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Abstract: For a poset P = Ca × Cb, a subset A ⊆ P is called a chain blocker for P if A is inclusion
wise minimal with the property that every maximal chain in P contains at least one element of A,
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1. Introduction

Let P = Ca × Cb be a poset where Ci is the chain 1 < · · · < i. A chain blocker of P is defined
as a subset B ⊆ P such that every maximal chain in P contains at least one element of B and B is
inclusion wise minimal with this property. Initial concept of a chain blocker came from its algebraic
properties. Let S = k[x1, . . . , xn] be the polynomial ring over a field k and in n variables. A monomial
ideal in S is an ideal generated by only monomials. A monomial ideal I ⊂ S is called a squarefree
monomial ideal if it is generated by squarefree monomials. An ideal J is called primary if u1u2 ∈ J
implies either u1 ∈ J or ul

2 ∈ J for some l > 0. A primary decomposition of an ideal I is an expression
of I as a finite intersection of primary ideals [1–3]. To each poset P of cardinality n we associate an
ideal IP ⊂ S = k[x1, . . . , xn] in the following way.

We take the Hasse diagram of P as a directed graph G = (V, E). In [4], Conca and Negri defined
path ideals IG of G as a monomial ideal generated by all paths of length t in G, i.e. IG = ⟨xi1 · · · xit :
xi1 , . . . , xit⟩ is a path of length t in G >⊆ k[x1, . . . , xn]. The path ideals associated to Hasse diagram
of a poset have also been studied in [5]. In our case n = ab and we denote this ideal by IP such that
the generators of IP correspond to the maximal chains in P. The chain blockers of P have one to one
correspondence with the irreducible primary components of IP (Proposition 9).

In [6] chain blockers of Ca×Cb are being discussed for a ≤ 4 and b ≥ 1. In [7] a new combinatorial
interpretation of the convoluted Catalan numbers were studied when chain blockers of P were studied
for some special cases. The Catalan numbers C(m) = C(m, 1) were introduced in 1887 by Catalan
[8–10].

In Section 2 we define an i-shelter of S i( j) as a subset C of P \ {R(P),L(P)} with the property that
each maximal chain of P containing v ∈ S i( j) contains at least one element of C and C is inclusion
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wise minimum with this property. Here R(P) and L(P) denote right maximum and left maximum
chains of P, respectively. We use this definition to describle chain blockers of C5 × Cb for b ≥ 1. In
Section 3 some algebraic consequences of chain blockers are given.

2. Main Result

Let P = Ca ×Cb be a poset where Ci is the chain 1 < · · · < i. Let

L(P) := (1, 1) < · · · < (1, b) < · · · < (a, b)

be the left maximal chain of P and

R(P) := (1, 1) < · · · < (a, 1) < · · · < (a, b)

be the right maximal chain of P. We quote the following Corollary of [7].

Corollary 1. Let B ⊆ P = Ca × Cb be a chain blocker. Then B contains exactly one element from
R(P) and exactly one element from L(P).

For a particular subset of P, we define its shelter in the following way.

Definition 1. Let S i( j) = {(2, j), (3, j), . . . , (i + 1, j)} ⊂ P. An i-shelter of S i( j) is a subset C of
P \ {R(P),L(P)} with the property that each maximal chain of P containing v ∈ S i( j) contains at least
one element of C and C is inclusion wise minimum with this property.

For example in Figure 1 (a), i = 1, j = 2 and an 1-shelter is {(2, 5), (3, 6), (4, 5), (4, 4), (4, 3), (4, 2)}.
Also, in Figure 1(b), i = 2, j = 4 and a 2-shelter is {(2, 7), (3, 7), (4, 6), (4, 5), (4, 4)}. Note that i-shelter
is not unique. We denote set of all i-shelters of S i( j) as Ŝ i( j) with |Ŝ i( j)| = ξi( j).
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Figure 1. Two Shelters S 1(2) and S 2(4) for the Poset C5 ×C8

Proposition 1. Let P = C5 ×Cb be a poset and Ŝ 1( j) be the set of all 1-shelter of S 1( j) ⊂ P. Then

|Ŝ 1( j)| = ξ1( j) = 3(2b− j−1) − b + j − 1.
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Proof. Let C be a 1-shelter of {(2, j)}. Then C must contains exactly one element from the set Γ =
{(2, j), . . . , (2, b − 1)}. Because if C does not contain any element from Γ then C does not fulfil the
definition of 1-shelter and if there are two elements α, β ∈ Γ ∩ C with α < β then by minimality of C
β < C, a contradiction. Now if (2, j) ∈ C then C = {(2, j)} is itself a 1-shelter. Now let (2, i) ∈ Γ ∩ C
for i ∈ { j+1, . . . , b−1}, then for C we have two independent choices: (a) either (3, l) ∈ C or (4, l) ∈ C
for all l ∈ { j, . . . , i − 2}, thus 2i− j−1 such possibilities. (b) {(3, k), (4, k − 1), . . . , (4, j)} ⊂ C for each
k ∈ {i − 1, . . . , b − 1}, thus b − i + 1 such options. Hence over all we have 2i− j−1(b − i + 1) number of
1-shelters C for this choice of i. Hence total number of i-shelter C is given by

1 +
b−1∑

i= j+1

2i− j−1(b − i + 1) = 3(2b− j−1) − b − 1 + j.

