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Abstract: A graph G is called a fractional ID-(g, f )-factor-critical covered graph if for any inde-
pendent set I of G and for every edge e ∈ E(G − I), G − I has a fractional (g, f )-factor h such that
h(e) = 1. We give a sufficient condition using degree condition for a graph to be a fractional ID-(g, f )-
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1. Introduction

The graphs discussed here are finite, undirected and simple. For a graph G, its vertex set is denoted
by V(G) and its edge set is denoted by E(G). For x ∈ V(G), we use NG(x) to denote the set of vertices
adjacent to x in G, NG[x] = NG(x) ∪ {x} and dG(x) = |NG(x)| is the degree of x in G. Setting
δ(G) = min{dG(x) : x ∈ V(G)}. For S ⊆ V(G), G[S ] denotes the subgraph of G induced by S . We
write G − S = G[V(G) \ S ] and NG(S ) =

⋃
x∈S

NG(x). If NG(S ) ∩ S = ∅, then we call S independent.

For X ⊆ E(G), G[X] denotes the subgraph of G induced by X.
Let g and f be two integer-valued functions defined on V(G) satisfying 0 ≤ g(x) ≤ f (x) for any

x ∈ V(G) and let h : E(G) → [0, 1] be a function with g(x) ≤
∑
e∋x

h(e) ≤ f (x) for any x ∈ V(G).

Define Fh = {e : h(e) > 0, e ∈ E(G)}. Then we call G[Fh] a fractional (g, f )-factor of G with indicator
function h. Naturally, a fractional (g, f )-factor is a fractional [a, b]-factor if g(x) = a and f (x) = b
for all x ∈ V(G), and a fractional [k, k]-factor is called a fractional k-factor. If h(e) ∈ {0, 1} for any
e ∈ E(G), then a fractional (g, f )-factor, a fractional [a, b]-factor and a fractional k-factor are called a
(g, f )-factor, an [a, b]-factor and a k-factor, respectively.

A graph G is defined as a fractional ID-(g, f )-factor-critical graph if G − I possesses a fractional
(g, f )-factor for any independent set I of G. A graph G is defined as a fractional (g, f )-covered graph
if for any e ∈ E(G), G admits a fractional (g, f )-factor with indicator function h satisfying h(e) = 1.
Similarly, we may define a fractional ID-[a, b]-factor-critical graph, a fractional ID-k-factor-critical
graph, a fractional [a, b]-covered graph and a fractional k-covered graph.
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There are a rich literature on the existence of factors and fractional factors in graphs. More specif-
ically, a great deal of results on the existence of factors in graphs with given properties can be dis-
covered in [1–7], and a lot of results can be discovered in [8–12] related to the existence of fractional
factors in graphs with prescribed properties. Zhou, Bian and Wu [13] demonstrated a degree condition
for a graph being fractional ID-k-factor-critical. Yashima [14] posed a degree condition for a graph to
be fractional ID-[a, b]-factor-critical.

Theorem 1 ( [13]). Let k be an integer with k ≥ 1, and let G be a graph of order n with n ≥ 6k − 2
and δ(G) ≥ n

3 + k. If G satisfies

max{dG(x), dG(y)} ≥
2n
3

for each pair of nonadjacent vertices x, y of G, then G is fractional ID-k-factor-critical.

Theorem 2 ( [14]). Let b ≥ a ≥ 1 be integers, and let G be a graph of order n with n ≥ (a+2b)(2a+b+1)
b

and δ(G) ≥ bn
a+2b + a. If G satisfies

max{dG(x), dG(y)} ≥
(a + b)n
a + 2b

for each pair of nonadjacent vertices x, y of G, then G is fractional ID-[a, b]-factor-critical.

