

Article

Full Edge-Friendly Index Sets of One Point Union of Cycles

Zhen-Bin Gao¹, Wai Chee Shiu^{2,*}, Sin-Min Lee³, and Gee-Choon Lau⁴

- ¹ College of General Education, Guangdong University of Science and Technology, Dongguan, 523000, P.R. China
- ² Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China.
- ³ 1786, Plan Tree Drive, Upland, CA 91784, USA
- ⁴ College of Computing, Informatics & Mathematics, Universiti Teknologi MARA (Segamat Campus), 85000 Malaysia
- * Correspondence: wcshiu@associate.hkbu.edu.hk

Abstract: Let G = (V, E) be a graph with vertex set V and edge set E. An edge labeling $f : E \to \mathbb{Z}_2$ induces a vertex labeling $f^+ : V \to \mathbb{Z}_2$ defined by $f^+(v) \equiv \sum_{uv \in E} f(uv) \pmod{2}$, for each vertex $v \in V$. For $i \in \mathbb{Z}_2$, let $v_f(i) = |\{v \in V: f^+(v) = i\}|$ and $e_f(i) = |\{e \in E : f(e) = i\}|$. An edge labeling f of a graph G is said to be edge-friendly if $|e_f(1) - e_f(0)| \leq 1$. The set $\{v_f(1) - v_f(0) : f$ is an edge-friendly labeling of G} is called the full edge-friendly index set of G. In this paper, we shall determine the full edge-friendly index sets of one point union of cycles.

Keywords: One point union of cycles, Edge labeling vector, Vertex labeling vector, Edge-friendly labeling, Full edge-friendly index set

2010 Mathematics Subject Classification: 05C78, 05C25

1. Introduction

In this paper, all graphs are simple and connected. We refer to [1] for terms and notation that are not defined in this paper.

Since graph labelings was first introduced by Rosa, various labeling concepts have been introduced [2]. For example, cordial labeling, edge-friendly labeling, harmonious labeling, felicitous labeling, odd harmonious labeling and even harmonious labeling, semi-magic labeling, etc. Most graph labeling methods can be traced to the method introduced by Rosa [3] in 1967, or Graham and Sloane [4] in 1980.

Let G = (V, E) be a graph with vertex set V (or V(G)) and edge set E (or E(G)). A labeling $f : E \to \mathbb{Z}_2$ induces a vertex labeling $f^+ : V \to \mathbb{Z}_2$ defined by $f^+(v) \equiv \sum_{uv \in E} f(uv) \pmod{2}$, for each vertex $v \in V$. Here \mathbb{Z}_2 is the field of order 2.

For $i \in \mathbb{Z}_2$, let $v_f(i) = |\{v \in V: f^+(v) = i\}|$ and $e_f(i) = |\{e \in E : f(e) = i\}|$. The number $v_f(1) - v_f(0)$ is denoted by $I_f(G)$ and is called the *edge-friendly index* of f.

An edge labeled by *i* is called an *i*-edge (under f). A vertex labeled by *i* is called an *i*-vertex (under f). In this paper, an edge labeling (or a (0, 1)-edge labeling) means an edge labeling whose codomain

Gao et al.

is **Z**₂. An edge labeling f of a graph G is said to be *edge-friendly* if $|e_f(1) - e_f(0)| \le 1$.

Definition 1. The full edge-friendly index set of G, denoted by FEFI(G), is the set $\{I_f(G) : f \text{ is an edge-friendly labeling of } G\}$.

The concept of full edge-friendly index set was introduced in [5]. Since $v_f(1) + v_f(0) = |V|$,

$$I_f(G) = 2v_f(1) - |V| = |V| - 2v_f(0).$$
(1)

So the edge-friendly index of f of G is determined by the value of $v_f(1)$.

Definition 2. Let f be an edge labeling of a graph G of order p and size q. We fix the sequence of vertices $V = \{v_1, v_2, \ldots, v_p\}$ and the sequence of edges $E = \{e_1, e_2, \ldots, e_q\}$ of G. The vector $f(E) = (f(e_1), f(e_2), \ldots, f(e_q)) \in \mathbb{Z}_2^q$ is called an *edge labeling vector* of f, where \mathbb{Z}_2^n denotes the Cartesian product of n copies of \mathbb{Z}_2 . Similarly,

$$f^+(V) = (f^+(v_1), f^+(v_2), \dots, f^+(v_p)) \in \mathbb{Z}_2^p$$

is called a *vertex labeling vector* of f.

For any (row) vector $X \in \mathbb{Z}_2^n$, X^T denotes the transpose of X.

Let *M* be the incidence matrix of a graph *G* according to fixed sequences of vertices and edges. Let *f* be an edge-labeling of G = (V, E). It is easy to see that

$$f^+(V)^T = M f(E)^T,$$

which is a column vector of length p over \mathbb{Z}_2 .