□

Corollary 2. Let P = C5 ×Cb be a poset and Ŝ 2( j) be the set of all 2-shelter of S 2( j) ⊂ P. Then

|Ŝ 2( j)| = ξ2( j) = 3(2b− j−1) − 2.

Proof. Let C be a 2-shelter of {(2, j), (3, j)}, then again as in the proof of previous proposition, C
must contain exactly one element from the set Γ1 = {(2, j), . . . , (2, b − 1)}. If (2, j) ∈ C, then
{(2, j), (3, k), (4, k − 1) . . . , (4, j)} is the 2-shelter for each k ∈ {( j + 1, . . . , b − 1)}. Thus there are
b − j − 1 number of 2-shelters containing (2, j). Also if {(2, j), (3, j)} ∈ C, then C = {(2, j), (3, j)} is
itself a 2-shelter. Now if (2, i) ∈ C, where i ∈ { j + 1, . . . , b − 1} then a 1-shelter of {(2, j)} is also a
2-shelter of

{(2, j), (3, j)}

and vice versa. Hence by previous proposition total number of 2-shelters of {(2, j), (3, j)} is given by

b − j +
b−1∑

i= j+1

2i− j−1(b − i + 1) = 3(2b− j−1) − 2.

□

Remark 1. Let P = C5 × Cb be a poset. Note that by above corollary if we fix (2, 1) ∈ R(P) and
(1, 3) ∈ L(P), then clearly {(1, 3)} ∪ C ∪ {(2, 1)} is chain blocker of P, where C is a 1-shelter of
{(2, 2)}. Thus number of chain blockers of P containing (2, 1) and (1, 3) is given by |Ŝ 1(2)|. Similarly
the number of chain blockers of P containing (3, 1) and (1, 3) is given by |Ŝ 1(2)|. Also in the same
way the number of chain blockers of P containing (4, 1) and (1, 3) is given by |Ŝ 2(2)|.

Let P = C5 × Cb be a poset and Pn
m ⊂ P \ {L(P),R(P)} be a subset of P defined by (p, q) ∈ Pn

m ⇔

p ∈ {2, 3, 4} and q ∈ {m,m + 1, . . . ,m + n − 1}. We extend the idea of i-shelter in the following way.
Let δn

m be a subset of Pn
m such that for any maximal chain B of P if B∩ Pn

m ∩R(Pn
m) , ∅ then we must

have B∩ δn
m , ∅ and δn

m is minimum with this property, where R(Pn
m) = {(5, i) | i ∈ {m, . . . ,m+n−1}}.

Remark 2. A set δn
m blocks each maximal chain of P which passes through both Pn

m and R(Pn
m).

Clearly we must have exactly one element from each row of Pn
m thus we have |δn

m| = n. Obviously
δn

m is not unique. Let β(n, λ1, λ2) be the cardinality of set of all δn
m, where λ1 = β(0, λ1, λ2) and

λ2 = β(1, λ1, λ2).

Proposition 2. With the same notations as defined above we have:

β(n, λ1, λ2) = 3β(n − 1, λ1, λ2) − β(n − 2, λ1, λ2). (1)
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Proof. To choose one element from each row, let (α, β) ∈ δn
m. If α = 2 or 3 then we can choose

any element from (β + 1)th row of Pn
m. If α = 4 then we can not choose (2, β + 1) since in this case

a maximal chain containing {(2, β), (3, β), (3, β + 1), (4, β + 1)} ⊂ Pn
m is not blocked. Thus for each

additional row, 3 choices each for α = 2 or 3 and 2 choices for α = 4. Hence to get β(n, λ1, λ2) we
have 3β(n − 1, λ1, λ2) minus one choice α = 4 which is exactly equal to β(n − 2, λ1, λ2). □

Using elementary methods from Combinatorics, we have the following corollary.

Corollary 3. The generating function for the recursive relation 1 is given by

β
(
n, λ1, λ2

)
=
(λ2 − λ1α2

α1 − α2

)
αn

1 +
(λ2 − λ1α1

α2 − α1

)
αn

2,

where α1 =
3+
√

5
2 and α2 =

3−
√

5
2 .

We use Corollary 1 to calculate number of all chain blockers of P = C5 × Cb. We fix one element
from R(P) and run over all elements of L(P) one by one to calculate all chain blockers which contain
these two elements. Here is the first proposition regarding this technique.

