entries are 0’s. Let
α2l = (1, 0, 1, 0, . . . , 1, 0) ∈ Z2l

2 and β2l = (0, 1, 0, 1 . . . , 0, 1) ∈ Z2l
2 . For convenience, we let 10, 00, α0

and β0 be the empty rows.

Let p = |V(Gt)| =
(

t∑
k=1

nk

)
− t + 1. From (2), we have p ≡ s − t + 1 (mod 2), where s is defined in

Section 2. So t − s is odd if and only if p is even. From now on, we shall use q =
t∑

k=1
nk = |E(Gt)|. For

each edge labeling f = (Y1,Y2, . . . ,Yt)T , where Yk ∈ Znk
2 , 1 ≤ k ≤ t, we have

M f =
(

t∑
k=1

ZkYT
k , B1YT

1 , . . . , BtYT
t

)T

.

From (1) we have

FEFI(Gt) = {2v f (1) − p : f is an edge-friendly labeling of Gt}

⊆ {4 j − p : 0 ≤ j ≤ ⌊p/2⌋}

For each possible value 2 j of the number of 1-vertices, we want to find an edge-friendly labeling f
such that v f (1) = 2 j.

We deal with some special cases first.

Theorem 1. Suppose all n1, . . . , nt are even.

1. Suppose there are r numbers among n1, . . . , nt such that the sum of these numbers is q/2, then

(1a) FEFI(Gt) = {4 j − p : 0 ≤ j ≤ p/2} if t is odd;

(1b) FEFI(Gt) = {4 j − p : 0 ≤ j ≤ (p − 1)/2} if t is even.

2. Suppose the sum of any combination of integers n1, . . . , nt is not equal to q/2.

(2a) FEFI(Gt) = {4 j − p : 1 ≤ j ≤ p/2} if t is odd;
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(2b) FEFI(Gt) = {4 j − p : 1 ≤ j ≤ (p − 1)/2} if t is even.

Proof. For each i and l, 1 ≤ i ≤ t and 1 ≤ l ≤ ni/2, let Yi,l = (1l, 0l, αni−2l) ∈ Zni
2 . Thus, BiYT

i,l =

(0l−1, 1, 0l−1, 1ni−2l)T and ZiYT
i,l = 1. Hence

wt(BiYT
i,l) = ni − 2l + 1. (4)

For 1 ≤ k ≤ t, let f = (Y1,n1/2, . . . ,Yk−1,nk−1/2,Yk,l,Yk+1,1, . . . ,Yt,1)T . Thus,
M f = (t mod 2, B1YT

1,n1/2
, . . . , BT

k−1Yk−1,nk−1/2, B
T
k Yk,l, BT

k+1Yk+1,1, . . . , BT
t Yt,1)T . By (4)

v f (1) = wt(M f ) = (t mod 2) +
k−1∑
i=1

1 + (nk − 2l + 1) +
t∑

i=k+1

(ni − 1) (5)

1. Without loss of generality, we assume
r∑

k=1
nk = q/2. Thus

t∑
k=r+1

nk = q/2. Since either r or t − r is at

most t/2. We may assume that r ≤ ⌊t/2⌋ and t − r ≥ ⌈t/2⌉.

(1a) Suppose t is odd.
Step 1: For a fixed k, 1 ≤ k ≤ t, let l be an integer such that 1 ≤ l ≤ nk/2.
Let f be defined above, then (5) becomes

v f (1) = wt(M f ) = 1 +
t∑

i=k+1

ni + 2k + nk − 2l − t = p −
k−1∑
i=1

ni − 2l + 2k.

For a fixed k, when l runs through from 1 to nk/2, the range of v f (1) is an increasing arithmetic

sequence with common difference 2 from p −
k∑

i=1
ni + 2k to p −

k−1∑
i=1

ni − 2 + 2k. Thus when k

runs through from 1 to t, the range of v f (1) is an increasing arithmetic sequence with common

difference 2 from p −
t∑

i=1
ni + 2t = t + 1 to p.