For a vector $X \in \mathbb{Z}_2^p$, the number of 1's in X is denoted by wt(X), the Hamming weight of X. Hence, if f is an edge-friendly labeling of a graph G, then $wt(f^+(V))$ is $v_f(1)$. For convenience, we will identify f with $f(E)^T$. Hence $v_f(1) = wt(f^+(V)) = wt((Mf)^T)$.

Let H_i be a graph and $v_i \in V(H_i)$ be fixed, $1 \le i \le t$. A *one point union* of H_i , $1 \le i \le t$, is the graph obtained from the disjoint union of H_i by merging all v_i into a single vertex which is called the *merged vertex* or *core vertex*. So there will be many different one point unions of H_i 's.

If $H_i = C_{n_i}$ is a cycle of order $n_i \ge 3$, then all one point unions of H_i , $1 \le i \le t$, are isomorphic. So we denote the one point union of C_{n_i} , $1 \le i \le t$, by $\biguplus_{k=1}^t C_{n_k}$ for $t \ge 2$. In this paper, we shall study the full edge-friendly index set of the graph $\biguplus_{k=1}^t C_{n_k}$.

For $1 \le k \le t$, let $C_{n_k} = v_{k,1}v_{k,2}\cdots v_{k,n_k-1}v_{k,n_k}v_{k,1}$. Let $e_{k,j} = v_{k,j}v_{k,j+1}$ for $1 \le j \le n_k$, where $v_{k,n_k+1} = v_{k,1}$. Let $v_{k,1} \in V(C_{n_k})$ be the chosen vertex to be merged. We denote the core vertex of the graph $G_t = \bigcup_{k=1}^{t} C_{n_k}$ by c (or $v_{0,0}$). Note that G_t is of order $\left(\sum_{k=1}^{t} n_k\right) - t + 1$ and of size $\sum_{k=1}^{t} n_k$. Following is the one point union of C_3 , C_4 and C_6 , i.e., $C_3 \uplus C_4 \uplus C_6$.

In the rest of the paper, we will use the notation defined above.

2. Some Extrema of Edge-Friendly Indices

In this section, necessary and sufficient conditions that give the extrema values of $v_f(0)$ or $v_f(1)$ are obtained. Following is Lemma 2.1 of [5,6].

Lemma 1. Let f be any edge labeling of a graph G = (V, E), then $v_f(1)$ must be even.

Suppose there are *s* odd numbers among n_1, \ldots, n_t , where $0 \le s \le t$. Without loss of generality, we may assume that n_1, \ldots, n_s are odd and the others are even. Note that, s = 0 means that there is no odd number; s = t means that there is no even number. Now

$$v_f(1) + v_f(0) = |V(G_t)| = \sum_{k=1}^s n_k + \sum_{k=s+1}^t n_k - t + 1 \equiv s - t + 1 \pmod{2}.$$
 (2)

It is obvious that $|V(G_t)| \ge v_f(0) \ge 0$ for any edge labeling f of G_t . By Lemma 1 and the equation above, we have

$$v_f(0) \equiv s - t + 1 \pmod{2}.$$
 (3)

Hence $v_f(0) \ge 1$ if t - s is even for any edge labeling f of G_t . A natural question is that whether there is an edge-friendly labeling of G_t attaining the lower bound and whether there is an edge-friendly labeling of G_t attaining the upper bound.

Lemma 2. Suppose there are *s* odd numbers among n_1, \ldots, n_t . There is an edge-friendly labeling *f* of G_t such that

(1) $v_f(0) = 1$ if and only if t - s is even;

(2)
$$v_f(0) = 0$$
 if and only if $t - s$ is odd.

Proof. The necessity of (1) and (2) come from Eq. (3).

Note that G_t is Eulerian. Let R be an Euler tour of G_t . We label the edge of G_t by 0 and 1 alternatively along R. Clearly the induced label of each vertex except the core is 1 and the label of the core c is $(t - s) \mod 2$. Hence we have the sufficiency of (1) and (2).

Obtaining the maximum value of $v_f(0)$ is equivalent to obtaining the minimum value of $v_f(1)$. \Box

Remark 1. If there are *r* numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor |E(G_t)|/2 \rfloor$, then the sum of the remaining numbers is $\lceil |E(G_t)|/2 \rceil$. So, the statement 'there are *r* numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor |E(G_t)|/2 \rfloor$ ' is equivalent to the statement 'there are *r* numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor |E(G_t)|/2 \rfloor$ ' is equivalent to the statement 'there are *r* numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor |E(G_t)|/2 \rfloor$ '.

Lemma 3. There is an edge-friendly labeling f of G_t such that $v_f(1) = 0$ if and only if there are r numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor |E(G_t)|/2 \rfloor$.

Necessity. Consider the subgraph E_i induced by all *i*-edges of G_t under f, i = 0, 1. Since there is no 1-vertex, each cycle of G_t is entirely edge-labelled by 1's or entirely edge-labelled by 0's. Hence E_1 is a one point union of some subcycles of G_t . Hence E_0 is also a one point union of some subcycles of G_t , namely E_0 is the one point union of *r* subcycles. Since *f* is edge-friendly, $|E(E_0)| = \lfloor |E(G_t)|/2 \rfloor$ or $\lceil |E(G_t)|/2 \rceil$. Thus we have the necessary condition by Remark 1.