Proposition 3. Let P = C5 × Cb be a poset. Then the number of chain blockers of P containing
(2, 1) ∈ R(P) is given by

C2,1 = 1 +
b−3∑
j=0

{β( j, 1, 2)ξ1(b − j − 2) + β( j, 0, 1)ξ2(b − j − 2)} + 3β(b − 2, 1, 2) + 2β(b − 2, 0, 1).

Proof. If we take (1, 2) ∈ L(P), then {(1, 2), (2, 1)} is itself a chain blocker. If we choose (1, j) ∈ L(P)
for j ∈ {3, . . . , b} then we need to calculate all possibilities of chain blockers containing {(2, 1), (1, j)}
and elements from Pb−1

2 , where Pn
m is defined above. Now we divide the rows of Pb−1

2 into two disjoint
parts. One part is from row 2 to row j− 2 and second part is from row j− 1 to row b− 1. Now a chain
blocker of P must contains elements from both of these parts. In particular, each chain blocker must
contain exaclty one element from row j − 2 of Pb−1

2 .
If it contains (4, j − 2) then the number of such chain blockers having elements from first part i.e.

from row 2 to row j − 2 of Pb−1
2 is exactly equal to β( j − 3, λ1, λ2) where in this case we have λ1 = 0

and λ2 = 1. For this case, number of chain blockers from the second part i.e. from row j − 1 to row
b−1 is given by 2-shelter ξ2(b− j+1). Since choices from these two parts are disjoint so total number
of chain blockers in this case are given by β( j − 3, 0, 1)ξ2(b − j + 1).

On the other hand if a chain blocker contains (2, j − 2) or (3, j − 2), then number of such chain
blockers having elements from first part i.e. from row 2 to row j − 2 is given by β( j − 3, λ1, λ2)
where in this case we have λ1 = 1 and λ2 = 2. Also in this case number of chain blockers containing
elements from part 2 of Pb−1

2 is given by the 1-shelter ξ1(b − j + 1). Again since both of these choices
are independent so have total number chain blockers in this case equals to β( j − 3, 1, 2)ξ1(b − j + 1).
Summing over j from 3 to b we have partial proof to our formula.

Now we are left to count the number of chain blockers of P contain (2, 1) and ( j, b), where j ∈
{2, 3, 4}. A chain blocker containing (2, b) must contain either (2, b − 1) or (3, b − 1), thus the number
of such chain blockers equals to β(b − 2, 1, 2). Also a chain blockers containing (3, b) must contain
(2, b−1), (3, b−1) or (4, b−1) and hence the number of such chain blockers equal to β(b−2, 1, 2)+β(b−
2, 0, 1). Finally the number of chain blockers containing (4, b) equals to β(b − 2, 1, 2) + β(b − 2, 0, 1).
So we obatined

C2,1 = 1 +
b−3∑
j=0

{β( j, 1, 2)ξ1(b − j − 2) + β( j, 0, 1)ξ2(b − j − 2)} + 3β(b − 2, 1, 2) + 2β(b − 2, 0, 1),

which complete the proof. □
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Corollary 4. Let P = C5 ×Cb be a poset. Then the number of chain blockers of P containing (3, 1) is
given by

C3,1 = C2,1 + ξ1(b − 2) − 1.

Proof. Since any chain blocker of P containing (2, 1) and any p ∈ L(P)\{1, 2} remains a chain blocker
if we replace (2, 1) by (3, 1). Thus we left with those chain blockers which contains (3, 1) and (1, 2).
But number of such chain blockers are given by ξ1(b − 2). □

Proposition 4. Let P = C5 ×Cb be a poset. Then the number of chain blockers of P containing (4, 1)
is given by

C4,1 = 2ξ2(b − 2) +
b−3∑
j=1

{β( j, 0, 1)ξ1(b − j − 2) + β( j, 1, 1)ξ2(b − j − 2)}

+3β(b − 2, 0, 1) + 2β(b − 2, 1, 1).

Proof. If we fix (1, 2) ∈ L(P), then clearly number of chain blockers containing (4, 1) and (1, 2) is
given by the 2-shelter ξ2(b − 2). Same is true if we fix (1, 3) ∈ L(P). To calculate remaining case
of chain blockers we will use the same technique as in the proof of Proposition 3. By the similar
arguments the number of chain blockers for the remaining cases are given by

b−3∑
k=1

{β(k, λ1, λ2)ξ1(b − k − 2) + β(k, λ′1, λ
′
2)ξ2(b − k − 2)}

+3β(b − 2, λ1, λ2) + 2β(b − 2, λ′1, λ
′
2).

