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Abstract: We consider the eccentric graph of a graph G, denoted by ecc(G), which has the same
vertex set as G, and two vertices in the eccentric graph are adjacent iff their distance in G is equal to the
eccentricity of one of them. In this paper, we present a fundamental requirement for the isomorphism
between ecc(G) and the complement of G, and show that the previous necessary condition given in
the literature is inadequate. Also we obtain that diameter of ecc(T ) is at most 3 for any tree and get
some characterizations of the eccentric graph of trees.
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1. Introduction

Consider a simple graph G = (V, E), where the adjacency between vertices vi and v j is indicated
by viv j ∈ E(G) or vi ∼ v j. The distance between two vertices u and v in G is symbolized as dG(u, v) or,
more concisely, as d(u, v). It signifies the minimum number of edges required to traverse from u to v
in the graph. The eccentricity ecc(u) of a vertex u in G is the maximum distance between u and any
vertex v in the graph. In other words, it measures how far apart v is from the farthest vertex in G. The
diameter and radius of any graph G, denoted by diam(G) and rad(G), are the maximum and minimum
eccentricity among all vertices, respectively. If a graph G satisfies the condition diam(G) = rad(G) =
d for some value d, it is referred to as a d-self-centered graph. This means that eccentricities of all
vertices in G are the same.

Consider a collection of mutually disjoint nonempty finite sets V1, . . . ,Vn of any graph G. The
construction of a graph, formed by taking the union of the sets V1, . . . ,Vn, is as follows: for each i, the
vertices within Vi are either all adjacent to each other (forming a clique) or all non-adjacent to each
other (forming a coclique). In the graph, two vertices, one from Vi and another from V j, are adjacent
if and only if i ∼ j in G.

The mixed extension MEG[±p1,±p2, . . . ,±pn] (also referred to as the mixed extension of G of
type ((±p1,±p2, . . . ,±pn)) is constructed by extending the vertex set of G and specifying the cliques
and cocliques according to the given types. In this notation, +pi represents a clique of size pi, and −pi

represents a coclique of size pi. If the vertices of G consist of cocliques (cliques), then the extension
will be referred to as a coclique (clique) extension [1].

A tree is a connected undirected graph without any cycles or loops. It consists of vertices (also
known as nodes) and edges. In a rooted tree, one vertex is chosen as the root, which serves as the
starting point for traversing the tree. Each vertex in the tree has a level, indicating the number of edges
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in the path from that vertex to the root. The root itself is at level 0. Consider two vertices, denoted as
v and w, in a rooted tree. We say that vertex v is an ancestor of w if it lies on the unique path from w
to the root. Similarly, w is considered a descendant of v. A vertex in a rooted tree is called a leaf if it
does not have any children, meaning it is at the end of a branch and has no vertices connected below
it.

The eccentric graph ecc(G) of any graph G has the same vertex set with G and two vertices in
ecc(G) are adjacent iff their distance in G is equal to the eccentricity of one of them. The eccentric
graph of a graph has been first introduced by Akiyama et al. in 1985 [2]. Studies on the eccentric
graph of some graphs with special type such as unique eccentric point graphs, path graphs, cycle
graphs etc. can be seen in [3–7].

One of the fundamental problems in graph theory is to determine when two graphs are isomorphic.
In this paper, we focus on the problem of determining when ecc(G) is isomorphic to the complement
of G. This problem has been investigated by Akiyama et. al [2], where they gave a necessary condition
for ecc(G) to be isomorphic to the complement of G. However, we show that this condition is inade-
quate by presenting an example of a graph G whose eccentric graph is isomorphic to its complement,
but does not satisfy the previous necessary condition.

Motivated by this, we correct the necessary condition for ecc(G) � G. We prove our result by
using the necessary condition given in [2], and show that our condition is stronger than the previous
one. We also obtain the structure of ecc(T ) with respect to its center(s). Finally, we show that the
diameter of the eccentric graph of any tree is at most 3.

2. Main Results

We give a more mathematical definition of Akiyama et al. below.

Definition 1. [2] Let G be a graph with vertex set V and edge set E. The eccentric graph of G is
denoted by ecc(G) = (V, E′) where E′ = {(u, v) : dG(u, v) = ecc(u) or dG(u, v) = ecc(v) for u, v ∈ V}.