[Sufficiency] Suppose there are *r* numbers among n_1, \ldots, n_t such that the sum of such numbers is $\lfloor |E(G_t)|/2 \rfloor$. We label the edges of the corresponding cycles by 0 and label the other edges of G_t by 1. Thus this labeling is an edge-friendly labeling and the labels of all vertices are 0's.

3. Full Edge-Friendly Index Sets

The main results are given in this section. For a given one point union of cycles $G_t = \bigcup_{i=1}^{t} C_{n_i}$, we fix the sequences of vertices and edges with respect to the lexicographic order. Thus the incident matrix of G_t is

$$M = \begin{pmatrix} Z_1 & Z_2 & \cdots & Z_{t-1} & Z_t \\ B_1 & O & \cdots & \cdots & O \\ O & B_2 & \ddots & \vdots & O \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ O & O & \cdots & B_{t-1} & O \\ O & O & \cdots & O & B_t \end{pmatrix},$$

where $B_k = \begin{bmatrix} 0 & 1 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$, $Z_k = (1 \quad 0 \quad \cdots \quad 0 \quad 1)_{1 \times n_k}$, and each O is a zero matrix

of certain size, $1 \le k \le$

We define some notation and recall some known results first. For positive l, let 1_l be the row vector of length l whose entries are 1's, and 0_l be the row vector of length l whose entries are 0's. Let $\alpha_{2l} = (1, 0, 1, 0, \dots, 1, 0) \in \mathbb{Z}_2^{2l}$ and $\beta_{2l} = (0, 1, 0, 1, \dots, 0, 1) \in \mathbb{Z}_2^{2l}$. For convenience, we let $1_0, 0_0, \alpha_0$ and β_0 be the empty rows.

Let $p = |V(G_t)| = \left(\sum_{k=1}^t n_k\right) - t + 1$. From (2), we have $p \equiv s - t + 1 \pmod{2}$, where s is defined in

Section 2. So t - s is odd if and only if p is even. From now on, we shall use $q = \sum_{k=1}^{t} n_k = |E(G_t)|$. For each edge labeling $f = (Y_1, Y_2, ..., Y_t)^T$, where $Y_k \in \mathbb{Z}_2^{n_k}$, $1 \le k \le t$, we have

$$Mf = \left(\sum_{k=1}^{t} Z_k Y_k^T, B_1 Y_1^T, \ldots, B_t Y_t^T\right)^T.$$

From (1) we have

$$FEFI(G_t) = \{2v_f(1) - p : f \text{ is an edge-friendly labeling of } G_t\}$$
$$\subseteq \{4j - p : 0 \le j \le \lfloor p/2 \rfloor\}$$

For each possible value 2j of the number of 1-vertices, we want to find an edge-friendly labeling f such that $v_f(1) = 2j$.

We deal with some special cases first.

Theorem 1. Suppose all n_1, \ldots, n_t are even.

- 1. Suppose there are r numbers among n_1, \ldots, n_t such that the sum of these numbers is q/2, then
 - (1*a*) $\text{FEFI}(G_t) = \{4j p : 0 \le j \le p/2\}$ if t is odd;
 - (1b) $\text{FEFI}(G_t) = \{4j p : 0 \le j \le (p 1)/2\}$ if t is even.
- 2. Suppose the sum of any combination of integers n_1, \ldots, n_t is not equal to q/2.

(2a) $\text{FEFI}(G_t) = \{4j - p : 1 \le j \le p/2\}$ if t is odd;

Full edge-friendly index sets of one point union of cycles

(2b) $\text{FEFI}(G_t) = \{4j - p : 1 \le j \le (p - 1)/2\}$ if t is even.

Proof. For each *i* and *l*, $1 \le i \le t$ and $1 \le l \le n_i/2$, let $Y_{i,l} = (1_l, 0_l, \alpha_{n_i-2l}) \in \mathbb{Z}_2^{n_i}$. Thus, $B_i Y_{i,l}^T = (0_{l-1}, 1, 0_{l-1}, 1_{n_i-2l})^T$ and $Z_i Y_{i,l}^T = 1$. Hence

$$wt(B_i Y_{i,l}^T) = n_i - 2l + 1.$$
(4)

For $1 \le k \le t$, let $f = (Y_{1,n_1/2}, \dots, Y_{k-1,n_{k-1}/2}, Y_{k,l}, Y_{k+1,1}, \dots, Y_{t,1})^T$. Thus, $Mf = (t \mod 2, B_1 Y_{1,n_1/2}^T, \dots, B_{k-1}^T Y_{k-1,n_{k-1}/2}, B_k^T Y_{k,l}, B_{k+1}^T Y_{k+1,1}, \dots, B_t^T Y_{t,1})^T$. By (4)

$$v_f(1) = wt(Mf) = (t \mod 2) + \sum_{i=1}^{k-1} 1 + (n_k - 2l + 1) + \sum_{i=k+1}^{t} (n_i - 1)$$
 (5)

1. Without loss of generality, we assume $\sum_{k=1}^{r} n_k = q/2$. Thus $\sum_{k=r+1}^{t} n_k = q/2$. Since either *r* or t - r is at most t/2. We may assume that $r \le \lfloor t/2 \rfloor$ and $t - r \ge \lceil t/2 \rceil$.