Now in this case λ1 = 0 and λ2 = 1. Also we have λ′1 = 1 and λ′2 = 1. So we conclude

C4,1 = 2ξ2(b − 2) +
b−3∑
j=1

{β( j, 0, 1)ξ1(b − j − 2) + β( j, 1, 1)ξ2(b − j − 2)}

+3β(b − 2, 0, 1) + 2β(b − 2, 1, 1).

which complete the proof. □

Proposition 5. Let P = C5 ×Cb be a poset. Then the number of chain blockers of P containing (5, 1)
is given by

C5,1 = 2b − 1 + 3ξ2(b − 3) +
b−3∑
j=2

{β( j − 2, 2, 5)ξ1(b − j − 2)

+β( j − 2, 1, 3)ξ2(b − j − 2)} + 3β(b − 4, 2, 5) + 2β(b − 4, 1, 3).

Proof. Let B be a chain blocker of P. Fix (1, 2) ∈ L(P) ∩ B. Then B must contains (4, 2). Now if
(3, 2) ∈ B then either B = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 1)} or B = {(1, 2), (2, 3), (3, 2), (4, 2), (5, 1)}.
On the other hand if (3, 2) < B and (2, 2) ∈ B. Then B = {(1, 2), (2, 2), (3, j), (4, j−1), . . . , (4, 2), (5, 1)},
where j = 3, . . . , b−1. Lastly if both (2, 2) < B and (3, 2) < B holds then number of such chain block-
ers are given by 2-shelter ξ2(b−3). Similarly if we fix (1, 3) ∈ L(P)∩B then we have the same number
of chain blockers. Now we fix (1, 4) ∈ L(P)∩ B, then the only difference from the previous two cases
is while (3, 2) ∈ B, in this we have only one chain blocker given by B = {(1,4),(2,3),(3,2),(4,2),(5,1)}
as shown in figure 1. Thus total number of chain blockers containing (5, 1) and a element from the
set {(1, 2), (1, 3), (1, 4)} is given by 2b − 1 + 3ξ2(b − 3). Now for the remaining cases we will use
the same technique as we use in the proof of Proposition 3. Here for the multiplier of ξ1, we have
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β(k − 2, λ1, λ2), where λ1 is equal to 2 since both {(4, 2), (3, 2), (2, 3)} and {(4, 2), (3, 3)} ends up for
1-shelter. Now if we extend to next row, then {(4, 2), (3, 2), (2, 3), (2, 4)}, {(4, 2), (3, 2), (2, 3), (3, 4)},
{(4, 2), (3, 3), (2, 4)}, {(4, 2), (3, 3), (3, 4)} and (4, 2), (4, 3), (3, 4) lead to 1-shelter. Hence λ2 = 5. On
the other hand, for the multiplier of ξ2, we have β(k − 2, λ′1, λ

′
2). Now λ′1 = 1 due to {(4, 2), (4, 3)} and

λ′2 = 3 due to {(4, 2), (3, 2), (2, 3), (4, 4)}, {(4, 2), (3, 3), (4, 4)} and {(4, 2), (4, 3), (4, 4)}. Thus

v
b−3∑
k=2

{β(k − 2, 2, 5)ξ1(b − k − 2)

counts number of all chain blockers contain (5, 1) and (1, j), where j = 5, . . . , b. The remaining case
are thus given by 3β(b − 4, 2, 5) + 2β(b − 4, 1, 3). As a result we conclude

C5,1 = 2b − 1 + 3ξ2(b − 3) +
b−3∑
j=2

{β( j − 2, 2, 5)ξ1(b − j − 2)

+β( j − 2, 1, 3)ξ2(b − j − 2)} + 3β(b − 4, 2, 5) + 2β(b − 4, 1, 3),

which complete the proof. □

Proposition 6. Let P = C5 ×Cb be a poset. Then the number of chain blockers of P containing (5, 2)
is given by

C5,2 = 5ξ1(b − 4) + 5b + 5 + 4ξ2(b − 4) +
b−1∑
j=5

{β( j − 5, 7, 17)ξ1(b − j)

+β( j − 5, 3, 10)ξ2(b − j)} + 3β(b − 5, 7, 17) + 2β(b − 5, 3, 10).

Proof. Let B be an arbitrary chain blocker of P containing (5, 2). If we fix (1, 2) ∈ B ∩ L(P) then
obviously B must contain at least one element from each middle columns. Let {(4, 2), (3, 2)} ∈ B then
either (2, 2) or (2, 3) belongs to B. Similarly if {(4, 2), (3, 3)} ∈ B the B must contain at least one
element from the set {(2, 2), (2, 3)} or one element from 1-shelter starting at (2, 4). Thus number of
chain blockers containing the set {(5,2),(4,2),(1,2)} is given by 4 + ξ1(b − 4).