The eccentric graph of some extremal graphs such as path, complete, cycle etc. is given the
following table by using the concept of eccentric graph.

G ecc(G)
Complete graph Kn Complete Graph Kn

Star graph S n Complete graph Kn

Cycle graph C2n Disjoint union of K2

Cycle graph C2n−1 Cycle graph C2n−1

Path graph P2n Double star
Path graph P2n−1 S ∗n−3

2 ,
n−3

2
(Figure 1)

Complete bipartite graph Kn,m Disjoint union of Kn and Km

Table 1. Eccentric Graphs of Extremal Graphs

...
...

Figure 1. S ∗n−3
2 ,

n−3
2

Theorem 1. [2] ecc(G) � G if and only if S i = ∅ for i = 1, 4, 5, 6 . . . and no two vertices in S 3 have
a common neighbour , where S i = {u ∈ V : ecc(u) = i}.
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The Akiyama et al. [2] Theorem, labeled as Theorem 1, posits that ecc(G) � G under certain
conditions. A slight discrepancy exists in the necessary conditions for ecc(G) � G, as outlined in the
theorem. Specifically, if S i = ∅ for i = 1, 4, 5, 6 . . . and vertices in S 3 lack common neighbors, with
u and v in S 3 having a distance of 3 in graph G, the theorem holds. Remarkably, even when vertices
in S 3 are adjacent, contrary to the stipulated conditions, the result ecc(G) � G persists. Figure 2
illustrates this phenomenon, where the adjacency of vertices 1 and 4 in G, both within S 3, does not
negate the validity of ecc(G) � G.

3 2

7

5 6

1 4

,

2

4

37 6

1

5

G ecc(G) = G
Figure 2. In the Graph G, S 3 = {1, 2, 3, 4} and its Eccentric Graph on the Right Side is also
Isomorphic to its Complement

Now we give the corrected theorem by also using the proof and also proof.

Theorem 2. Let G = (V, E) be a graph. ecc(G) is isomorphic to the complement of G if and only if
S i = ∅ for i = 1, 4, 5, . . . and d(u, v) , 2 in G for any u, v ∈ S 3, where S i = {u ∈ V : ecc(u) = i}.

Proof. Suppose that ecc(G) � G. Let S 1 , ∅ for i = 1. It means that G has an isolated vertex. But
this contradicts ecc(G) � G. Now let S i , ∅ for some i greater than or equal to 4. In this case,
there is a shortest path u1u2 . . . ut in G. So we have ecc(u2) ≥ t − 2 and ecc(ut−1) ≥ t − 2. Then we
have d(u2, ut−1) = t − 3 and hence u2 and ut−1 are adjacent in G but not in ecc(G). This is also a
contradiction. Therefore S i = ∅ for i = 1 and i ≥ 4.

Similarly assume that d(u, v) = 2 for any u, v ∈ S 3. This implies that u and v are not adjacent in
G. Moreover, in ecc(G), they are also not adjacent because dG(u, v) , 3. However, this contradicts
the assumption that ecc(G) is isomorphic to the complement of G. Therefore, we can conclude that
d(u, v) , 2 in G for any u, v ∈ S 3.

Conversely, let u and v be vertices in S 3. Since dG(u, v) , 2, we have dG(u, v) = 1 or dG(u, v) = 3.
If d(u, v) = 1 in G, then u / v in ecc(G). If d(u, v) = 3 in G (which means u / v in G), then u ∼ v in
ecc(G). Hence, we can conclude that u ∼ v in G if and only if u / v in ecc(G) for u, v ∈ S 3.

Now, let u ∈ S 2 and v ∈ S 3. If u ∼ v in G, then u / v in ecc(G) since dG(u, v) = 1 , ecc(u) (also
ecc(v)). If u / v in G, we have d(u, v) = 2 = ecc(u) in G. This implies that u ∼ v in ecc(G). Finally,
let u, v ∈ S 2. In this case, u ∼ v in G if and only if u / v in ecc(G) because S i = ∅ for i = 1, 4, 5, . . ..

Therefore, in ecc(G), two vertices are adjacent if and only if they are not adjacent in G. This
implies that ecc(G) � G.

□

Lemma 1. [3] Every tree has either one or two centers.

