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Abstract: We study groups generated by sets of pattern avoiding permutations. In the first part of
the paper we prove some general results concerning the structure of such groups. In particular, we
consider the sequence (Gn)n≥0, where Gn is the group generated by a subset of the symmetric group
S n consisting of permutations that avoid a given set of patterns. We analyze under which conditions
the sequence (Gn)n≥0 is eventually constant. Moreover, we find a set of patterns such that (Gn)n≥0 is
eventually equal to an assigned symmetric group. Furthermore, we show that any non trivial simple
group can not be obtained in this way and describe all the non-trivial abelian groups that arise in this
way. In the second part of the paper we carry out a case-by-case analysis of groups generated by
permutations avoiding few short patterns.

Keywords: Pattern avoiding permutation, Permutation group, Generated group
2020 Mathematics Subject Classification: 05A05, 20B05 (primary); 20B10, 20B30, 20B35
(secondary)

1. Introduction

The symmetric group S n over n elements is ubiquitous in mathematics, indeed, it is studied both
from a group-theoretical and a combinatorial point of view. In the first case the elements of S n are
thought as bijections acting on the set {1, 2, . . . , n} and are written as sequences of cycles, in the
second case they are considered as words containing all the symbols from 1 to n exactly once.

The group-theoretical study of the symmetric group embodies the wide fields of representation
theory of the symmetric group (see, e.g., [1]) and permutation groups (see, e.g., [2]). Combinatorics
of permutations (see, e.g., [3]) includes many topics, among whom one of the most recently developed
is the study of pattern avoiding permutations (see, e.g., [4]).

These two aspects are rarely considered together, due to the different nature of the two approaches.
Papers that deal with both the perspectives are, for instance, [5–10].

In this paper we consider the problem of determining the group generated by a set of pattern
avoiding permutations. This topic has never been investigated, to the best of our knowledge.

First of all, we introduce some notations and present some preliminary results (Sections 2 and 3).
Then, given a set of patterns T, we consider the subset S n(T ) of the symmetric group S n consisting

of permutations avoiding each pattern in T, and turn our attention to the group Gn generated by S n(T ).
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When dealing with such groups some questions naturally arise. First of all, under which conditions
the sequence (Gn)n≥0 is eventually constant (under isomorphism) and which kind of groups arise?

In Section 4 we find a set of patterns such that (Gn)n≥0 is eventually constant and equal to an
assigned symmetric group S k. In Section 5 we show that any non-trivial simple group can not be ob-
tained in this way, and that the only non-trivial abelian groups that arise are Z2 and Z2×Z2. The proof
of such results take advantage of a characterization of those sets of patterns such that the sequence
(Gn) has polynomial growth.

A further question is under which conditions Gn = S n for every sufficiently large n. In Section 6
we present a fairly general condition under which this happens.

Sections 7 and 8 are devoted to the analysis of the groups generated by S n(T ) when T consists of
few patterns, or patterns of small length. In the last section we present some open problems.

2. Notations and Definitions

Firstly we recall some notations from group theory. We denote by

• S n the symmetric group, i.e., the set of permutations of [n] = {1, 2, . . . , n}, with the operation of
composition, and by S the union of all these sets,

S =
⋃
n≥0

S n,

• An the alternating group, i.e., the subgroup of S n of even permutations,
• Zn the cyclic group with n elements,
• Dn the dihedral group with 2n elements, i.e., the group of symmetries of the regular n-agon.

As we mentioned above, every element π of S n can be written either as a product of cycles, or as
the sequence π = π1 π2 . . . πn of images of the elements 1, 2, . . . , n. The presence or the absence of
the brackets will make clear which notation we are using. We write products from right to left, that
is, if π, σ ∈ S n, πσ is the permutation obtained by applying σ first.

Given a set A ⊆ S n, the symbol ⟨A⟩ will denote the group generated by A.
We will use the following notation for some special elements of S n.

• the identity permutation will be denoted by idn,

idn = 1 2 . . . n,

• the decreasing permutation will be denoted by ψn,

ψn = n n − 1 . . . 2 1 =
⌊ n

2 ⌋∏
i=1

(i, n + 1 − i).