Combining the definition of a fractional ID-(g, f )-factor-critical graph with that of a fractional
(g, f )-covered graph, we present the definition of a fractional ID-(g, f )-factor-critical covered graph,
that is, a graph G is called fractional ID-(g, f )-factor-critical covered if G − I is fractional (g, f )-
covered for any independent set I of G. A fractional ID-(k, k)-factor-critical covered graph is simply
called a fractional ID-k-factor-critical covered graph. In this article, we prove the following theorem
for a graph being fractional ID-(g, f )-factor-critical covered, which is a generalization of Theorems 1
and 2.

Theorem 3. Let a, b, r be integers with r ≥ 0 and b − r ≥ a ≥ 1, let G be a graph of order n with
n ≥ (a+b)(2a+b+r)+2

a+r and δ(G) ≥ (a+r)n
2a+b+r +

(b−r+1)2−(a+r)(b−a−2r+1)
a+r , and let g, f : V(G) → Z be two functions

with a ≤ g(x) ≤ f (x) − r ≤ b − r for each x ∈ V(G). If G satisfies

max{dG(x), dG(y)} ≥
(a + b)n + 2
2a + b + r

for each pair of nonadjacent vertices x, y of G, then G is fractional ID-(g, f )-factor-critical covered.

Using Theorem 3, the following two results hold.

Corollary 1. Let a, b be integers with b ≥ a ≥ 1, let G be a graph of order n with n ≥ (a+b)(2a+b)+2
a and

δ(G) ≥ an
2a+b +

(b+1)2−a(b−a+1)
a , and let g, f : V(G) → Z be two functions with a ≤ g(x) ≤ f (x) ≤ b for

each x ∈ V(G). If G satisfies

max{dG(x), dG(y)} ≥
(a + b)n + 2

2a + b

for each pair of nonadjacent vertices x, y of G, then G is fractional ID-(g, f )-factor-critical covered.

Corollary 2. Let k be an integer with k ≥ 1, let G be a graph of order n with n ≥ 6k + 2
k and

δ(G) ≥ n
3 + k + 1 + 1

k . If G satisfies

max{dG(x), dG(y)} ≥
2kn + 2

3k

for each pair of nonadjacent vertices x, y of G, then G is fractional ID-k-factor-critical covered.
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2. The proof of Theorem 3

The following result acquired by Li, Yan and Zhang [15] will be used to prove Theorem 3.

Theorem 4 ( [15]). Let G be a graph, and let g, f : V(G)→ Z be two functions with 0 ≤ g(x) ≤ f (x)
for every x ∈ V(G). Then G is fractional (g, f )-covered if and only if

δG(S ,T ) = f (S ) − g(T ) +
∑
x∈T

dG−S (x) ≥ ε(S )

for any S ⊆ V(G), where T = {x : x ∈ V(G) \ S , dG−S (x) ≤ g(x)} and ε(S ) is defined by

ε(S ) =



2, i f S is not independent,
1, i f S is independent and there is an edge joining

S and V(G) \ (S ∪ T ), or there is an edge e = uv
joining S and T such that dG−S (v) = g(v) f or
v ∈ T,

0, otherwise.

Proof of Theorem 3. Let I be an independent set of G, and let H = G− I. In order to prove Theorem 3,
it suffices to show that H is fractional (g, f )-covered. Assume that H is not fractional (g, f )-covered.
Then by Theorem 4, we have

δH(S ,T ) = f (S ) − g(T ) +
∑
x∈T

dH−S (x) ≤ ε(S ) − 1 (1)

for some S ⊆ V(H), where T = {x : x ∈ V(H) \ S , dH−S (x) ≤ g(x)}.
Claim 1. |I| ≤ (a+r)n−2

2a+b+r .
Proof. Note that n ≥ (a+b)(2a+b+r)+2

a+r . Thus, the inequality holds for 0 ≤ |I| ≤ 1. Next, we assume that
|I| ≥ 2. It follows from the hypothesis of Theorem 3 and I being an independent set of G that

max{dG(x), dG(y)} ≥
(a + b)n + 2
2a + b + r

for any two distinct vertices x, y ∈ I. Thus, we acquire

|I| +
(a + b)n + 2
2a + b + r

≤ |I| +max{dG(x), dG(y)} ≤ n,

namely,

|I| ≤
(a + r)n − 2
2a + b + r

.