Step 2: Let R be the Euler tour starts from the core c and travels the cycles Cn1 , Cn2 , . . . ,
Cnt in order. Denote R = u1u2u3 · · · u q

2
u q

2+1u q
2+2 · · · uqu1, where u1 = c. In this case u q

2+1 = c.
There may have some ui’s equal to c. Let g = (1 q

2
, 0 q

2
)T , then vg(1) = 0.

Step 3: Now we swap the labels of uiui+1 and u q
2+2i−1u q

2+2i, 1 ≤ i ≤ ⌊q
2⌋, where the indices are

taken in modulo q. For each case, the number of 1-vertices increases by 2 if i = 1 or c is not
incident with neither uiui+1 nor u q

2+2i−1u q
2+2i; and may not change if c is incident with either

uiui+1 or u q
2+2i−1u q

2+2i for i , 1. The last case can occur at most 2r− 1 times. So the number of
1-vertices increases by 2 at least q

2 − 2r + 1 ≥ 2t − 2⌊t/2⌋+ 1 ≥ t + 1 times. Thus, the number
of 1-vertices runs through each even integers from 0 to t + 1 under the above swapping.
So we obtain all the possible values of the number of 1-vertices.

(1b) Suppose t is even.
Perform Step 1 as Case (1a). Now (5) becomes

v f (1) = wt(M f ) = 0 +
t∑

i=k+1

ni + 2k + nk − 2l − t = p −
k−1∑
i=1

ni − 2l + 2k − 1.

Similar to Case (1a), when k and l run through all possible values, v f (1) runs through p − 1,
p − 3, . . . , t.
Perform Steps 2 and 3 as Case (1a). We obtain that the number of 1-vertices runs through
each even integers from 0 to t.
So we obtain all the possible values of the number of 1-vertices.
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2. By Lemma 3, 1 ≤ v f (1) ≤ p for any edge-friendly labeling f . Without loss of generality, we

assume that n1 ≥ n2 ≥ · · · ≥ nt and
r∑

k=1
nk < q/2 <

t∑
k=r+1

nk. Here r ≤ ⌊t/2⌋.

(2a) Suppose t is odd. Do the same Step 1 as Case (1a) to obtain the edge labeling f . Thus, we

obtain that v f (1) runs through p, p − 2, . . . , p −
t∑

i=1
ni + 2t = t + 1.

Let R be an Euler tour as in Case (1a). In this case, u q
2+1 , c. Constructing the edge labeling

g as in Case (1a), we get that vg(1) = 2, since g+(u1) = g+(c) = 1.
Do the same Step 3 as in Case (1a). Here we obtain that the number of 1-vertices runs through
each even integers from 2 to t + 1.
So we obtain all the possible values of the number of 1-vertices.

(2b) Suppose t is even. By a similar procedure and argument, we obtain all possible values of the
number of 1-vertices.

Hence this completes the proof. □

Theorem 2. Suppose all n1, . . . , nt are odd.

1. Suppose there are r numbers among n1, . . . , nt such that the sum of these numbers is ⌊q/2⌋, then
FEFI(Gt) = {4 j − p : 0 ≤ j ≤ (p − 1)/2}.

2. Suppose the sum of any combination of integers n1, . . . , nt is not equal to ⌊q/2⌋, then
FEFI(Gt) = {4 j − p : 1 ≤ j ≤ (p − 1)/2}.

Proof. Recall that α2l = (1, 0, . . . , 1, 0) ∈ Z2l
2 and β2l = (0, 1, . . . , 0, 1) ∈ Z2l

2 ; 10, 00, α0 and β0 are the
empty rows (see the beginning of this section).

For a fixed i, 1 ≤ i ≤ ⌈t/2⌉, let l be an integer such that 1 ≤ l ≤ (ni − 1)/2. Let Yi,l =

(1l, 0l−1, βni+1−2l) ∈ Zni
2 , then BiYT

i,l = (0l−1, 1, 0l−1, 1ni−2l)T and ZiYT
i,l = 0. Hence wt(BiYT

i,l) = ni − 2l+ 1.
For a fixed i, ⌈t/2⌉ + 1 ≤ i ≤ t, let l be an integer such that 1 ≤ l ≤ (ni − 1)/2. Let Yi,l =