(1a) Suppose *t* is odd.

Step 1: For a fixed k, $1 \le k \le t$, let l be an integer such that $1 \le l \le n_k/2$. Let f be defined above, then (5) becomes

$$v_f(1) = wt(Mf) = 1 + \sum_{i=k+1}^t n_i + 2k + n_k - 2l - t = p - \sum_{i=1}^{k-1} n_i - 2l + 2k.$$

For a fixed k, when l runs through from 1 to $n_k/2$, the range of $v_f(1)$ is an increasing arithmetic sequence with common difference 2 from $p - \sum_{i=1}^{k} n_i + 2k$ to $p - \sum_{i=1}^{k-1} n_i - 2 + 2k$. Thus when k runs through from 1 to t, the range of $v_f(1)$ is an increasing arithmetic sequence with common difference 2 from $p - \sum_{i=1}^{t} n_i + 2t = t + 1$ to p.

Step 2: Let *R* be the Euler tour starts from the core *c* and travels the cycles $C_{n_1}, C_{n_2}, \ldots, C_{n_t}$ in order. Denote $R = u_1 u_2 u_3 \cdots u_{\frac{q}{2}} u_{\frac{q}{2}+1} u_{\frac{q}{2}+2} \cdots u_q u_1$, where $u_1 = c$. In this case $u_{\frac{q}{2}+1} = c$. There may have some u_i 's equal to *c*. Let $g = (1_{\frac{q}{2}}, 0_{\frac{q}{2}})^T$, then $v_g(1) = 0$.

Step 3: Now we swap the labels of $u_i u_{i+1}$ and $u_{\frac{q}{2}+2i-1} u_{\frac{q}{2}+2i}$, $1 \le i \le \lfloor \frac{q}{2} \rfloor$, where the indices are taken in modulo q. For each case, the number of 1-vertices increases by 2 if i = 1 or c is not incident with neither $u_i u_{i+1}$ nor $u_{\frac{q}{2}+2i-1} u_{\frac{q}{2}+2i}$; and may not change if c is incident with either $u_i u_{i+1}$ or $u_{\frac{q}{2}+2i-1} u_{\frac{q}{2}+2i}$; and may not change if c is incident with either $u_i u_{i+1}$ or $u_{\frac{q}{2}+2i-1} u_{\frac{q}{2}+2i}$ for $i \ne 1$. The last case can occur at most 2r - 1 times. So the number of 1-vertices increases by 2 at least $\frac{q}{2} - 2r + 1 \ge 2t - 2\lfloor t/2 \rfloor + 1 \ge t + 1$ times. Thus, the number of 1-vertices runs through each even integers from 0 to t + 1 under the above swapping.

So we obtain all the possible values of the number of 1-vertices.

(1b) Suppose *t* is even.

Perform Step 1 as Case (1a). Now (5) becomes

$$v_f(1) = wt(Mf) = 0 + \sum_{i=k+1}^t n_i + 2k + n_k - 2l - t = p - \sum_{i=1}^{k-1} n_i - 2l + 2k - 1.$$

Similar to Case (1a), when k and l run through all possible values, $v_f(1)$ runs through p - 1, $p - 3, \ldots, t$.

Perform Steps 2 and 3 as Case (1a). We obtain that the number of 1-vertices runs through each even integers from 0 to t.

So we obtain all the possible values of the number of 1-vertices.

- 2. By Lemma 3, $1 \le v_f(1) \le p$ for any edge-friendly labeling f. Without loss of generality, we assume that $n_1 \ge n_2 \ge \cdots \ge n_t$ and $\sum_{k=1}^r n_k < q/2 < \sum_{k=r+1}^t n_k$. Here $r \le \lfloor t/2 \rfloor$.
 - (2a) Suppose t is odd. Do the same Step 1 as Case (1a) to obtain the edge labeling f. Thus, we obtain that $v_f(1)$ runs through $p, p-2, \ldots, p-\sum_{i=1}^{t} n_i + 2t = t+1$.

Let R be an Euler tour as in Case (1a). In this case, $u_{\frac{q}{2}+1} \neq c$. Constructing the edge labeling g as in Case (1a), we get that $v_g(1) = 2$, since $g^+(u_1) = g^+(c) = 1$.

Do the same Step 3 as in Case (1a). Here we obtain that the number of 1-vertices runs through each even integers from 2 to t + 1.

So we obtain all the possible values of the number of 1-vertices.