We will use the symbols id and ψ when the size is clear from the context.
If π ∈ S n we will say that π has length n and write |π| = n. A permutation π such that π = π−1 is

called an involution. For example, the permutation ψn is an involution.
The reverse, the complement and reverse-complement of the permutation π are the permutations

πr = πψ, πc = ψπ and πrc = ψπψ, respectively.
A permutation π ∈ S n contains the pattern τ ∈ S k if there are indices 1 ≤ i1 < i2 < . . . < ik ≤ n

such that the subsequence πi1 πi2 . . . πik is order isomorphic to τ, and we write π ≥ τ.
Otherwise, we say that π avoids the pattern τ.
The set of permutations of length n avoiding all the patterns in the set T = {τ1, τ2, . . .} is denoted

by S n(T ) or, with a slight abuse of notation, by S n(τ1, τ2, . . .).
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We set S (T ) = ∪n≥0S n(T ).
Notice that the set S with the containment relation ≤ is a poset. A downset in this order is called

a permutation class or simply a class. Given a class C, we set Cn = C ∩ S n for every n ≥ 0. A class
can be specified by its basis, the minimal permutations not in the class. If T is the basis of a class C,
then C = S (T ). Observe that the basis of a class can be infinite, since the poset (S ,≤) contains infinite
antichains.

3. Preliminary Results

We state some basic lemmas that will be useful in the following.

Lemma 1. Let T and T ′ be two subsets of S , with T ⊆ T ′. Then ⟨S n(T ′)⟩ ⊆ ⟨S n(T )⟩.

Proof. This property follows immediately from the definition of pattern containment. □

Lemma 2. Let σ1, . . . , σk and τ1, . . . , τk be permutations of any length such that σi ≤ τi for every i.
Then ⟨S n(σ1, . . . , σk)⟩ ⊆ ⟨S n(τ1, . . . , τk)⟩.

Proof. This fact is a straightforward consequence of the following inclusion: S n(σ1, . . . , σk) ⊆
S n(τ1, . . . , τk). □

Given a set of permutations A, let Ar be the set {σr | σ ∈ A}. The sets Ac, Arc, A−1 are defined sim-
ilarly. Notice that S n(T )r = S n(T r), and the same is true for the complement, the reverse-complement
and the inverse map. Moreover, since (πr)−1 = (π−1)c,

(S n(T r))−1 = S n((T r)−1) = S n((T−1)c).

A similar identity holds with r and c interchanged.

Lemma 3. Let T ⊆ S be a set of permutations of any length. Then

⟨S n(T )⟩ = ⟨S n(T−1)⟩ = ⟨S n(T ) ∪ S n(T−1)⟩,

and
⟨S n(T )⟩ � ⟨S n(T rc)⟩.

Proof. Given π ∈ S n, π
rc = ψπψ. This fact implies the second assertion. The first assertion is trivial.

□

Lemma 4. Let T ⊆ S be a set of permutations of any length. If ψk < T for every k ≥ 1, then

⟨S n(T )⟩ = ⟨S n(T ) ∪ S n(T r) ∪ S n(T c) ∪ S n(T rc)⟩.

Proof. Notice that if ψk < T for every k ≥ 1, then ψn ∈ S n(T ). Since σr = σψ, σc = ψσ and
σrc = ψσψ, the assertion follows.

□

We recall a well-known result that presents some families of generating sets for the group S n.

Lemma 5. The following sets generate S n, for every n ≥ 1.

• {( j, j + 1), 1 ≤ j ≤ n − 1}.
• {(1, j), 2 ≤ j ≤ n}.
• {(a, b), (1, 2, . . . , n)} if b − a and n are coprime.
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4. Generating a Fixed Symmetric Group S k

First of all we ask the following question.

Question 1. Let G be any finite group. Is it possible to find a subset T of S and a positive integer n
such that ⟨S n(T )⟩ = G?

Notice that if T can depend on n, then the answer to the previous question is trivially true for every
G. In fact, if G is a finite group, by Cayley’s theorem there exists n such that there is an isomorphic
copy Ĝ of G into S n. Then

G � ⟨S n(S n \ Ĝ)⟩ = S n(S n \ Ĝ).

If the set of patterns T must be independent of n the question is more subtle.
The next theorem shows that the question can be answered affirmatively for G = S k, for any k.

Theorem 2. For all n ≥ k we have

⟨S n(132, 231, 321, k 1 2 . . . k − 2 k − 1)⟩ � S k−1.

Proof. The set S n(132, 231, 321, k 1 2 . . . k − 2 k − 1) contains precisely the permutations id and
t 1 2 3 . . . t − 1 t + 1 . . . n − 1 n for 2 ≤ t ≤ k − 1. In fact, if π is in S n(132, 231, 321, k 1 2 . . . k −
2 k − 1), the first symbol t = π1 must be smaller than or equal to k − 1 in order to avoid the patterns
321 and k 1 2 . . . k − 2 k − 1. If t = 1, π = id because the other symbols must appear in increasing
order, since π avoids 132. If t ≥ 2, the second symbol π2 must be equal to 1 in order to avoid 231 and
321. All the other symbols must be in increasing order, in order to avoid 132.