Lemma 2. If T is a tree with two centers, ecc(T ) must be isomorphic to any coclique extension of P4.
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Proof. Let T be a tree. Assume that T has two center vertices, denoted as c1 and c2.
Consider the bridge in T connecting c1 and c2, denoted as c1c2.
We can partite the vertex set of T into two subsets with respect to this bridge as V1 =

{v ∈ V : there exists a path in T from v to c1 that does not cross c1c2} and V2 = {v ∈ V :
there exists a path in T from v to c2 that does not cross c1c2}. These partitions are disjoint, meaning
that no vertex belongs to both V1 and V2. Define Tc1 = {x ∈ V1 : dT (x, c1) < rad(T )} and
Tc2 = {x ∈ V2 : dT (x, c2) < rad(T )}. Notice that the remaining vertices are the diametrical vertices
in both V1 and V2. Now let U1 and U2 be the set of diametrical vertices in V1 and V2, respectively.
Since dT (x, y) = diam(T ) for x ∈ U1, y ∈ U2, by definition of the eccentric graph, they must be adja-
cent each other. Hence, ecc(T ) contains the complete bipartite graph K|U1 |,|U2 | as an induced subgraph.
Also, for any x ∈ Tc1 and for y ∈ U2, we get x ∼ y in ecc(T ) since dT (x, y) = ecc(x). Similarly,
for any x ∈ Tc2 and for y ∈ U1, we also get x ∼ y in ecc(T ). Therefore ecc(T ) is isomorphic to
MEP4[−p1,−p2,−p3,−p4] where p1 = |Tc1 |, p2 = |U2|, p3 = |U1| and p4 = |Tc2 |. □

Example 1. T ′ in the Figure 3 is a tree with diameter 5 and radius 3. We have, C(T ′) = {1, 9};
S 5 = {4, 5, 6, 7, 8, 14, 15} = {4, 5, 6, 7, 8} ∪ {14, 15}; T1 = {1, 2, 3} and T9 = {9, 10, 11, 12, 13}. Hence
ecc(T ′) �MEP4[−3,−2,−5,−5].

4 2 1 9 13 14

5 3 1110 12 15

76 8

Figure 3. A Tree T ′ with 15 Vertices

Lemma 3. Let T be a tree with exactly one center vertex. Then ecc(T ) is a 2-self centered graph if
and only if among the diametrical leaves, there is at least one triple (x, y, z) such that the distance
between each pair of vertices x,y and z is equal to diam(T ).

Proof. First, consider T as a rooted tree with c as the center vertex.
Let ecc(T ) is a 2-self centered. This means that for any two vertices x, y ∈ ecc(T ), we have

decc(T )(x, y) = 2. Suppose that there is no triple (x, y, z) in T such that the vertices x, y, and z are
diametrical leaves of T , and the distance between every pair of vertices x, y, z is equal to the diameter
of T . Note that T is at least two diametrical pair of leaves. Let x and y be diametrical vertices in T .
Now, consider the paths P and Q from the root c to x and y respectively. Let u and v be any vertices
such that x , u and y , w and that are at the same level in P and Q, respectively. This implies that
dT (u, c) = dT (w, c) = k < rad(T ). Since dT (u,w) = dT (u, c) + dT (w, c) = k + k < k + rad(T ) = ecc(u),
we have u / v in ecc(T ). Notice that dT (u, y) = ecc(u) and dT (x,w) = ecc(w), so we get u ∼ y and
x ∼ w and hence, there is a path u − y − x − w in ecc(T ). Since there is no other diametrical vertex
which is at distance diam(T ) with both x and y, u and w have no common neighbour in ecc(T ).
Hence we get decc(T )(u,w) = 3. But, this contradicts the assumption that ecc(T ) is a 2-self centered
graph. Therefore, there must exist at least one triple (x, y, z) in T such that the vertices x, y and z
are diametrical leaves of T such that the distance between each pair of vertices x, y, z is equal to the
diameter of T .
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Conversely, let x,y and z be the diametrical leaves such that the distance between each pair of
vertices x, y, z is equal to diam(T ).

Case 1. Let x , u and x , v be vertices that lies on path P where P is from the root c to x in T . In
this case, since dT (u, y) = ecc(u) and dT (v, y) = ecc(v), hence u ∼ y and v ∼ y in ecc(T ). This implies
that decc(T )(u, v) = 2.