(2b) Suppose t is even. By a similar procedure and argument, we obtain all possible values of the number of 1-vertices.

Hence this completes the proof.

Theorem 2. Suppose all n_1, \ldots, n_t are odd.

- 1. Suppose there are r numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor q/2 \rfloor$, then FEFI(G_t) = {4 $j - p : 0 \le j \le (p - 1)/2$ }.
- 2. Suppose the sum of any combination of integers n_1, \ldots, n_t is not equal to $\lfloor q/2 \rfloor$, then FEFI(G_t) = {4 $j - p : 1 \le j \le (p - 1)/2$ }.

Proof. Recall that $\alpha_{2l} = (1, 0, \dots, 1, 0) \in \mathbb{Z}_2^{2l}$ and $\beta_{2l} = (0, 1, \dots, 0, 1) \in \mathbb{Z}_2^{2l}$; $1_0, 0_0, \alpha_0$ and β_0 are the empty rows (see the beginning of this section).

For a fixed i, $1 \le i \le \lfloor t/2 \rfloor$, let l be an integer such that $1 \le l \le (n_i - 1)/2$. Let $Y_{i,l} =$ $(1_l, 0_{l-1}, \beta_{n_i+1-2l}) \in \mathbb{Z}_2^{n_i}$, then $B_i Y_{i,l}^T = (0_{l-1}, 1, 0_{l-1}, 1_{n_i-2l})^T$ and $Z_i Y_{i,l}^T = 0$. Hence $wt(B_i Y_{i,l}^T) = n_i - 2l + 1$.

For a fixed i, $\lfloor t/2 \rfloor + 1 \leq i \leq t$, let l be an integer such that $1 \leq l \leq (n_i - 1)/2$. Let $Y_{i,l} =$ $(0, 1_l, 0_l, \alpha_{n_i-1-2l}) \in \mathbb{Z}_2^{n_i}$, then $B_i Y_{i,l}^T = (1, 0_{l-1}, 1, 0_{l-1}, 1_{n_i-1-2l})^T$ and $Z_i Y_{i,l}^T = 0$. Hence $wt(B_i Y_{i,l}^T) = 0$ $n_i - 2l + 1$.

Step 1: Let $f = (Y_{1,(n_1-1)/2}, \dots, Y_{k-1,(n_{k-1}-1)/2}, Y_{k,l}, Y_{k+1,1}, \dots, Y_{t,1})^T$, where $1 \le k \le t$ and $1 \le l \le t$ $(n_k - 1)/2$. Clearly f is edge-friendly.

$$v_f(1) = wt(Mf) = \sum_{i=1}^{k-1} 2 + (n_k - 2l + 1) + \sum_{i=k+1}^{t} (n_i - 1)$$
$$= p - \sum_{i=1}^{k-1} n_i - 2l + 3k - 2.$$

One may check that when k and l run through all possible values, $v_f(1)$ runs through p - 1, p - 3, ..., $p - \sum_{i=1}^{i} n_i + 3t - 1 = 2t.$

Step 2: For $1 \leq i \leq \lfloor t/2 \rfloor$, we define $Y_{i,(n_i+1)/2} = (1_{(n_i+1)/2}, 0_{(n_i-1)/2})$, then $B_i Y_{i,(n_i+1)/2}^T =$

 $(0_{(n_i-1)/2}, 1, 0_{(n_i-3)/2})^T \text{ and } Z_i Y_{i,(n_i+1)/2}^T = 1. \text{ Hence } wt(B_i Y_{i,(n_i+1)/2}^T) = 1.$ For $\lceil t/2 \rceil + 1 \le i \le t$, we define $Y_{i,(n_i+1)/2} = (1_{(n_i-1)/2}, 0_{(n_i+1)/2}).$ Here $B_i Y_{i,(n_i+1)/2}^T = (0_{(n_i-3)/2}, 1, 0_{(n_i-1)/2})^T$ and $Z_i Y_{i,(n_i+1)/2}^T = 1.$ Hence $wt(B_i Y_{i,(n_i+1)/2}^T) = 1.$

For each k, $1 \le k \le t$, let $f_k = (Y_{1,(n_1+1)/2}, \dots, Y_{k,(n_k+1)/2}, Y_{k+1,(n_{k+1}-1)/2}, \dots, Y_{t,(n_t-1)/2})^T$. Note that, $f_t = (Y_{1,(n_1+1)/2}, \dots, Y_{t,(n_t+1)/2})^T$. Clearly f_k is edge-friendly. Suppose k is even. We have $v_{f_k}(1) =$ $wt(Mf_k) = (\{\sum_{i=1}^k 1 \mod 2\} + k) + 2(t-k) = (0+k) + 2(t-k) = 2t - k.$

One may check that when k runs through all even numbers from 2 to t, $v_{fi}(1)$ runs through all even numbers from 2t - 2 down to t.

Now we shall perform some steps similar to Steps 2 and 3 in the proof of Theorem 1 to obtain the remaining possible values of the number of 1-vertices.