(0, 1l, 0l, αni−1−2l) ∈ Zni
2 , then BiYT

i,l = (1, 0l−1, 1, 0l−1, 1ni−1−2l)T and ZiYT
i,l = 0. Hence wt(BiYT

i,l) =
ni − 2l + 1.
Step 1: Let f = (Y1,(n1−1)/2, . . . ,Yk−1,(nk−1−1)/2,Yk,l,Yk+1,1, . . . ,Yt,1)T , where 1 ≤ k ≤ t and 1 ≤ l ≤
(nk − 1)/2. Clearly f is edge-friendly.

v f (1) = wt(M f ) =
k−1∑
i=1

2 + (nk − 2l + 1) +
t∑

i=k+1

(ni − 1)

= p −
k−1∑
i=1

ni − 2l + 3k − 2.

One may check that when k and l run through all possible values, v f (1) runs through p− 1, p− 3, . . . ,

p −
t∑

i=1
ni + 3t − 1 = 2t.

Step 2: For 1 ≤ i ≤ ⌈t/2⌉, we define Yi,(ni+1)/2 = (1(ni+1)/2, 0(ni−1)/2), then BiYT
i,(ni+1)/2 =

(0(ni−1)/2, 1, 0(ni−3)/2)T and ZiYT
i,(ni+1)/2 = 1. Hence wt(BiYT

i,(ni+1)/2) = 1.
For ⌈t/2⌉ + 1 ≤ i ≤ t, we define Yi,(ni+1)/2 = (1(ni−1)/2, 0(ni+1)/2). Here BiYT

i,(ni+1)/2 =

(0(ni−3)/2, 1, 0(ni−1)/2)T and ZiYT
i,(ni+1)/2 = 1. Hence wt(BiYT

i,(ni+1)/2) = 1.
For each k, 1 ≤ k ≤ t, let fk = (Y1,(n1+1)/2, . . . ,Yk,(nk+1)/2,Yk+1,(nk+1−1)/2, . . . ,Yt,(nt−1)/2)T . Note that,

ft = (Y1,(n1+1)/2, . . . ,Yt,(nt+1)/2)T . Clearly fk is edge-friendly. Suppose k is even. We have v fk(1) =
wt(M fk) = ({

∑k
i=1 1 mod 2} + k) + 2(t − k) = (0 + k) + 2(t − k) = 2t − k.

One may check that when k runs through all even numbers from 2 to t, v fk(1) runs through all even
numbers from 2t − 2 down to t.

Now we shall perform some steps similar to Steps 2 and 3 in the proof of Theorem 1 to obtain the
remaining possible values of the number of 1-vertices.
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1. Without loss of generality, we assume that
r∑

k=1
nk = ⌊q/2⌋. Here r ≤ ⌊t/2⌋.

Let R = u1u2u3 · · · u⌊q/2⌋u⌊q/2⌋+1u⌊q/2⌋+2 · · · uqu1 be the Euler tour starts from the core u1 = c and
travels the cycles Cn1 , Cn2 , . . . , Cnt in order. By convention uq+1 = u1.

Step 3: Define g = (1⌊q/2⌋, 0⌈q/2⌉)T . Now vg(1) = 0.

Step 4:
(1a) When q = 4m + 1, where m ≥ 2. Note that u2m+1 = c, 4m + 1 =

t∑
i=1

ni ≥ 3t and t is odd. Swap

the labels of uiui+1 and u2m+2i−1u2m+2i, 1 ≤ i ≤ m + 1. The number of 1-vertices increases by 2
at least (m + 1) − (r − 1) times, since the first swapping increases vg(1) by 2.
Next, swap the labels of um+1+ium+2+i and u2i−1u2i, 1 ≤ i ≤ m − 1. So the number of 1-vertices
increases by 2 at least m − 1 − r times.
By the same argument as Step 3 in the proof of Theorem 1, the number of 1-vertices increases
by 2 at least 2m + 1 − 2r ≥ (3t − 1)/2 + 1 − t = (t + 1)/2 times totally. Thus, the number of
1-vertices runs through each even integer from 0 to t + 1 under the above swapping.

(1b) When q = 4m + 3, where m ≥ 2 (in this case q cannot be 7). Note that u2m+2 = c, 4m + 3 =
t∑

i=1
ni ≥ 3t and t is odd.

