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Abstract: In this article, we define q-generalized Fibonacci polynomials and q-generalized Lucas
polynomials using q-binomial coefficient and obtain their recursive properties. In addition, we in-
troduce generalized q-Fibonacci matrix and generalized q-Lucas matrix, then we derive their basic
identities. We define (k, q, t)-symmetric generalized Fibonacci matrix and (k, q, t)-symmetric gen-
eralized Lucas matrix, then we give the Cholesky factorization of these matrices. Finally, we give
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1. Introduction

MacHenry [1] defined generalized Fibonacci polynomials and generalized Lucas polynomials.
The generalized Fibonacci polynomials and the generalized Lucas polynomials already have compre-
hensive representation properties. These polynomials are a general form of generalized bivariate Fi-
bonacci and Lucas p-polynomials, ordinary Fibonacci, Lucas, Pell, Pell-Lucas and Perrin sequences,
Chebyshev polynomials of the second kind, and the Tribonacci numbers, etc.

The generalized Fibonacci polynomials, Fk,n(t), and the generalized Lucas polynomials, Gk,n(t),
are defined inductively by as follows:

Fk,0(t) = 1, Fk,n+1(t) = t1Fk,n(t) + · · · + tkFk,n−k+1(t)(n > 1),

and

Gk,0(t) = k, Gk,1(t) = t1, Gk,n(t) = Gk−1,n(t)(1 ≤ n ≤ k),
Gk,n(t) = t1Gk,n−1(t) + · · · + tkGk,n−k(t)(n > k),

where the vector t = (t1, t2, . . . , tk) and ti (1 ≤ i ≤ k) are constant coefficients of the core polynomial

P(x; t1, t2, . . . , tk) = xk − t1xk−1 − · · · − tk.

In [2], authors gave explicit formula for the Fk,n(t) and Gk,n(t) as follows:

Fk,n(t) =
∑
a⊢n

(
|a|

a1,...,ak

)
ta1
1 . . . t

ak
k , (1)
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Gk,n(t) =
∑
a⊢n

n
|a|

(
|a|

a1,...,ak

)
ta1
1 . . . t

ak
k .

The notations a ⊢ n and |a| are used instead of
k∑

j=1
ja j = n and

k∑
j=1

a j, respectively.

In addition, in [2–6], the authors studied algebraic properties of these polynomials.
On the other hand, there exists several different q-analogues of the Fibonacci-type sequences,

see [7–17]. For example, Cigler [14] defined q-Fibonacci polynomials (Fn,q(x, s)) and q-Lucas poly-
nomials (Ln,q(x, s)) as follows:

Fn(x, s) =
⌊ n−1

2 ⌋∑
k=0

[
n − k − 1

k

]
q(k+1

2 )xn−1−2ksk,

Ln(x, s) =
⌊ n

2⌋∑
i=0

[n]
[n − i]

[
n − i

i

]
q( i

2)xn−2isi.

The q-binomial coefficient is defined as:[
n
k

]
q

:=
(q; q)n

(q; q)k(q; qn−k)
=

[n]q!
[k]q![n − k]q!

,

with (a; q)n :=
n−1∏
j=0

(1 − aq j), [n]q = 1 + q + · · · + qn−1 and [n]q! = [1]q[2]q · · · [n]q.

Many researchers have studied matrices whose elements are binomial coefficients, Fibonacci-type
sequences and q-binomial coefficients, see [18–25]. Lee et al. [21] defined n × n k-Fibonacci matrix
F (k)n = [ f (k)i, j]i, j=1,2,...,n as:

f (k)i, j =

{
fk,i− j+k−1, if i − j + 1 ≥ 0,
0, otherwise,

where fk,n nth k-Fibonacci numbers defined by Miles in [26]. TheF (k)−1
n = [ f ıi, j] was given as follows:

f ıi, j =


1, if i = j
−1, if i − k ≤ j ≤ i − 1
0, otherwise.