We deduce that the set S n(132, 231, 321, k 1 2 . . . k − 2 k − 1) consists of the identity and the
cycles (1 2), (1 3 2), (1 4 3 2), . . ., (1 k − 1 k − 2 . . . 2). Hence, it generates a group isomorphic to
S k−1. □

5. Simple Groups and Abelian Groups

In this section we consider a refinement of Question 1.

Question 3. Let G be any finite group. Is it possible to find a subset T of S and a positive integer n0

such that ⟨S n(T )⟩ = G for every n ≥ n0?

We observe that Theorem 2 gives an answer to this question for every symmetric group, while the
answer is negative for some families of groups, as we will show in the present section.

We need some preliminary results. Firstly notice that, if ⟨S n(T )⟩ is isomorphic to a fixed group G
for every n ≥ n0, the cardinality of S n(T ) must be bounded above by the order of G. Actually, the set
of pattern avoiding permutations with limited growth rate are well studied. See e.g. [11–18], to cite
only a few. We recall some definitions and results about such permutations, following [13].

An interval in a permutation is a sequence of contiguous entries whose values form an interval of
natural numbers. A monotone interval is an interval in which the entries are increasing or decreasing.
Given a permutation σ of length m and (possibly empty) permutations α1, . . . , αm, the inflation of σ
by α1, . . . , αm is the permutation π = σ[α1, . . . , αm] obtained by replacing the i-th entry of σ by an
interval that is order isomorphic to αi, while maintaining the relative order of the intervals themselves.
For example,

3142[1, 321, 1, 12] = 6 321 7 45,

while
3142[1, 321, ∅, 12] = 6 321 45.
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A peg permutation ρ̃ is a permutation ρ where some elements are labeled by the symbol + and
some other elements are labeled by the symbol −. For example, ρ̃ = 3+1−24− is a peg permutation
whose underlying (non-pegged) permutation is 3124.

The grid class of the peg permutation ρ̃, where ρ = ρ1 . . . ρn, denoted by Grid(ρ̃), is the set of all
permutations that may be obtained inflating ρ by monotone intervals of type determined by the signs
of ρ̃. More precisely, the symbol ρi of ρ may be inflated by an increasing (resp., decreasing) possibly
empty interval if ρi is labeled with a + (resp., −), while it may only be inflated by a single entry (or
the empty permutation) if ρi is not labeled.

For example, the permutation 45621387 is an element of the grid class Grid(3+1−24−).
We say that two peg permutations are equivalent if their grid classes are the same.
Given a set P̃ of peg permutations, we denote the union of their corresponding grid classes by

Grid(P̃) = ∪ρ̃∈PGrid(ρ̃).

We will need the following result (see [13, Thm. 1.3]), which in turn is a consequence of some
results in [11] and in [14].

Theorem 4. For a permutation class C the following are equivalent:

1. The cardinality |Cn| is a polynomial in n, for sufficiently large n.

2. |Cn| < Fn for some n, where Fn is the n-th Fibonacci number.

3. C = Grid(P̃), where P̃ is a finite set of peg permutations.

Example 1. Consider the class C = S (123, 231, 312). It is easily seen that

S (123, 231, 312) = {k k − 1 . . . 2 1 n n − 1 . . . k + 1, 1 ≤ k ≤ n}.

The class C can be written as C = Grid(P̃), where P̃ contains only the peg permutation 1−2−.

The previous theorem allows us to describe the structure of permutation classes with growth rate
bounded above by a constant.

Proposition 1. For a permutation class C the following are equivalent.

1. C = Grid(P̃), where P̃ is a finite set of peg permutations, each of which is equivalent to a peg
permutation with at most one labeled element.

2. For every n ≥ 1, |Cn| < K, where K is a constant independent of n.

3. For sufficiently large n, |Cn| = D, where D is a constant independent of n.

Proof. [1. =⇒ 2.]
If C = Grid(P̃) where P̃ is a finite set of peg permutations each of which has at most one
labeled element, then the cardinality of Cn = Grid(P̃) ∩ S n is bounded above. In fact, let
ρ̃ = a1 . . . arb+c1 . . . cs an element of P̃. If n ≥ r + s, such an element gives rise to at most 2r+s

elements in Cn, depending on how many of the a′is or c′js are inflated by the empty permutation.
The same holds when the element b has label −.
[2. =⇒ 3.]
If 2. holds, C obviously satisfies assertion 2. of 4. This means that |Cn| is eventually a polynomial
in n. But any non-constant polynomial in n is unbounded, and hence we must have that |Cn| is
eventually constant.
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[3. =⇒ 1.]
If for every n ≥ 1, |Cn| = D, where D is a constant independent of n, the growth rate of |Cn| is
polynomial (the constant polynomial D). Hence, by the Theorem 4, C = Grid(P̃), where P̃ is
a finite set of peg permutations. Suppose that in P̃ there is a peg permutation ρ̃ with more than
one labeled element. Let a and b be two labeled elements in ρ̃, with a < b. We distinguish three
cases.

i. a appears before b and both are labeled with +.
ii. b appears before a and both are labeled with −.

iii. None of the previous conditions holds.