Claim 1 is demonstrated. 2

Note that ε(S ) ≤ |S |. If T = ∅, then using (1), we gain ε(S ) − 1 ≥ δH(S ,T ) = f (S ) ≥ (a + r)|S | ≥
|S | ≥ ε(S ), a contradiction. Hence, T , ∅. Let

h1 = min{dH−S (x) : x ∈ T },

and select x1 ∈ T with dH−S (x1) = h1. If T \ NT [x1] , ∅, then we write

h2 = min{dH−S (x) : x ∈ T \ NT [x1]},

and select x2 ∈ T \ NT [x1] with dH−S (x2) = h2. Apparently, 0 ≤ h1 ≤ h2 ≤ b − r.
In what follows, the proof is divided into two cases.

Case 1. T = NT [x1].
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Claim 2. |S | + dH−S (x) > b − r + 1 for every x ∈ T .
Proof. According to Claim 1, δ(G) ≥ (a+r)n

2a+b+r +
(b−r+1)2−(a+r)(b−a−2r+1)

a+r and H = G − I, we have

|S | + dH−S (x) ≥ dH(x) = dG−I(x) ≥ dG(x) − |I| ≥ δ(G) − |I|

≥
(a + r)n

2a + b + r
+

(b − r + 1)2 − (a + r)(b − a − 2r + 1)
a + r

−
(a + r)n − 2
2a + b + r

=
(b − r + 1)2 − (a + r)(b − a − 2r + 1)

a + r
+

2
2a + b + r

>
(b − r + 1)2 − (a + r)(b − a − 2r + 1)

a + r

=
(b − a − 2r + 1)2 + (a + r)(b − r + 1)

a + r
≥ b − r + 1

for every x ∈ T . Claim 2 is verified. 2

Claim 3. |T | ≥ a + r + 1.
Proof. Assume |T | ≤ a + r. Then it follows from (1), ε(S ) ≤ 2, T , ∅ and Claim 2 that

1 ≥ ε(S ) − 1 ≥ δH(S ,T ) = f (S ) − g(T ) +
∑
x∈T

dH−S (x)

≥ (a + r)|S | − (b − r)|T | +
∑
x∈T

dH−S (x)

≥ |T ||S | − (b − r)|T | +
∑
x∈T

dH−S (x)

=
∑
x∈T

(|S | + dH−S (x) − (b − r))

>
∑
x∈T

(b − r + 1 − (b − r))

= |T | ≥ 1,

this is a confliction. The proof of Claim 3 is finished. 2

Note that |T | = |NT [x1]| ≤ dH−S (x1) + 1 = h1 + 1. Combining this with 0 ≤ h1 ≤ b − r, we acquire

|T | ≤ h1 + 1 ≤ b − r + 1. (2)

Using (2) and Claim 3, we have

a + r + 1 ≤ |T | ≤ h1 + 1 ≤ b − r + 1,

which implies
h1 ≥ a + r (3)

and
b ≥ a + 2r. (4)

By Claim 1, H = G − I and δ(G) ≥ (a+r)n
2a+b+r +

(b−r+1)2−(a+r)(b−a−2r+1)
a+r , we get

|S | + h1 = |S | + dH−S (x1) ≥ dH(x1) = dG−I(x1)
≥ dG(x1) − |I| ≥ δ(G) − |I|

≥
(a + r)n

2a + b + r
+

(b − r + 1)2 − (a + r)(b − a − 2r + 1)
a + r
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−
(a + r)n − 2
2a + b + r

=
(b − r + 1)2 − (a + r)(b − a − 2r + 1)

a + r
+

2
2a + b + r

>
(b − r + 1)2 − (a + r)(b − a − 2r + 1)

a + r
,

namely,

|S | >
(b − r + 1)2 − (a + r)(b − a − 2r + 1)

a + r
− h1. (5)