Swap the labels of uiui+1 and u2m+2iu2m+2i+1, 1 ≤ i ≤ m + 1. Next, swap the labels of
um+1+ium+2+i and u2i−1u2i, 1 ≤ i ≤ m.
Totally, the number of 1-vertices increases by 2 at least (2m+1)−2r+1 ≥ (3t−3)/2+2− t =
(t + 1)/2 times. Thus, the number of 1-vertices runs through each even integer from 0 to t + 1
under the above swapping.

(1c) When q = 4m, where m ≥ 3 (in this case q cannot be 8). Note that u2m = c, 4m =
t∑

i=1
ni ≥ 3t

and t is even.
Swap the labels of uiui+1 and u2m+2i−1u2m+2i, 1 ≤ i ≤ m. Next, swap the labels of um+ium+i+1

and u2i−1u2i, 1 ≤ i ≤ m − 1.
Totally, the number of 1-vertices increases by 2 at least (2m − 1) − 2r + 1 ≥ 3t/2 − t = t/2
times. Thus, the number of 1-vertices runs through each even integer from 0 to t under the
above swapping.

(1d) When q = 4m + 2, where m ≥ 1. Note that u2m+1 = c, 4m + 2 =
t∑

i=1
ni ≥ 3t and t is even.

Swap the labels of uiui+1 and u2m+2iu2m+2i+1, 1 ≤ i ≤ m + 1. Next, swap the labels of
um+1+ium+i+2 and u2i−1u2i, 1 ≤ i ≤ m.
Totally, the number of 1-vertices increases by 2 at least (2m+1)−2r+1 ≥ 3t/2+1−t = t/2+1
times. Thus, the number of 1-vertices runs through each even integer from 0 to t + 2 under
the above swapping.

2. Without loss of generality, we assume that n1 ≥ n2 ≥ · · · ≥ nt and
r∑

k=1
nk < q/2 <

t∑
k=r+1

nk. Here

r ≤ ⌊t/2⌋. We do the same procedure as Case 1. The only difference is vg(1) = 2. Hence the
number of 1-vertices at least runs through each even integer from 2 to t under the above swapping.

This completes the proof. □

Example 1. Consider the graph C5 ⊎ C3 ⊎ C3 ⊎ C3 ⊎ C3. Here t = 5, p = 13, q = 17, m = 4 and
r = 2. Let R = u1u2 · · · u17u1 be an Euler tour of the graph, where u1 = u6 = u9 = u12 = u15 = c. For
1 ≤ i ≤ 17, let ei = uiui+1, where u18 = u1.
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The procedure of Steps 2 listed below:

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 v(1)
f1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 10
f2 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 8
f3 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 8
f4 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 6
f5 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 6

The procedure of swapping (Steps 3 and 4) listed below start from g = (18, 09).

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 v(1)
g 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 2
0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 4
0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 6
0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 6
0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 6
1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 8
1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 10
1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 10

Example 2. Consider the graph C3 ⊎ C3. Here t = 2, p = 5, q = 6, m = 1 and r = 1. Let
R = u1u2 · · · u6u1 be an Euler tour of the graph, where u1 = u4 = c. For 1 ≤ i ≤ 6, let ei = uiui+1,
where u7 = u1.

The procedure of Steps 3 and 4 listed below start from g = (13, 03).

e1 e2 e3 e4 e5 e6 v(1)
g 1 1 1 0 0 0 0

0 1 1 1 0 0 2
0 0 1 1 0 1 4
1 0 0 1 0 1 4

Lemma 4. Let G and H be two graphs with only one common vertex u. Suppose fG and fH be two
edge-friendly labelings of G and H, respectively. If ( f +G (u), f +H (u)) , (1, 1), then there is an edge-
friendly labeling h of G ⊎ H such that vh(1) = v fG (1) + v fH (1). If ( f +G (u), f +H (u)) = (1, 1), then there is
an edge-friendly labeling h of G ⊎ H such that vh(1) = v fG (1) + v fH (1) − 2.

Proof. Let h be the combined labeling of fG and fH. We obtain the lemma easily. □

Theorem 3. Let p and q be the order and the size of Gt, respectively.