We handle the case i., case ii. being similar. If there exists a number k such that a < k < b
either before a+ or after b+ in ρ̃, then inflating k with a single element and inflating a and b with
varying sizes, we obtain n distinct elements in Cn. This gives us a contradiction. We obtain a
similar contradiction if there is a number k between a+ and b+ where either k < a or k > b. If
there are two numbers k1, k2 such that a < k1 < k2 < b that appear between a+ and b+ with
k2 appearing before k1, we again obtain a similar contradiction. The only case left is when all
the numbers a < k < b appear between a+ and b+ in increasing order. If any of these integers
are labeled with a −, we can use this element along with a+ to obtain a contradiction. If these
integers all are unlabeled or labeled with a +, the peg permutation we obtain by deleting all the
elements in [a+1, b] from ρ̃ and appropriately reducing the values of other elements, gives us an
equivalent peg permutation with fewer labeled terms. We continue this process until we reduce
each peg permutation in P̃ to a peg permutation having at most one labeled element.
In case iii., we can inflate a and b by increasing or decreasing sequences of arbitrary length.
Hence Grid(P̃)∩S n has at least n+1 elements of the form t1 t2 . . . tk s1 s2 . . . sn−k,with 0 ≤ k ≤ n,
where t1 t2 . . . tk is the monotone sequence obtained by inflating a, s1 s2 . . . sn−k is the monotone
sequence obtained by inflating b, and all the other elements of ρ have been inflated by the empty
interval. This is a contradiction.

□

Example 2. Consider the class C = S (132, 312, 321, 2314).
It is easily seen that

S n(132, 312, 321, 2314) = {2 3 . . . n 1, 2 1 3 . . . n, idn}

for every n ≥ 3.
Hence |Cn| = 3 for n ≥ 3. The class C can be written as C = Grid(P̃) where P̃ = {213+, 2+1}.
Notice also that the group generated by S n(132, 312, 321, 2314) is S n by Lemma 5.

Theorem 5. Let T ⊆ S and let G be a finite group. Suppose that there exists n0 ∈ N such that
⟨S n(T )⟩ � G for every n ≥ n0.

Then S (T ) = Grid(P̃), where every peg permutation in P̃ is either unlabeled, or of the form

ρ̃ = a1 . . . ar (r + 1)+ b1 . . . bs,

or
ρ̃ = b1 . . . bs (r + 1)− a1 . . . ar,

where ai < r + 1 and b j > r + 1, for every i and j.
In other terms, for n sufficiently large, every π ∈ S n(T ) is either of the form

π = 123[τ, id, σ]

or of the form
π = 321[σ, ψ, τ]

where τ ≤ a1 . . . ar, σ ≤ b1 . . . bs and |τ| + |id| + |σ| = |τ| + |ψ| + |σ| = n.
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Proof. Since ⟨S n(T )⟩ = G for every n ≥ n0, the cardinality of S n(T ) is bounded above by the constant
|G| = K independent of n. By the previous proposition, each element of the class S (T ) can be obtained
inflating a peg permutation with at most one labeled element.

Let ρ̃ be such a peg permutation with exactly one labeled element.

• Suppose
ρ̃ = a1 . . . ar c+ b1 . . . bs,

where c is the only labeled element, and suppose that there exists 1 ≤ i ≤ r with ai > c. Then,
inflating such ai by the permutation 1, every other a j and b j by the empty permutation and c by
the increasing permutation, we obtain the element n 1 2 . . . n−1 ∈ S n(T ) for every n. But this is
a cycle of order n. Hence ⟨S n(T )⟩ contains at least n elements and its cardinality is not constant.
Similarly, if there exists 1 ≤ i ≤ s with bi < c, the set S n(T ) contains the cycle (1 2 3 . . . n) of
order n.
• Suppose otherwise that

ρ̃ = b1 . . . bs c− a1 . . . ar,

where c is the only labeled element, and suppose that there exists 1 ≤ i ≤ s with bi < c. Then,
inflating such bi by the empty permutation or by the permutation 1, every other b j and a j by the
empty permutation and c by a decreasing permutation (that is, ψ), we obtain that the elements
ψn and α = 1 n n− 1 . . . 2 ∈ S n(T ) for every n. But αψn = (1 2 . . . n), a cycle of order n, and
hence ⟨S n(T )⟩ contains at least n elements and its cardinality would not be constant.
Similarly, if there exists 1 ≤ i ≤ r with ai > c, the set S n(T ) contains the permutations ψn and
β = n − 1 n − 2 . . . 1 n, whose composition ψnβ = (1 2 . . . n) is a cycle of order n.