Lee et al. [21] also defined n × n k-symmetric Fibonacci matrix Q(k)n = [q(k)i, j] as follows:

q(k)i, j = q(k) j,i =


k∑

l=1
q(k)i,i−l + fk,k−1, if i = j,

k∑
l=1

q(k)i, j−l, if i + 1 ≤ j,

and obtained the Cholesky factorization of Q(k)n as follows:

Q(k)n = F (k)n(F (k)n)T .

In addition, many researchers have studied determinantal and permanental representations of
Fibonacci-type sequences and polynomials. More examples can be found in [3, 27–37].
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2. q-analogue of the Generalized Fibonacci Polynomials and Generalized Lucas Polynomials

In this section, we define two families of polynomials, the q-generalized Fibonacci polynomial and
the q-generalized Lucas polynomial using q-binomials and obtain properties of these polynomials.
In the following two definitions, the summation takes place over all integers c1, c2, ..., ck such that

k∑
j=1

jc j = n, and c =
k∑

j=1
c j.

Definition 1. For any integers n ≥ 0, the q-generalized Fibonacci polynomial, Fk,n(t; q), is defined by

Fk,n(t; q) :=
∑ [c]q!

[c1]q![c2]q!...[ck]q!
tc1
1 . . . t

ck
k .

In particular, if we take q = 1, we obtain the Fk,n(t; 1) := Fk,n(t).
The first few Fk,n(t; q) are

1, t1, t2 + t2
1, t3 + (1 + q)t1t2 + t3

1, t4 + (1 + q)t1t3 + t2
2 + t4

1 + (1 + q + q2)t2
1t2, . . . .

Definition 2. For any integers n ≥ 0, the q-generalized Lucas polynomial, Lk,n(t; q), is defined by

Lk,n(t; q) :=
∑ [n]q([c]q!)

[c]q([c1]q![c2]q!...[ck]q!)
tc1
1 . . . t

ck
k .

In particular, if we take q = 1, we obtain the Lk,n(t; 1) := Gk,n(t).
The first few Lk,n(t; q) are

[k]q, t1, (1 + q)t2 + t2
1, (1 + q + q2)t3 + (1 + q + q2)t1t2 + t3

1, . . . .

We need the following definitions and lemmas in our proofs.

Definition 3. Sk,n is the sequence defined by Sk,0 = 1, Sk,1 = t1 and for n ≥ 2

Sk,n = t1Sk,n−1 +

n−1∑
j=1

(−1)n− jFk,n− j+1(t; q)Sk, j−1. (2)

The first few terms of Sk,n are

1, t1, − t2, t3 − t1t2 + qt1t2, − t4 + t1t3 − qt1t3 + qt2
1t2 − q2t2

1t2, . . . .

Lemma 1. Let n ≥ 1 be an integer. Then

Fk,n(t; q) =
k∑

j=1

(−1) j+1Sk, jFk,n− j(t; q). (3)

Proof. This is obvious from Eq. (2). □

Definition 4. Tk,n is the sequence defined by Tk,0 = 1, Tk,1 = t1 and n ≥ 2

Tk,n = t1Tk,n−1 +

n−1∑
j=1

(−1)n− jLk,n− j+1(t; q)Tk, j−1. (4)

The first few terms of Tk,n are

1, t1,−t2 − qt2, t3 + qt3 − t1t2 − qt1t2 + q2t3 + q2t1t2, . . . .
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Lemma 2. Let n ≥ 1 be an integer. Then

Lk,n(t; q) =
k∑

j=1

(−1) j+1Tk, jLk,n− j(t; q).

Proof. This is obvious from Eq. (4). □

Theorem 1. Let Fk,n(t1, t2, . . . , tk) be the generalized Fibonacci polynomial and Fk,n(t; q) be the q-
generalized Fibonacci polynomial, then

Fk,n(t1, t2, . . . , tk; q) = Fk,n(Sk,1,−Sk,2, . . . , (−1)k+1Sk,k).