Now let {(4, 3), (2, 2)} ∈ B. Then B must contain either one element from the set
{(3, 2), (3, 3), (3, 4)} or contain (3, j), (4, j − 1), . . . , (4, 4) for j = 5, . . . , b − 1. The same is true if
{(4, 3), (2, 3)} ∈ B. Now if we take B = {(5, 2), (4, 3), (3, 3)(2, 4), (1, 2), then the only case remaining
for B containing (5, 2) and (1, 2) is given by the 2-shelter starting at {(2, 4), (3, 4)}. Thus number of
chain blockers containing (5, 2) and (1, 2) is given

2b + 1 + ξ1(b − 4) + ξ2(b − 4). (2)

Lets move to second element of L(P) that is (1, 3) ∈ B ∩ L(P). Note that each chain blocker of P
containing {(1, 2), (5, 2)} will remain a chain blocker if we replace (1, 2) with (1, 3) and vice versa.
Thus in this case we have the same number of chain blockers as given in Equation 2. Now let
(1, 4) ∈ B ∩ L(P). If (4, 2) ∈ B then we have three possibilities, namely

B = {(5, 2), (4, 2), (3, 2), (2, 3), (1, 4)},

or
B = {(5, 2), (4, 2), (3, 3), (2, 3), (1, 4)},

or
B = {(5, 2), (4, 2), (3, 3), (1, 4)} ∪ X1,
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where X1 is an element of 1-shelter having base element (2, 4). Secondly if (4, 3) ∈ B again we have
three possibilities. Either

B = {(5, 2), (4, 3), (4, 4), . . . , (4, j − 1), (3, j), (2, 3), (1, 4)}

for j = 2, . . . , b − 1, or B = {(5, 2), (4, 3), (3, 3), (2, 4), (1, 4)}, or

B = {(5, 2), (4, 3), (1, 4)} ∪ X2

where X2 is an element of 2-shelter having base elements {(2, 4), (3, 4)}. Thus number of chain block-
ers containing (5, 2) and (1, 4) is given by

b + 1 + ξ1(b − 4) + ξ2(b − 4).

Now let (1, 5) ∈ B ∩ L(P). If (4, 2) ∈ B then either

B = {(5, 2), (4, 2), (3, 2), (2, 3), (1, 5)} ∪ X1,

or
B = {(5, 2), (4, 2), (3, 3), (1, 5)} ∪ X1,

where X1 is an element of 1-shelter starting from (2, 4). Secondly if (4, 3) ∈ B then following three
cases occurs.

B = {(5, 2), (4, 3), (3, 2), (2, 3), (2, 4), (1, 5)},

or
B = {(5, 2), (4, 3), (3, 3), (2, 4), (1, 5)},

or
B = {(5, 2), (4, 3), (1, 5)} ∪ X2,

where X2 is an element of 2-shelter having base elements {(2, 4), (3, 4)}. Now summing over all
above cases i.e. number of chain blockers containing (5, 2) and exactly one element from the set
{(1, 2), . . . , (1, 5)} is given by

5b + 5 + 5ξ1(b − 4) + 4ξ2(b − 4).

For the remaining part of the proof we will use the same technique as used in the proves of previous
results. Namely, for k = 5, . . . , b − 1 the multiplier of ξ1(b − k), we have β(k − 5, λ1, λ2), where
λ1 is equal to 7 due to {(4, 2), (3, 2), (2, 3), (2, 4)}, {(4, 2), (3, 2), (2, 3), (3, 4)}, {(4, 2), (3, 3), (2, 4)},
{(4, 2), (3, 3), (3, 4)}, {(4, 3), (3, 2), (2, 3), (2, 4)}, {(4, 3), (3, 3), (2, 4)} and {(4, 3), (3, 4)}. Similarly if we
extend to next level we have λ2 = 17.

On the other hand, for the multiplier of ξ2(b − k), we have β(k − 5, λ′1, λ
′
2). Now λ′1 = 3 due

to {(4, 2), (3, 2), (2, 3), (4, 4)}, {(4, 2), (3, 3), (4, 4)} and {(4, 3), (4, 4)}. Similarly if we extend to next
level we have λ′2 = 10. Thus summing over all k and adding the similar cases for (2, b), (3, b) and
(4, b) ∈ B ∩ L(P). So we obtained our required result as:

C5,2 = 5ξ1(b − 4) + 5b + 5 + 4ξ2(b − 4) +
b−1∑
j=5

{β( j − 5, 7, 17)ξ1(b − j)

+β( j − 5, 3, 10)ξ2(b − j)} + 3β(b − 5, 7, 17) + 2β(b − 5, 3, 10).