This concludes the proof of the first assertion.
Now we consider the second assertion. Let U the set of all peg permutations in P̃ with no labeled

elements, and let h be the maximal length of of an element in U. Then, if n > h, every element in
S n(T ) can be obtained by inflating a peg permutation in P̃ \U, namely, of one of the two forms above.
Consider

ρ̃ = a1 . . . ar (r + 1)+ b1 . . . bs.

Let τ be a pattern in a1 . . . ar and σ a pattern in b1 . . . bs. Now inflate every element of τ and σ by the
permutation 1, the element r + 1 by an increasing permutation and every other element by the empty
permutation. In this way, we get the permutation π = 123[τ, id, σ].

The permutation π = 321[σ, id, τ] can be obtained similarly from a peg permutation of the form

ρ̃ = b1 . . . bs (r + 1)− a1 . . . ar.

□

Example 3. Consider the class S (123, 132, 231, 3214).
The permutations in S n(123, 132, 231, 3214), with n ≥ 3 are ψ,

α = n n − 1 n − 2 . . . 4 2 1 3

and
β = n n − 1 n − 2 . . . 4 3 1 2.

Hence S (T ) = Grid(P̃), where P̃ consists only of the peg permutation 4−213.
We submit that, with the aid of GAP, it is possible to verify that

⟨S n(123, 132, 231, 3214)⟩ � (S 3 × S 3) ⋊ Z2,

for every n ≥ 6, a group of order 72 (the symbol ⋊ denotes the semidirect product).
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Now we are in position to answer Question 3 for every abelian G.

Theorem 6. Let T ⊆ S and let G be a finite, nontrivial abelian group. If there exists n0 in N such that
⟨S n(T )⟩ � G for every n ≥ n0, then either G � Z2 or G � Z2 × Z2.

Proof. Suppose that S n(T ) generates a fixed finite abelian group G for every n ≥ n0.

By Theorem 5, ∪n≥0S n(T ) = Grid(P̃), where P̃ is a finite set of peg permutations each of which is
either unlabeled, or of the form

ρ̃ = a1 . . . ar (r + 1)+ b1 . . . bs,

or
ρ̃ = b1 . . . bs (r + 1)− a1 . . . ar,

where ai < r + 1 and b j > r + 1 , for every i and j.

Case 1 Suppose that in P̃ there exists a peg permutation

ρ̃ = a1 . . . ar (r + 1)+ b1 . . . bs.

– If a1 . . . ar contains a subsequence ax, ay, az order isomorphic to 132, then, inflating ax, ay

and az by the permutation 1, every other ai and b j with the empty permutation and c with an
increasing permutation, we obtain in S n(T ) the permutation 1 3 2 4 5 . . . n = (2 3).
Inflating ay and az by the permutation 1, every other ai and b j with the empty permutation
and c with an increasing permutation we obtain in S n(T ) the permutation 2 1 3 4 . . . n =
(1 2). But this is impossible since (1 2) and (2 3) do not commute.

– Reasoning as above, if a1 . . . ar contains the pattern 321 we get the cycles (1 2) and (1 3)
that do not commute.

– If a1 . . . ar contains the pattern 231 we get the cycles (1 2) and (1 2 3) that do not commute.
– If a1 . . . ar contains the pattern 312 we get the cycles (1 2) and (1 3 2) that do not commute.

As a consequence, a1 . . . ar ∈ S r(132, 231, 312, 321) and hence either

a1 . . . ar = idr,

or
a1 . . . ar = 2 1 3 4 . . . r.

Now we turn our attention to the suffix b1 . . . bs.

– If b1 . . . bs contains the subsequence bx, by, bz order isomorphic to 321, then, inflating bx,

by and bz by the permutation 1, every other ai and b j with the empty permutation and c with
an increasing permutation, we obtain in S n(T ) the transposition (n − 2, n).
Inflating by and bz by the permutation 1, every other ai and b j by the empty permutation and
c by an increasing permutation we obtain in S n(T ) the transposition (n − 1, n). But this is
impossible since (n − 2, n) and (n − 1, n) do not commute.

– Similarly, if b1 . . . bs contains the pattern 231 we get the cycles (n− 1 n) and (n− 2 n− 1 n)
that do not commute.

– If b1 . . . bs contains the pattern 213 we get the cycles (n − 1 n) and (n − 2 n − 1) that do not
commute.