1. Without loss of generality, we assume that $\sum_{k=1}^{r} n_k = \lfloor q/2 \rfloor$. Here $r \leq \lfloor t/2 \rfloor$.

Let $R = u_1 u_2 u_3 \cdots u_{\lfloor q/2 \rfloor} u_{\lfloor q/2 \rfloor + 1} u_{\lfloor q/2 \rfloor + 2} \cdots u_q u_1$ be the Euler tour starts from the core $u_1 = c$ and travels the cycles $C_{n_1}, C_{n_2}, \ldots, C_{n_t}$ in order. By convention $u_{q+1} = u_1$.

Step 3: Define $g = (1_{\lfloor q/2 \rfloor}, 0_{\lceil q/2 \rceil})^T$. Now $v_g(1) = 0$.

Step 4:

(1a) When q = 4m + 1, where $m \ge 2$. Note that $u_{2m+1} = c$, $4m + 1 = \sum_{i=1}^{t} n_i \ge 3t$ and t is odd. Swap the labels of $u_i u_{i+1}$ and $u_{2m+2i-1} u_{2m+2i}$, $1 \le i \le m+1$. The number of 1-vertices increases by 2 at least (m + 1) - (r - 1) times, since the first swapping increases $v_g(1)$ by 2.

Next, swap the labels of $u_{m+1+i}u_{m+2+i}$ and $u_{2i-1}u_{2i}$, $1 \le i \le m-1$. So the number of 1-vertices increases by 2 at least m-1-r times.

By the same argument as Step 3 in the proof of Theorem 1, the number of 1-vertices increases by 2 at least $2m + 1 - 2r \ge (3t - 1)/2 + 1 - t = (t + 1)/2$ times totally. Thus, the number of 1-vertices runs through each even integer from 0 to t + 1 under the above swapping.

(1b) When q = 4m + 3, where $m \ge 2$ (in this case q cannot be 7). Note that $u_{2m+2} = c$, $4m + 3 = \sum_{i=1}^{t} n_i \ge 3t$ and t is odd.

Swap the labels of $u_i u_{i+1}$ and $u_{2m+2i} u_{2m+2i+1}$, $1 \le i \le m + 1$. Next, swap the labels of $u_{m+1+i} u_{m+2+i}$ and $u_{2i-1} u_{2i}$, $1 \le i \le m$.

Totally, the number of 1-vertices increases by 2 at least $(2m+1) - 2r + 1 \ge (3t-3)/2 + 2 - t = (t+1)/2$ times. Thus, the number of 1-vertices runs through each even integer from 0 to t + 1 under the above swapping.

(1c) When q = 4m, where $m \ge 3$ (in this case q cannot be 8). Note that $u_{2m} = c$, $4m = \sum_{i=1}^{l} n_i \ge 3t$ and t is even.

Swap the labels of $u_i u_{i+1}$ and $u_{2m+2i-1} u_{2m+2i}$, $1 \le i \le m$. Next, swap the labels of $u_{m+i} u_{m+i+1}$ and $u_{2i-1} u_{2i}$, $1 \le i \le m - 1$.

Totally, the number of 1-vertices increases by 2 at least $(2m - 1) - 2r + 1 \ge 3t/2 - t = t/2$ times. Thus, the number of 1-vertices runs through each even integer from 0 to t under the above swapping.

(1d) When q = 4m + 2, where $m \ge 1$. Note that $u_{2m+1} = c$, $4m + 2 = \sum_{i=1}^{t} n_i \ge 3t$ and t is even.

Swap the labels of $u_i u_{i+1}$ and $u_{2m+2i} u_{2m+2i+1}$, $1 \le i \le m+1$. Next, swap the labels of $u_{m+1+i} u_{m+i+2}$ and $u_{2i-1} u_{2i}$, $1 \le i \le m$.

Totally, the number of 1-vertices increases by 2 at least $(2m+1)-2r+1 \ge 3t/2+1-t = t/2+1$ times. Thus, the number of 1-vertices runs through each even integer from 0 to t + 2 under the above swapping.

2. Without loss of generality, we assume that $n_1 \ge n_2 \ge \cdots \ge n_t$ and $\sum_{k=1}^r n_k < q/2 < \sum_{k=r+1}^t n_k$. Here $r \le \lfloor t/2 \rfloor$. We do the same procedure as Case 1. The only difference is $v_g(1) = 2$. Hence the number of 1-vertices at least runs through each even integer from 2 to t under the above swapping.

This completes the proof.

Example 1. Consider the graph $C_5 \uplus C_3 \uplus C_3 \uplus C_3 \uplus C_3$. Here t = 5, p = 13, q = 17, m = 4 and r = 2. Let $R = u_1 u_2 \cdots u_{17} u_1$ be an Euler tour of the graph, where $u_1 = u_6 = u_9 = u_{12} = u_{15} = c$. For $1 \le i \le 17$, let $e_i = u_i u_{i+1}$, where $u_{18} = u_1$.