Using (1), (2), (3), (4), (5) and ε(S ) ≤ 2, we obtain

1 ≥ ε(S ) − 1 ≥ δH(S ,T ) = f (S ) − g(T ) +
∑
x∈T

dH−S (x)

≥ (a + r)|S | − (b − r)|T | + h1|T |

= (a + r)|S | − (b − r − h1)|T |

> (a + r)
( (b − r + 1)2 − (a + r)(b − a − 2r + 1)

a + r
− h1

)
−(b − r − h1)(b − r + 1)

= (h1 − a − r)(b − a − 2r + 1) + b − r + 1
≥ b − r + 1 ≥ a + 1 ≥ 2,

which is a confliction.
Case 2. T , NT [x1].

Note that x1 ∈ T and x2 ∈ T \ NT [x1]. We easily see that x1x2 < E(G). By the hypothesis of
Theorem 3, H = G − I and 0 ≤ h1 ≤ h2 ≤ b − r, we have

(a + b)n + 2
2a + b + r

≤ max{dG(x1), dG(x2)}

≤ max{dH−S (x1) + |S | + |I|, dH−S (x2) + |S | + |I|}
= max{h1 + |S | + |I|, h2 + |S | + |I|}

= h2 + |S | + |I|,

namely,

|S | ≥
(a + b)n + 2
2a + b + r

− h2 − |I|. (6)

Note that |S | + |T | + |I| ≤ n, h2 − h1 ≥ 0, b − r − h2 ≥ 0 and |NT [x1]| ≤ dH−S (x1) + 1 = h1 + 1.
Combining these with (1) and ε(S ) ≤ 2, we derive

(n − |S | − |T | − |I|)(b − r − h2) ≥ 0 ≥ δH(S ,T ) − ε(S ) + 1
= f (S ) − g(T ) +

∑
x∈T

dH−S (x) − ε(S ) + 1

≥ (a + r)|S | − (b − r)|T | + h1|NT [x1]| + h2(|T | − |NT [x1]|) − 1
= (a + r)|S | − (b − r)|T | − (h2 − h1)|NT [x1]| + h2|T | − 1
= (a + r)|S | − (h2 − h1)|NT [x1]| − (b − r − h2)|T | − 1
≥ (a + r)|S | − (h2 − h1)(h1 + 1) − (b − r − h2)|T | − 1.

Therefore,
(n − |S | − |I|)(b − r − h2) ≥ (a + r)|S | − (h2 − h1)(h1 + 1) − 1.

The inequality above implies

(b − r − h2)n − (a + b − h2)|S | − (b − r − h2)|I| + (h2 − h1)(h1 + 1) + 1 ≥ 0. (7)
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By (6), (7), Claim 1 and n ≥ (a+b)(2a+b+r)+2
a+r , we have

0 ≤ (b − r − h2)n − (a + b − h2)|S | − (b − r − h2)|I|
+(h2 − h1)(h1 + 1) + 1

≤ (b − r − h2)n − (a + b − h2)
( (a + b)n + 2

2a + b + r
− h2 − |I|

)
−(b − r − h2)|I| + (h2 − h1)(h1 + 1) + 1

= −
((a + r)2 + (a + r)h2)n

2a + b + r
−

2(a + b − h2)
2a + b + r

+ (a + b − h2)h2

+(a + r)|I| + (h2 − h1)(h1 + 1) + 1

≤ −
((a + r)2 + (a + r)h2)n

2a + b + r
−

2(a + b − h2)
2a + b + r

+ (a + b − h2)h2

+
(a + r)((a + r)n − 2)

2a + b + r
+ (h2 − h1)(h1 + 1) + 1

= −
(a + r)h2n
2a + b + r

+ (a + b − h2)h2 + (h2 − h1)(h1 + 1)

+
2h2

2a + b + r
− 1.