– If b1 . . . bs contains the pattern 312 we get the cycles (n − 1 n) and (n − 2 n n − 1) that do
not commute.

As a consequence, the suffix b1 . . . bs of ρ̃ is a permutation of the symbols {r + 2, . . . , r + s + 1}
that avoids 213, 231, 312, and 321. It is easily seen that b1 . . . bs is either the identity or the
transposition that exchanges the two last symbols.
We deduce that the peg permutation ρ̃ is one of the following

1+, 213+, 1+32, 213+54.
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Case 2 Suppose that in P̃ there exists a peg permutation

ρ̃ = b1 . . . bs (r + 1)− a1 . . . ar.

Inflating every ai and every b j by the empty permutation and r + 1 by a decreasing permuta-
tion, we get the permutation ψn ∈ S n(T ). Notice that every other permutation α in S n(T ) must
commute with ψn because we are supposing that S n(T ) generates a commutative group. But
αψn = ψnα is equivalent to α = αrc. Hence every element of S n(T ) must be equal to its reverse-
complement.
Now consider once more the peg permutation

ρ̃ = b1 . . . bs (r + 1)− a1 . . . ar.

If b1 . . . bs contains the pattern 12 realized by the elements bx and by (with x < y), inflating bx

and by by the permutation 1, every other bi and a j by the empty permutation and r + 1 by a
decreasing permutation, we get the permutation α = n − 1 n n − 2 n − 3 . . . 1 ∈ S n(T ).
This is impossible since α , αrc. As a consequence b1 . . . bs and, similarly, a1 . . . ar, must be
decreasing, and hence ρ̃ is equivalent to the peg permutation 1−.

Case 1 and Case 2 prove that S (T ) = Grid(P̃), where P̃ contains either unlabeled permutations or
elements from the set of peg permutation

{1−, 1+, 213+, 1+32, 213+54}.

It is easily checked that if P̃ contains 1−, then P̃ does not contain 213+, 1+32, 213+54, since G is
commutative. For every possible choice of P̃ we can only get either G � Z2 or G � Z2 × Z2 for n
large.

This concludes the proof. □

Example 4. Consider ⟨S n(213, 231, 312, 321)⟩. This group is isomorphic to Z2 for n ≥ 2 as we will
prove in Theorem 10.

Consider now the set S n(231, 321, 312, 1324). We have

⟨S n(231, 312, 321, 1324)⟩ = Z2 × Z2

for every n ≥ 4.
In fact, given a permutation in the generating set, the symbols n−1 and n must occupy the last and

the second last position, otherwise the permutation would contain 312 or 321. Similarly, the symbols
1 and 2 must occupy the first or the second position. The remaining symbols must be in increasing
order since the permutation must avoid 1324.

Hence the set S n(231, 321, 312, 1324) contains only the identity, the elementary transpositions
(1 2) and (n − 1 n), and the involution (1 2)(n − 1 n), which generate Z2 × Z2.

Now we consider Question 3 when G is a simple group.

Theorem 7. Let T ⊆ S and let G be a finite simple group. If there exists n0 inN such that ⟨S n(T )⟩ � G
for every n ≥ n0, then |G| ≤ 2.

Proof. Suppose by contradiction that S n(T ) generates a fixed simple group G, with |G| ≥ 3, for every
n ≥ n0.

We recall that a given subgroup of S n that contains an odd permutation cannot be isomorphic to a
simple group other than Z2, since it contains a subgroup of index 2.

Theorem 5 implies that ∪n≥0S n(T ) = Grid(P̃), where P̃ is a finite set of peg permutations each of
which is either unlabeled, or of the form

ρ̃ = a1 . . . ar (r + 1)+ b1 . . . bs,
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or
ρ̃ = b1 . . . bs (r + 1)− a1 . . . ar,

where ai < r + 1 and b j > r + 1. , for every i and j.
If one peg permutation of the second kind appears in P̃, inflating each ai and b j by the empty

permutation and r + 1 by a decreasing permutation we get ψn ∈ S n(T ) for every n. But ψn is odd if
n ≡ 3 (mod 4), which gives a contradiction. Hence every labeled peg permutation in P̃ is of the first
kind.

Let
ρ̃ = a1 . . . ar (r + 1)+ b1 . . . bs

be one of the labeled peg permutations in P̃.
Suppose that a1 . . . ar contains the pattern 21, realized by the elements ax and ay (with x < y).

Then, inflating ax and ay by the permutation 1, every other ai and b j by the empty permutation and
r+ 1 by the identity, we get the permutation 2 1 3 . . . n = (1 2) ∈ S n(T ). This is impossible, since this
permutation is odd. Hence a1 . . . ar = idr.