Proof. We proceed by induction on n. The result clearly holds for n = 1, since Fk,1(t; q) = t1 = Sk,1 =

Fk,1(Sk,1,−Sk,2, . . . , (−1)k+1Sk,k). Now suppose that the result is true for all positive integers less than
or equal to n. We prove it for (n + 1). In fact, by the definition of generalized Fibonacci polynomials
for the vector S = (Sk,1,−Sk,2, . . . , (−1)k+1Sk,k), we have

Fk,n+1(S) = Sk,1Fk,n(S) + · · · + (−1)k+1Sk,kFk,n−k+1(S).

From the hypothesis of induction, we obtain

Fk,n+1(S) = Sk,1Fk,n(t; q) + · · · + (−1)k+1Sk,kFk,n−k+1(t; q).

Thus, we obtain
Fk,n+1(S) = Fk,n+1(t; q),

using Eq. (3). □

Theorem 2. Let Fk,n(t1, t2, . . . , tk) be the generalized Fibonacci polynomial and Lk,n(t; q) be the q-
generalized Lucas polynomial, then

Lk,n(t1, t2, . . . , tk; q) = Fk,n(Tk,1,−Tk,2, . . . , (−1)k+1Tk,k).

Proof. The proof runs like in Theorem 1. □

Corollary 1.

Fk,n(t; q) :=
∑ c!

c1!...ck!
S

c1
k,1(−Sc2

k,2) . . . ((−1)kS
ck−1
k,k−1)((−1)k+1S

ck
k,k) .

Proof. This is obvious from Eq. (1) and Theorem 1. □

Corollary 2.

Lk,n(t; q) :=
∑ c!

c1!...ck!
T

c1
k,1(−T c2

k,2) . . . ((−1)kT
ck−1
k,k−1)((−1)k+1T

ck
k,k) .

Proof. This is obvious from Eq. (1) and Theorem 2. □

Corollary 3. Let yk,n = (−1)n+1Tk,n for q = 1, Fk,n(t1, t2, . . . , tk) be the generalized Fibonacci polyno-
mial and Gk,n(t1, t2, . . . , tk) be the generalized Lucas polynomial, then

Gk,n(t1, t2, . . . , tk) = Fk,n(yk,1, yk,2, . . . , yk,k).

Proof. If we rewrite Theorem 2. for q = 1, we obtain

Lk,n(t; 1) = Fk,n(yk,1, . . . , yk,k).

Further, this is obvious from the definitions of Lk,n(t; q) and Gk,n(t) that Lk,n(t; 1) = Gk,n(t). Therefore,
we obtain the desired result. □
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There have been several studies on the generalized Fibonacci polynomials and the generalized
Lucas polynomials and the relationship between them. Corollary 3. gives a new relation between
these polynomials. Using this corollary, different results can be obtained. From Propositions 1, 3, 4
and Lemma 3 in [5], we can give the following corollaries.

Corollary 4. Let yk,n = (−1)n+1Tk,n for q = 1 and Fk,n(t1, t2, . . . , tk) be the generalized Fibonacci
polynomial, then

Fk,n(yk,1, yk,2, . . . , yk,k) = −tk−1Fk,n−k+1(t) − · · · − (k − 1)t1Fk,n−1(t) + kFk,n(t).

Corollary 5. Let yk,n = (−1)n+1Tk,n for q = 1 and Fk,n(t1, t2, . . . , tk) be the generalized Fibonacci
polynomial, then

Fk,n(yk,1, yk,2, . . . , yk,k) =
∑
a⊢n

n(−1)a+1
(
|a| − 1
a1,...,ak

)
Fa1

k,1 . . . F
ak
k,k.

Corollary 6. Let yk,n = (−1)n+1Tk,n for q = 1 and Fk,n(t1, t2, . . . , tk) be the generalized Fibonacci
polynomial, then

∂Fk,n(yk,1, yk,2, . . . , yk,k)
∂ti

= nFk,n−i(t1, t2, . . . , tk).