The procedure of Steps 2 listed below:

	e_1	e_2	e_3	e_4	e_5	e_6	<i>e</i> ₇	e_8	<i>e</i> 9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	<i>e</i> ₁₇	v(1)
f_1	1	1	1	0	0	1	0	1	1	0	1	0	1	0	0	1	0	10
f_2	1	1	1	0	0	1	1	0	1	0	1	0	1	0	0	1	0	8
f_3	1	1	1	0	0	1	1	0	1	1	0	0	1	0	0	1	0	8
f_4	1	1	1	0	0	1	1	0	1	1	0	1	0	0	0	1	0	6
f_5	1	1	1	0	0	1	1	0	1	1	0	1	0	0	1	0	0	10 8 8 6 6

The procedure of swapping (Steps 3 and 4) listed below start from $g = (1_8, 0_9)$ *.*

	e_1	e_2	e_3	e_4	e_5	e_6	<i>e</i> ₇	e_8	<i>e</i> 9	e_{10}	e_{11}	<i>e</i> ₁₂	<i>e</i> ₁₃	<i>e</i> ₁₄	<i>e</i> ₁₅	<i>e</i> ₁₆	e_{17}	v(1)
\overline{g}	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	2
	0	0	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	4
	0	0	0	1	1	1	1	1	1	0	1	0	1	0	0	0	0	6
	0	0	0	0	1	1	1	1	1	0	1	0	1	0	1	0	0	6
	0	0	0	0	0	1	1	1	1	0	1	0	1	0	1	0	1	6
	1	0	0	0	0	0	1	1	1	0	1	0	1	0	1	0	1	8
	1	0	1	0	0	0	0	1	1	0	1	0	1	0	1	0	1	10
	1	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1	10

Example 2. Consider the graph $C_3 \oplus C_3$. Here t = 2, p = 5, q = 6, m = 1 and r = 1. Let $R = u_1u_2\cdots u_6u_1$ be an Euler tour of the graph, where $u_1 = u_4 = c$. For $1 \le i \le 6$, let $e_i = u_iu_{i+1}$, where $u_7 = u_1$.

The procedure of Steps 3 and 4 listed below start from $g = (1_3, 0_3)$ *.*

	e_1	e_2	e_3	e_4	e_5	e_6	<i>v</i> (1)
g	1	1	1	0	0	0	0
	0	1	1	1	0	0	2
	0	0	1	1	0	1	4
	1	0	0	1	0	1	4

Lemma 4. Let G and H be two graphs with only one common vertex u. Suppose f_G and f_H be two edge-friendly labelings of G and H, respectively. If $(f_G^+(u), f_H^+(u)) \neq (1, 1)$, then there is an edge-friendly labeling h of $G \uplus H$ such that $v_h(1) = v_{f_G}(1) + v_{f_H}(1)$. If $(f_G^+(u), f_H^+(u)) = (1, 1)$, then there is an edge-friendly labeling h of $G \uplus H$ such that $v_h(1) = v_{f_G}(1) + v_{f_H}(1) - 2$.

Proof. Let h be the combined labeling of f_G and f_H . We obtain the lemma easily.

Theorem 3. Let p and q be the order and the size of G_t , respectively.

- 1. Suppose there are r numbers among n_1, \ldots, n_t such that the sum of these numbers is $\lfloor q/2 \rfloor$, then $\text{FEFI}(G_t) = \{4j p : 0 \le j \le \lfloor p/2 \rfloor\}.$
- 2. Suppose there are no r numbers among n_1, \ldots, n_t such that the sum of these numbers are $\lfloor q/2 \rfloor$, then $\text{FEFI}(G_t) = \{4j p : 1 \le j \le \lfloor p/2 \rfloor\}$.

Proof. Without loss of generality, we assume that n_1, \ldots, n_s are even and n_{s+1}, \ldots, n_t are odd, where $0 \le s \le t$. When s = 0 or s = t, we get the results using Theorem 1 and Theorem 2.

By Lemma 3, it suffices to find an edge-friendly labeling f of G_t such that $v_f(1)$ runs through all even numbers in [2, p].

Let $G = \bigcup_{i=1}^{s} C_{n_i}$ and $H = \bigcup_{i=s+1}^{t} C_{n_i}$. Let p_G and p_H be orders of G and H, respectively. Note that p_H is odd and $p = p_G + p_H - 1$.

By Theorem 1 there is an edge-friendly labeling f_G of G such that $v_{f_G}(1)$ at least runs through all even numbers of $[2, p_G]$, and by Theorem 2 there is an edge-friendly labeling f_H of H such that $v_{f_H}(1)$ at least runs through all even numbers of $[2, p_H - 1]$.

By Lemma 4, in the worst case, there is an edge-friendly labeling *h* of $G \uplus H$ such that $v_h(1)$ runs through all even numbers of $[4, p_G + p_H - 1 - 2] = [4, p - 2]$.

Now we only need to find an edge-friendly labeling g of $G \uplus H$ such that $v_g(1)$ is p when p is even, or p - 1 when p is odd, or else, $v_g(1)$ is 2 (see \oplus and \oslash below).