One can show similarly that b1 . . . bs must be the increasing permutation ids.

As a consequence ρ̃ is equivalent to 1+, the set S n∩Grid(P̃) contains only idn for sufficiently large
n, and ⟨S n(T )⟩ = {idn}.

But this contradicts the fact that |G| ≥ 3. □

Corollary 1. Let T ⊆ S and let Am be an alternating group. If there exists n0 in N such that ⟨S n(T )⟩ �
Am for every n ≥ n0, then m ≤ 2.

Proof. The result is a trivial consequence of the previous theorem, since the alternating group Am is
simple for every m ≥ 3 with the exception of m = 4. In this last case the result can be proved with
arguments similar to those used in the proof of the previous theorem. □

6. Sets T such that ⟨S n(T )⟩ = S n.

From now on we consider the groups ⟨S n(T )⟩ for particular sets of patterns T.
We are interested in determining when S n(T ) generates the whole symmetric group and which

other groups arise.
First of all we state a rather general result that allows us to determine sets T ⊆ S such that

⟨S n(T )⟩ = S n.

Theorem 8. Let T ⊆ S . If either

T ∩ {k 2 3 . . . k − 1 1, k 1 2 . . . k − 1, 2 3 . . . k 1, idk | k ≥ 1} = ∅,

or
T ∩ {idk, (r − 1 r) | 2 ≤ r ≤ k and k ≥ 1} = ∅,

or
T ∩ {2 3 . . . k 1, idk, 2 1 3 . . . k | k ≥ 1} = ∅,

or
T ∩ {1 . . . k − 2 k k − 1, idk, 2 3 . . . k 1 | k ≥ 1} = ∅,

then ⟨S n(T )⟩ = S n for every n.

Proof. For any n ≥ k note that

• the patterns of length k contained in at least one elementary transposition in S n are idk and
(r − 1 r) for 2 ≤ r ≤ k,
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• the patterns of length k contained either in the cycle (1 n) ∈ S n or in (1 2 . . . n) ∈ S n are
k 2 3 . . . k − 1 1, k 1 2 . . . k − 1, 2 3 . . . k 1, idk,

• the patterns of length k contained either in the cycle (1 2) ∈ S n or in (1 2 . . . n) ∈ S n are
2 3 . . . k 1, idk, 2 1 3 . . . k, and
• the patterns of length k contained either in the cycle (n − 1 n) ∈ S n or in (1 2 . . . n) ∈ S n are

2 3 . . . k 1, idk, 1 2 . . . k − 2 k k − 1.

The assertion now follows by Lemma 5.
□

Corollary 2. We have

i. if T ⊆ S 3 and ⟨S n(T )⟩ , S n for some n ≥ 3, then T shares at least an element with each one of
the following sets

{123, 231, 312, 321}, {123, 132, 213}, {123, 213, 231}, and

{123, 132, 231}.

ii. if T ⊆ S 4 and ⟨S n(T )⟩ , S n for some n ≥ 4, then T shares at least an element with each one of
the following sets

{1234, 2341, 4123, 4231}, {1234, 1243, 1324, 2134},

{1234, 2134, 2341}, and {1234, 1243, 2341}.

7. Groups Generated by S n(T ) with |T | ≤ 3.

In this section we consider the group generated by the set S n(T ), where |T | ≤ 3.
We begin with the analysis of ⟨S n(T )⟩ when T consists of three patterns of length 3.

Theorem 9. 1. ⟨S n(123, 321, τ)⟩ = {idn}, for every n > 4 and for every τ ∈ S 3.

2. ⟨S n(132, 213, 321)⟩ � Zn,

3. ⟨S n(123, 231, 312)⟩ � Dn, for every n ≥ 3.

4. ⟨S n(T )⟩ = S n for every other set T of three patterns of length three.

Proof. The statement follows easily from the characterization of the sets of permutations avoiding
patterns of length three [19] and from Corollary 2. □

As a consequence, we can characterize all the groups ⟨S n(T )⟩ where T contains no more than three
arbitrary patterns.

Corollary 3. Let T ⊆ S be a set of patterns of length at least three, with |T | ≤ 3.

1. If {idr, ψs} ⊆ T, for some r, s ≥ 1, then ⟨S n(T )⟩ = {idn} for n > (r − 1)(s − 1).

2. If for every r, s ≥ 1 {idr, ψs} ⊈ T, T , {132, 213, 321} and T , {123, 231, 312}, then ⟨S n(T )⟩ =
S n.

Proof. The first assertion is trivial since the set S n(T ) is empty for n sufficiently large when {idr, ψs} ⊆

T. In fact, every permutation of length n > (r − 1)(s − 1) must contain a monotonically increasing
subsequence of length r or a monotonically decreasing subsequence of length s, by the Erdős-Szekeres
Theorem [20].