1. Suppose there are r numbers among n1, . . . , nt such that the sum of these numbers is ⌊q/2⌋, then
FEFI(Gt) = {4 j − p : 0 ≤ j ≤ ⌊p/2⌋}.

2. Suppose there are no r numbers among n1, . . . , nt such that the sum of these numbers are ⌊q/2⌋,
then FEFI(Gt) = {4 j − p : 1 ≤ j ≤ ⌊p/2⌋}.

Proof. Without loss of generality, we assume that n1, . . . , ns are even and ns+1, . . . , nt are odd, where
0 ≤ s ≤ t. When s = 0 or s = t, we get the results using Theorem 1 and Theorem 2.

By Lemma 3, it suffices to find an edge-friendly labeling f of Gt such that v f (1) runs through all
even numbers in [2, p].

Let G =
s⊎

i=1
Cni and H =

t⊎
i=s+1

Cni . Let pG and pH be orders of G and H, respectively. Note that pH

is odd and p = pG + pH − 1.
By Theorem 1 there is an edge-friendly labeling fG of G such that v fG (1) at least runs through all

even numbers of [2, pG], and by Theorem 2 there is an edge-friendly labeling fH of H such that v fH (1)
at least runs through all even numbers of [2, pH − 1].

By Lemma 4, in the worst case, there is an edge-friendly labeling h of G ⊎ H such that vh(1) runs
through all even numbers of [4, pG + pH − 1 − 2] = [4, p − 2].
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Now we only need to find an edge-friendly labeling g of G⊎H such that vg(1) is p when p is even,
or p − 1 when p is odd, or else, vg(1) is 2 (see 1O and 2O below).

Let R = u1u2u3 · · · u⌊q/2⌋u⌊q/2⌋+1u⌊q/2⌋+2 · · · uqu1 be the Euler tour of Gt starts from the core u1 = c.
Note that q = p + t − 1 and deg(c) = 2t.

1O When q is even, p ≡ t − 1 (mod 2). Define g = (1, 0, 1, 0, . . . , 1, 0)T ∈ Zq
2, then g+(c) = t mod 2.

Hence vg(1) =

p if t is odd,

p − 1 if t is even,
=

p if p is even,

p − 1 if p is odd.

When q is odd, p ≡ t (mod 2). Define g = (1, 0, 1, 0, . . . , 1, 0, 1)T ∈ Zq
2, then g+(c) = t+1 mod 2.

Hence vg(1) =

p − 1 if t is odd,

p if t is even,
=

p − 1 if p is odd,

p if p is even.

2O Suppose u⌊q/2⌋+1 , c. Define g = (1⌊q/2⌋, 0⌈q/2⌉)T . Thus only g+(c) = g+(u⌊q/2⌋+1) = 1. Hence
vg(1) = 2.

Suppose u⌊q/2⌋+1 = c, then u2 , c and u⌊q/2⌋+2 , c. Define g = (0, 1⌊q/2⌋, 0⌈q/2⌉−1)T . Thus only
g+(u2) = g+(u⌊q/2⌋+2) = 1. Hence vg(1) = 2.

This completes the proof. □

We denote the graph Gt by C(t)
n when n1 = · · · = nt = n. When n = 3, C(t)

3 is called the Dutch
t-windmill graph. By Theorem 3, we have the following corollaries.

Corollary 1. Suppose n ≥ 3 and t ≥ 2. Now, the order of C(t)
n is p = nt − t + 1.

1. Suppose n is odd, then

FEFI(C(t)
n ) =

{4 j − p : 1 ≤ j ≤ (p − 1)/2} if t is odd;
{4 j − p : 0 ≤ j ≤ (p − 1)/2} if t is even.

2. Suppose n is even, then

FEFI(C(t)
n ) =

{4 j − p : 1 ≤ j ≤ p/2} if t is odd;
{4 j − p : 0 ≤ j ≤ (p − 1)/2} if t is even.

Corollary 2. For t ≥ 2,

FEFI(C(t)
3 ) =

{4 j − 2t − 1 : 1 ≤ j ≤ t} if t is odd;
{4 j − 2t − 1 : 0 ≤ j ≤ t} if t is even.
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