Let $R = u_1 u_2 u_3 \cdots u_{\lfloor q/2 \rfloor} u_{\lfloor q/2 \rfloor + 1} u_{\lfloor q/2 \rfloor + 2} \cdots u_q u_1$ be the Euler tour of G_t starts from the core $u_1 = c$. Note that q = p + t - 1 and $\deg(c) = 2t$.

(1) When q is even, $p \equiv t - 1 \pmod{2}$. Define $g = (1, 0, 1, 0, \dots, 1, 0)^T \in \mathbb{Z}_2^q$, then $g^+(c) = t \mod 2$. Hence $v_g(1) = \begin{cases} p & \text{if } t \text{ is } odd, \\ p - 1 & \text{if } t \text{ is } even, \end{cases} = \begin{cases} p & \text{if } p \text{ is } even, \\ p - 1 & \text{if } p \text{ is } odd. \end{cases}$

When q is odd, $p \equiv t \pmod{2}$. Define $g = (1, 0, 1, 0, \dots, 1, 0, 1)^T \in \mathbb{Z}_2^q$, then $g^+(c) = t+1 \mod 2$. Hence $v_g(1) = \begin{cases} p-1 & \text{if } t \text{ is odd,} \\ p & \text{if } t \text{ is even,} \end{cases} = \begin{cases} p-1 & \text{if } p \text{ is odd,} \\ p & \text{if } p \text{ is even.} \end{cases}$

② Suppose $u_{\lfloor q/2 \rfloor+1} \neq c$. Define $g = (1_{\lfloor q/2 \rfloor}, 0_{\lceil q/2 \rceil})^T$. Thus only $g^+(c) = g^+(u_{\lfloor q/2 \rfloor+1}) = 1$. Hence $v_g(1) = 2$.

Suppose $u_{\lfloor q/2 \rfloor+1} = c$, then $u_2 \neq c$ and $u_{\lfloor q/2 \rfloor+2} \neq c$. Define $g = (0, 1_{\lfloor q/2 \rfloor}, 0_{\lceil q/2 \rceil-1})^T$. Thus only $g^+(u_2) = g^+(u_{\lfloor q/2 \rfloor+2}) = 1$. Hence $v_g(1) = 2$.

This completes the proof.

We denote the graph G_t by $C_n^{(t)}$ when $n_1 = \cdots = n_t = n$. When n = 3, $C_3^{(t)}$ is called the *Dutch t-windmill graph*. By Theorem 3, we have the following corollaries.

Corollary 1. Suppose $n \ge 3$ and $t \ge 2$. Now, the order of $C_n^{(t)}$ is p = nt - t + 1.

1. Suppose n is odd, then

$$\text{FEFI}(C_n^{(t)}) = \begin{cases} \{4j - p : 1 \le j \le (p - 1)/2\} & \text{if } t \text{ is odd}; \\ \{4j - p : 0 \le j \le (p - 1)/2\} & \text{if } t \text{ is even}. \end{cases}$$

2. Suppose n is even, then

$$\text{FEFI}(C_n^{(t)}) = \begin{cases} \{4j - p : 1 \le j \le p/2\} & \text{if } t \text{ is odd}; \\ \{4j - p : 0 \le j \le (p - 1)/2\} & \text{if } t \text{ is even}. \end{cases}$$

Corollary 2. *For* $t \ge 2$,

$$\text{FEFI}(C_3^{(t)}) = \begin{cases} \{4j - 2t - 1 : 1 \le j \le t\} & \text{if } t \text{ is odd}; \\ \{4j - 2t - 1 : 0 \le j \le t\} & \text{if } t \text{ is even.} \end{cases}$$

Funding

The first author was partially supported by National Natural Science Foundation of China (No: 12371344).

Financial Interests

The authors have no relevant financial or non-financial interests to disclose.

Author Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by all the authors. The first draft of the manuscript was written by Zhen-Bin Gao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

- 1. Bondy, J. A. and Murty, U. S. R., 1976. Graph Theory with Applications. Macmillan.
- 2. Gallian, J. A., 2021. A dynamic survey of graph labeling. *The Electronic Journal of Combinatorics*, #DS6.
- 3. Rosa, A., 1967. On certain valuations of the vertices of a graph. In *Theory of Graphs (Internat. Symposium, Rome, July 1966)* (pp. 349–355). Gordon and Breach.
- 4. Graham, R. L., and Sloane, N. J. A., 1980. On additive bases and harmonious graphs. *SIAM Journal on Algebraic and Discrete Methods*, 1(4), pp.382–404.
- 5. Shiu, W. C., 2016. Extreme edge-friendly indices of complete bipartite graphs. *Transactions on Combinatorics*, *5*(3), pp.11–21.
- 6. Shiu, W. C., 2017. Full edge-friendly index sets of complete bipartite graphs. *Transactions on Combinatorics*,6(2), pp.7–17.

 \bigcirc 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)