□

Remark 3. So far we have calculated all chain blockers containing v where v ∈ {(1, 1), . . . ,
(5, 1), (5, 2)} ⊂ R(P). Since each chain blocker of P contains at least one element from
R(P) thus we are left with the case of calculating number of chain blockers containing R(P) \
{(1, 1), . . . , (5, 1), (5, 2)} ≡ {(5, 3), . . . , (5, b − 1)}. We first calculate number of chain blockers B con-
taining (5, k) where k ∈ {3, . . . , b − 2}. Then B must contains exactly one element w from L(R). Then
we have following choices of w.
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1. w = (1, i) where 2 ≤ i ≤ k + 1

2. w = (1, i) where k + 2 ≤ i ≤ b

3. w = (o, b) where 2 ≤ o ≤ 4

In the following results we will use notations from this remark.

Proposition 7. Let C(k, b) be number of chain blockers containing (5, k) and (1, i) for 3 ≤ k ≤ b − 2
and 2 ≤ i ≤ k + 1. Then

C(k, b) = fa(k) +
k+3∑
m=6

fb(k,m) + 2k(b − 2) − k2 + 3k − 2

+

k+2∑
j=4

fc(k, j) + (4k − 3)ξ1(b − k − 2)

+

k+2∑
p=6

fd(k, p) + (k + 1)(1 + ξ2(b − k − 2)) + k + ξ2(b − k − 2),

where

fa(k) =
4k3 + 27k2 − 37k − 6

6
,

fb(k, i) =
i−3∑
j=2

2i− j−1(i − 2)(k − i + 3 + ξ1(b − k − 2)),

fc(k, i) = (k − i + 3)(b − 2) − (
k2 − 3k + 2

2
−

i2 − 7i + 12
2

),

fd(k, i) =
k−i+3∑

j=1

(k − 1 +
j2 + j

2
) + (k − i + 3)ξ1(b − k − 2).

Proof. To calculate number of chain blockers containing (5, k) ∈ R(P) and w = (1, i) where 3 ≤ k ≤
b − 2 and 2 ≤ i ≤ k + 1, we divide into two main cases.

Case 1. 2 ≤ i ≤ 5
Since a chain blocker B contains only these two elements from R(P) and L(P) so B must contains

at least one element (4, l) from 4th column. If l ≤ k, then (4, l) is the only element which B contains
from column 4. Also B must contains at least one element from the column 2 and 3. Now if (2,m) ∈ B
then either 2 ≤ m ≤ k + 1 or m > k + 1. For the first case the number of chain blockers are same for
m = 2 and m = 3. Now if k + 1 ≥ m ≥ l + 2, then the set {(3, l + 1), . . . , (3,m − 1)} must belong to B
and hence we have k − l − 1 number of choices. But if l + 1 ≥ m ≥ 3, then

B = {(1, 2), (2,m), (3, n), (4, l), (5, k)},

where l+ 1 ≥ n ≥ m− 1 and we have l+ 1− (m− 1)+ 1 number of choices for this case. Thus subtotal
for number of chain blockers in this case is given by

k∑
l=2

(
l+1∑
m=3

(l − m + 3) + l +
k+1∑

m=l+2

) =
1
6

k3 +
3
2

k2 −
5
3

k. (3)

Note that in the above case, if we replace (1, 2) with (1, 3) ∈ R(P) the number of chain blockers
remains the same. On the other hand if we replace (1, 2) with (1, 4) ∈ R(P) then there is no chain
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blocker containing (1, 4), (5, k) and (2, 2), where as the remaining calculations will be the same as
above thus subtotal of number of chain blockers in this case is given by

k∑
l=2

(
l+1∑
m=3

(l − m + 3) +
k+1∑

m=l+2

) =
1
6

k3 + k2 −
13
6

k + 1. (4)

With the similar arguments and considering the same limits as above, the number of chain blockers
containing (1, 5) is given by

1
6

k3 +
1
2

k2 −
2
3

k − 2. (5)

Let fa(k) be function obtained by summing over the equation 3 two times(for both (1, 2) with (1, 3)),
equations 4 and equation 5. Thus

fa(k) =
4k3 + 27k2 − 37k − 6

6
. (6)

Now for (1, i) where 6 ≤ i ≤ k + 3, and fixing (5, k) ∈ R(P) for 3 ≤ k ≤ b − 2. We take (4, j) ∈ B
with j = 2, . . . , i − 3. Then there are four different calculations are involved, namely:

• For each j = 2, . . . , i − 3, we must have either {(4, j), (3, n), (2, n + 1), . . . , (2, i − 1)} ∈ B for
n = 2, . . . , j or {(4, j), (3, j + 1)} ∈ B. Thus it counts i − 2 possibilities as whole.
• Either (2, o) or (3, o) belongs to B for o = j + 1, . . . , i − 1. Thus it counts 2i− j−1.v
• Either (2, i − 1) ∈ B or {(2, o), (3, o − 1), . . . , (3, i − 1)} for o = i, . . . , k + 1. Thus as a whole we

have k − i + 3 possibilities.
• i-shelter having (2, k + 2) as the base point so it counts ξ1(b − k − 2).