Hence,

−
(a + r)h2n
2a + b + r

+ (a + b − h2)h2 + (h2 − h1)(h1 + 1) +
2h2

2a + b + r
− 1 ≥ 0. (8)

Note that 0 ≤ h1 ≤ h2 ≤ b − r. First assume h2 = 0. Then h1 = 0, and thus it follows from (8) that
−1 ≥ 0, a contradiction. We next discuss 1 ≤ h2 ≤ b − r.

Let

F(h1, h2) = −
(a + r)h2n
2a + b + r

+ (a + b − h2)h2 + (h2 − h1)(h1 + 1) +
2h2

2a + b + r
− 1.

Using 0 ≤ h1 ≤ h2 ≤ b − r, 1 ≤ h2 ≤ b − r and n ≥ (a+b)(2a+b+r)+2
a+r , we obtain

∂F(h1, h2)
∂h2

= −
(a + r)n

2a + b + r
+ a + b − h2 − h2 + h1 + 1 +

2
2a + b + r

≤ −
(a + r)n

2a + b + r
+ a + b − h2 + 1 +

2
2a + b + r

≤ −
(a + b)(2a + b + r) + 2

2a + b + r
+ a + b +

2
2a + b + r

= 0,

which implies
F(h1, h2) ≤ F(h1, h1). (9)

It follows from (8), (9), 0 ≤ h1 ≤ b − r and n ≥ (a+b)(2a+b+r)+2
a+r that

0 ≤ F(h1, h2) ≤ F(h1, h1)

= −
(a + r)h1n
2a + b + r

+ (a + b − h1)h1 +
2h1

2a + b + r
− 1

≤ −
((a + b)(2a + b + r) + 2)h1

2a + b + r
+ (a + b − h1)h1

+
2h1

2a + b + r
− 1

= −h2
1 − 1 ≤ −1,

this is a confliction. We finish the proof of Theorem 3. 2
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3. Remark

Let G = (b−r)tK1∨ (a+r)tK1∨ ((a+r)t+1)K1 be the complete 3-partite graph having three vertex
sets of size (b − r)t, (a + r)t and (a + r)t + 1, respectively. So any two vertices contained in distinct
vertex sets are adjacent and any two vertices contained in the same vertex set are not adjacent. Next,
we show that the condition

max{dG(x), dG(y)} ≥
(a + b)n + 2
2a + b + r

declared in Theorem 3 cannot be replaced by

max{dG(x), dG(y)} ≥
(a + b)n + 2
2a + b + r

− 1,

where a, b, r, t are nonnegative integers such tat 2 ≤ a = b−r and t is enough large. Setting |V(G)| = n,
we have n = (2a + b + r)t + 1. For for any two vertices x and y of ((a + r)t + 1)K1, we have

(a + b)n + 2
2a + b + r

> max{dG(x), dG(y)} = (b − r)t + (a + r)t = (a + b)t

= (a + b) ·
n − 1

2a + b + r
=

(a + b)n + 2
2a + b + r

−
a + b + 2
2a + b + r

≥
(a + b)n + 2
2a + b + r

− 1

Thus, we easily see that

max{dG(x), dG(y)} ≥
(a + b)n + 2
2a + b + r

− 1

for any two nonadjacent vertices x, y of G. Let I = V((a + r)tK1). Then I is an independent set of G.
Setting H = G − I = (b − r)tK1 ∨ ((a + r)t + 1)K1, S = V((b − r)tK1) and T = V(((a + r)t + 1)K1).
Define g(x) = b − r and f (x) = a + r for every x ∈ V(G). Note that ε(S ) = 0. Thus, we acquire

δH(S ,T ) = f (S ) − g(T ) +
∑
x∈T

dH−S (x)

= (a + r)|S | − (b − r)|T |
= (a + r)(b − r)t − (b − r)((a + r)t + 1)
= −(b − r) = −a < 0 = ε(S ).

In light of Theorem 4, H is not fractional (g, f )-covered, and so G is not fractional ID-(g, f )-factor-
critical covered.
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