Case 2. Let x , u and y , v be vertices that lie on the paths P and Q, respectively, where P is
the path from the root c to x and Q is the path from the root c to y in T . If the vertices u and v are
at the same level (i.e., ecc(u) = ecc(v)) in T , we have u / v in ecc(T ) because dT (u, c) = dT (v, c) =
k < rad(T ) and dT (u, v) = 2k < k + rad(T ) = ecc(u) = ecc(v) in T . However, u and v have a
common neighbour, denoted by z, such that u ∼ z and v ∼ z in ecc(T ), implying that decc(T )(u, v) = 2.
Without loss of generality, assume that u and v are at different levels (i.e., ecc(u) , ecc(v)) in T .
Let k1 = dT (u, c) < dT (v, c) = k2 in T . Then we have dT (u, v) = k1 + k2, but ecc(u) = k1 + rad(T )
and ecc(v) = k2 + rad(T ) in T . Hence, u and v cannot be adjacent in ecc(T ). Similar to the above
argument, u and v have a common neighbour z, and thus decc(T )(u, v) = 2 in ecc(T ).

Case 3. Let u and v be the vertices that have a common ancestor (except for c) with respect to
x in T . In this case, it is obvious that u and v are not adjacent in ecc(T ), that is, u / v in ecc(T ).
Additionally, since u and v share a common ancestor in T , they also have at least two common
neighbours (y and z) in ecc(T ). Furthermore, both u and v are not adjacent to their respective ancestors.
Therefore, we can conclude that decc(T )(u, v) = 2 in ecc(T ).

Case 4. Let u and v be any two vertices that have no common ancestor (except for c) with respect
to each of the vertices x, y, and z in T . Since x, y, and z are diametrical leaves of T , the paths from
the root c to x, y, and z in T are pairwise disjoint. Hence, it is straightforward to observe that u and v
are adjacent to each of x, y, and z in ecc(T ). Thus, we can conclude that decc(T )(u, v) = 2 in ecc(T ), as
there exists a path of length 2 connecting them through either x, y, or z in ecc(T ).

Therefore, we have shown that for every u vertex in T , we have ecc(u) = 2 in ecc(T ). Thus, we
have diam(ecc(T )) = rad(ecc(T )) = 2, which implies that ecc(T ) is a 2-self centered graph.

□

Corollary 1. Let T be a tree with exactly one center vertex. If among the diametrical leaves, there
does not exist any triple (x, y, z) such that the distance between each pair of vertices x, y and z is equal
to the diameter of T , diam(ecc(T )) = 3.

Proof. It is obvious from Lemma 3. □

Theorem 3. The diameter of ecc(T ) is at most 3 for any tree T .

Proof. In case there are two centers in T , based on Lemma 2, it can be inferred that ecc(T ) is iso-
morphic to the coclique extension of P4, implying that diam(ecc(T )) = 3. In case there are only one
center vertex in T , taking into account Lemma 3 and Corollary 1 , we can conclude directly. □

Remark 1. Theorem 3 is applicable only for trees. In general graphs, the diameter of the eccentric
graph can exceed 3. For instance, consider the 3 × 4 grid graph G shown in Figure 4. In this case,
we have diam(ecc(G)) = 5, which demonstrates that the diameter can exceed 3 in general graphs.
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Figure 4. 3 × 4 grid graph and its eccentric graph

3. Conclusion

In this paper, starting from Akiyama’s eccentric graph definition in 1985, we revealed the diame-
tral properties of trees. First, we made a slight correction to a theorem given by Akiyama et. al.
Subsequently, we concluded that the diameter of eccentric graphs of any tree at most 3. Despite the
limited number of studies on the eccentric graph of a graph until now, it is highly likely that this will
shed light on many problems in graph theory and also spectral graph theory. For example, it is clear
that the diameter of ecc(G) cannot be greater than the diameter of G since decc(G)(u, v) ≤ diam(G) for
any vertices u and v. So, we suggest the first problem:

Problem 1. Characterize the graphs which have the same diameter with its eccentric graph.

Building on the motivation of this paper, we can also present the following problem:

Problem 2. Classify the graphs which are isomorphic to its eccentric graph.
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