Keeping in view the nature of above four choices we have the following description for this case.

fb(k, i) =
i−3∑
j=2

2i− j−1(i − 2)(k − i + 3 + ξ1(b − k − 2)). (7)

Now again if {(1, i), (5, k)} ∈ B where i = 3, . . . , k + 2. Then if (4, k + 1) then for each (2,m) ∈ B with
m = 3, . . . , k + 1 we have

B = {(1, i), (2,m), (3, n), (4, k + 1), (5, k)}

where n = m − 1, . . . , k + 2. Also for k + 2 < n ≤ b − 2, the element (3, n) is replaced by (3, n), (4, n −
1), . . . , (4, k). Thus for each m we have b − m number of chain blockers thus total number of chain
blockers are given by

fc(k, i) = (k − i + 3)(b − 2) − (
k2 − 3k + 2

2
−

i2 − 7i + 12
2

).

Note that the number of chain blockers containing (1, 3) and (1, 2) is same so we add one additional
fc(k, 3) in the final calculations. Now for (5, k) and (1, i) in B with 4 ≤ k ≤ b−2 we restrict 6 ≤ i ≤ k+2
and i − 2 ≤ l ≤ k for (4, l) ∈ B. We have following possibilities of calculations. For each (4, l) ∈ B
there must be at least one element from the 2nd and the 3rd column. Now there are three types of
possibilities. Namely:

• {(2, i − 1), . . . , (2, j), (3, j − 1)} belongs to B for j = 3, . . . , i − 3.
• {(2,m), (3, n)} ∈ B for i − 1 ≤ m ≤ k + 2 and 2 ≤ n ≤ m.
• for {(4, k + 1), (3, k + 2)} the number of chain blockers is given by ξ1(b − k − 2).

Thus total number for this subcase is given by:

fd(k, i) =
k−i+3∑

j=1

(k − 1 +
j2 + j

2
) + (k − i + 3)ξ1(b − k − 2).

Now finally the number of chain blockers containing (1, i), (4, k+1), (5, k) and m, n ≥ k+2 is given
by ξ2(b − k − 2) with {(2, k + 2), (3, k + 2)} as the base elements. It completes the proof. □
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Proposition 8. Let P = C5 × Cb be a poset. Let B be a chain blocker containing (5, k) and (1, i)
such that 3 ≤ k ≤ b − 2 and i ≥ k + 2. Let β(b, λ1, λ2) be the coefficient of ξ1 and β(b, µ1, µ2) be the
coefficient of ξ2. Then

λ1 = g(k),
λ2 = 2g(k) + h(k),
µ1 = h(k),
µ2 = g(k) + h(k),

where

g(k) =
k−1∑
j=0

2k−1−i(2 + i),

h(k) =
k−2∑
i=0

2k−i−2(2 + i) + 1.

Proof. It follows from the proofs of Propositions 3-6 and from the definitions of g(k) and h(k). □

Theorem 1. LetD(k, b) be the number of chain blockers containing (5, k) and (1, i) for 3 ≤ k ≤ b− 2
and i ≥ k + 2. Then

D(k, b)) = C(k, b) +
b−1∑

q=k+3

(β(q − k − 3, g(k), 2g(k) + h(k))ξ1(b − q)

+β(q − k − 3, h(k), g(k) + h(k))ξ2(b − q))
+2β(b − k − 4, g(k), 2g(k) + h(k))
+β(b − k − 4, h(k), g(k) + h(k))
+2β(b − k − 3, g(k), 2g(k) + h(k))
+2β(b − k − 3, h(k), g(k) + h(k)).

Proof. By using the above calculations and selecting the elements one by one from both left end
maximal chain and right end maximal chain, we have the result. □

On combining all the results and after simplification, we have the following theorem.

Theorem 2. Let T (k, b) be the total number of chain blockers of C5 ×Cb for b ≥ 1. Then

T (k, b) = C2,1 + C3,1 + C4,1 + C5,1 + C5,2 +

b−3∑
k=3

D(k, b)) + 2
b+1∑
m=6

fbb(b − 2,m)

+2
b∑

n=4

fc(b − 2, n) + 2
b∑

o=6

fdd(b − 2, o)

+5
b−4∑
p=0

(2 + p)2b−4−p +
4
3

b3 + 3b2 −
97
3

b + 40, (8)

where

fbb(k, i) =
i−1∑
j=4

2i− j−1(i − 2)(k − i + 3),

fc(k, i) = (k − i + 3)(b − 2) − (
k2 − 3k + 2

2
−

i2 − 7i + 12
2

),

fdd(k, i) =
k−i+3∑

j=1

(k − 1 +
j2 + j

2
).
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3. Applications

In this section we provide algebraic consequences associated to a chain blocker B of P. A sim-
plicial complex ∆ on the vertex set V = [n] is a collection of subsets of 2[n] with the property that if
A ∈ ∆ then ∆ contains all subsets of A. The inclusionwise maximum elements of ∆ are called facets.
Let {Fi, . . . , Fr} be the set of facets of ∆. A minimal vertex cover of ∆ is a subset A ⊆ V with the
property that for every facet Fi of ∆ there exist a vertex v ∈ A such that v ∈ Fi and A is minimal with
this property.