To prove the second assertion, recall that, by Theorem 9, the only sets T of three patterns of length
three such that ⟨S n(T )⟩ , S n are {123, 321, τ} (for any τ ∈ S 3), {132, 213, 321} and {123, 231, 312}.
Hence, the second assertion follows from Theorem 9 and from Lemmas 1 and 2 in all cases, except
for the following ones.
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• T consists of three (distinct) patterns τ1, τ2 and τ3 with τ1 ≥ 123, τ2 ≥ 231 and τ3 ≥ 312, with
at least one of these patterns of length strictly greater than 3.
• T consists of three (distinct) patterns τ1, τ2 and τ3 with τ1 ≥ 132, τ2 ≥ 213 and τ3 ≥ 321, with

at least one of these patterns of length strictly greater than 3.
• T consists of three (distinct) patterns τ1, τ2 and τ3 with τ1 ≥ 123, τ2 ≥ 321, with at least one of

these patterns of length strictly greater than 3.

Our goal now is to prove that ⟨S n(τ1, τ2, τ3)⟩ = S n in all the previous cases. We can assume that
two of the patterns have length 3 and the other one has length 4. The cases with longer patterns will
follow from the previous one by Lemma 2.

A long but trivial case-by-case analysis led us to consider only the following sets of patterns, since
the other ones can be excluded applying once again Lemma 2 and Theorem 9.

{123, 312, 3421}, {132, 321, 2134}, {132, 213, 4321}

{213, 321, 1243}, {123, 231, 4312}, {231, 312, 1234}.

We prove only that
⟨S n(231, 312, 1234)⟩ = S n,

the other cases being similar.
Notice that

⟨S n(231, 312, 1234)⟩ =

⟨S n(231, 312, 1234) ∪ S n(132, 213, 4321)⟩

by Lemma 4. This last group is S n because S n(132, 213, 4321) contains the cycles (1 n) and
(1 2 . . . n), which generate S n by Lemma 5.

□

8. Groups Generated by S n(T ) with T ⊆ S 3 ∪ S 4 and |T | ≥ 4.

In this section we begin the study of the groups ⟨S n(T )⟩, where T has cardinality greater than three.
We select some of the most meaningful cases.

The following theorem that follows directly from the results contained in [19] covers the cases of
groups generated by S n(T ) for all the subsets T ⊆ S 3 not considered so far.

Theorem 10. 1. ⟨S n(213, 231, 312, 321)⟩ � ⟨S n(132, 231, 312, 321)⟩ �

⟨S n(132, 213, 231, 312)⟩ � Z2,

2. ⟨S n(123, 132, 213, 231)⟩ � ⟨S n(123, 132, 213, 312)⟩ � D4,

3. ⟨S n(132, 213, 312, 321)⟩ � ⟨S n(132, 213, 231, 321)⟩ � Zn,

4. ⟨S n(123, 213, 231, 312)⟩ � ⟨S n(123, 132, 231, 312)⟩ � Dn,

5. ⟨S n(123, 132, 213, 231, 312)⟩ � Z2,

6. ⟨S n(132, 213, 231, 312, 321)⟩ � {idn}.

The study of the groups generated by sets S n(T ) where T ⊆ S 4 and |T | ≥ 4 is more cumbersome.
We limit ourselves to state the following result whose proof is analogous to the proof of Corollary 3.

Theorem 11. Let T ⊆ S 4 with |T | = 4. Suppose that T does not contain ψ4 and that T ,

{1234, 1432, 3214, 4312} and T , {1234, 1432, 3214, 4231}. Then ⟨S n(T )⟩ = S n.
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For the sake of completeness, we submit that routine arguments show that the sequences
(⟨S n(1234, 1432, 3214, 4312)⟩)n≥0 and (⟨S n(1234, 1432, 3214, 4231)⟩)n≥0 are eventually constant. In
particular, with the aid of GAP, [21] we verified that

⟨S n(1234, 1432, 3214, 4312)⟩ � (A9 × A9) ⋊ D4 for n ≥ 18

and

⟨S n(1234, 1432, 3214, 4231)⟩ � (A6 × A6) ⋊ D4 for n ≥ 12.

9. Open Problems

We conclude the paper with some open problems.
Firstly, suppose that the sequence (S n(T ))n≥0 is eventually constant. What kind of groups arise in

this way? For example, is it possible to obtain the dihedral group Dk, for k > 4?
Another problem is that of completing the classification of ⟨S n(T )⟩ when T consists of four or

more patterns. In particular, we wonder whether there exists a general procedure to determine the
group ⟨S n(T )⟩ for any finite set of patterns T.
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