Let ∆P be a simplicial complex associated to a poset P in such a way that elements of ∆P are
exactly the chains in P. The set of facets of ∆P are the maximal chains of P and hence each chain
blockers of P is a minimal vertex cover of ∆P. The simplicial complex ∆P is called the order complex.

Now we are ready to relate a poset P to its algebraic counterpart. Let S = k[x1, . . . , xn] be the
polynomial ring over the field k and in n variables. Recall that a monomial ideal in S is an ideal
generated by monomials ui. A monomial ideal is called a squarefree monomial ideal if it is generated
by the squarefree monomials. Let I = I1 ∩ · · · ∩ Ir be an irredundant primary decomposition of I,
where ideals I1, . . . , Ir are called irreducible primary components of I. For more details about primary
decomposition see [1].

To each square free monomial ideal I one can associate a simplicial complex ∆. One way of this
association is facet ideals and facet complex introduced by Sara Faridi [11]. A facet ideals IF (∆)
of ∆ is an ideal generated by squarefree monomial xi1 · · · xit where {xi1 , . . . , xit} is a facet of ∆. Let
I = ⟨u1, . . . , ur⟩ be a squarefree monomial ideal. A facet complex ∆F (I) of I is a simplicial complex
over the vertex set {v1, . . . , vn} and set of facets {F1, . . . , Fr}, where Fi = {v j : x j | ui, 1 ≤ j ≤ n}.

It is well known that minimal vertex covers of ∆F (I) correspond to the irreducible primary com-
ponents of IF (∆). Let IP = IF (∆P). Note that IP is also the path ideals of the directed graph of Hasse
diagram of P. The path ideal was intorduced by Conca and De Negri in [4]. Some results of IP were
also studied in [5]. Since the facets of ∆P are the maximal chains of P, hence by definition of a chain
blocker we have the following proposition.

Proposition 9. Let P = Ca ×Cb be a poset and IP is the path ideal of the directed graph of the Hasse
diagram of P only if P is a pure poset, that is all the maximal chains have the same length.

Following examples demonstrate the one to one correspondence given in above proposition. By
using the Alexander duality, the minimal prime ideals of IP are in one to one correspondence with the
minimal generators of the Stanley-Reisner ideal of the Alexander dual of IP, that is I∨P .

Example 1. Numbers of chain blockers in C5 × C5,C5 × C6, and C5 × C7 are given in table 1 below.
In this table, we have verified the corresponding number of irreducible primary components of IP.

Let P = C5 ×C6 be a poset. Consider the ideal containing x54 in C5 ×C6.

IP = (x21x31x41x51x52x53x54x55, x21x31x41x42x52x53x54x55, x21x31x41x42x43x53x54x55,

x21x31x41x42x43x44x54x55, x21x31x32x42x52x53x54x55, x21x31x32x42x43x53x54x55,

x21x31x32x42x43x44x54x55, x21x31x32x33x43x53x54x55, x21x31x32x33x43x44x54x55, x21x31x32x33x34x44x54x55,

x21x22x32x42x52x53x54x55, x21x22x32x42x43x53x54x55, x21x22x32x42x43x44x54x55, x21x22x32x33x43x53x54x55,

x21x22x32x33x43x44x54x55, x21x22x32x33x34x44x54x55, x21x22x23x33x43x53x54x55, x21x22x23x33x43x44x54x55,

x21x22x23x33x34x44x54x55, x21x22x23x24x34x44x54x55).

Since each irreducible primary components of IP correspond to a chain blocker of P. Thus by
Theorem 1 number of irreducible primary components of IP is given by 205. The same number is
verified by the Computer Algebra System CoCoA and Singular.
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poset chain blockers containing i j no. of chain blockers no. of primary components of IP containing xi j

C5 ×C5

21 82 82
31 89 89
41 66 66
51 45 45
52 66 66
53 89 89
54 82 82

C5 ×C6

21 238 238
31 256 256
41 181 181
51 114 114
52 147 147
53 170 170
54 205 205
55 187 187

C5 ×C7

21 676 676
31 717 717
41 488 488
51 297 297
52 366 366
53 366 366
54 374 374
55 417 417
56 376 376

Table 1. No. of Chain Blockers and Their Corresponding No. of Primary Components of
IP in C5 ×Cb, 5 ≤ b ≤ 7
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