Example 1. We give a companion matrix C(k) and obtain C∞(k) using the method in [5] as follows:

C(k) =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
(−1)k+1Sk (−1)kSk−1 (−1)k−1Sk−2 . . . S1


.

In particular, if we take q = 1, we obtain the companion matrix A in [5]. We let the companion matrix
operate on its last row vector on the right and append the image vector to the companion matrix as
a new last row. We repeat this process, obtaining a matrix with infinitely many rows. Note that C(k)

is invertible if and only if Sk , 0. Assuming that Sk , 0, we can also extend the matrix from the top
row upward by operating on the top row with C−1

(k), obtaining a doubly infinite matrix, that is, one with
infinitely many rows in either direction and k-columns. We call this the infinite companion matrix
C∞(k). If we take q = 1, we obtain the companion matrix A∞ in [5]. It is obvious that, the right hand
column of C∞(k) in the positive direction is Fk,n(t; q).

3. q-analogue of the Generalized Fibonacci and Lucas Matrices

In this section, we introduce the generalized q-Fibonacci matrix and generalized q-Lucas matrix,
then we find their inverse matrices and give the Cholesky factorization of (k, q, t)-symmetric gener-
alized Fibonacci and Lucas matrices. These results generalize the k-Fibonacci matrix and its inverse
and k-symmetric Fibonacci matrix in [21](q = ti = 1).

Definition 5. The generalized q-Fibonacci matrix F (t;q)
k,n := [ fi, j]0≤i, j≤n is defined by

fi, j =

Fk,i− j(t; q), if i ≥ j,

0, otherwise.
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Example 2. The generalized q-Fibonacci matrix for n = k = 4 is

F
(t;q)

4,4 =



1 0 0 0 0
t1 1 0 0 0

t2 + t2
1 t1 1 0 0

t3 + (1 + q)t1t2 + t3
1 t2 + t2

1 t1 1 0
(t4 + (1 + q)t1t3 + t2

2 + t4
1

+(1 + q + q2)t2
1t2) t3 + (1 + q)t1t2 + t3

1 t2 + t2
1 t1 1


.

In particular, if we take q = ti = 1, we obtain the equation F (1;1)
k,n = F (k)n.

Definition 6. The n × n Hessenberg matrixDk,n := [di, j]1≤i, j≤n is defined by

di, j =


Fk,i− j+1(t; q), if i ≥ j,

1, if i + 1 = j,

0, otherwise.

Lemma 3. [28] Let An be an n × n lower Hessenberg matrix for all n ≥ 1 and define det(A0) = 1.
Then, det(A1) = a11 and for n ≥ 2

det(An) = an,n det(An−1) +
n−1∑
r=1

[(−1)n−ran,r(
n−1∏
j=r

a j, j+1) det(Ar−1)].

Lemma 4. Let n ≥ 1 be an integer. Then det(Dk,n) = Sk,n.

Proof. We proceed by induction on n. The result clearly holds for n = 1. Now, suppose that the result
is true for all positive integers less than or equal to n. We prove it for (n + 1). In fact, using Lemma 3
we have

det(Dk,n+1) = dn+1,n+1 det(Dk,n) +
n∑

i=1

(−1)n+1−idn+1,i

n∏
j=i

d j, j+1 det(Dk,i−1)


= t1 det(Dk,n) +

n∑
i=1

[
(−1)n+1−iFk,n−i+2(t; q) det(Dk,i−1)

]
= t1Sk,n +

n∑
i=1

[
(−1)n+1−iFk,n−i+2(t; q)Sk,i−1

]
= Sk,n+1.

□

Theorem 3. Let F (t;q)
k,n be the (n+ 1)× (n+ 1) lower triangular generalized q-Fibonacci matrix. Then,

we have

(F (t;q)
k,n )−1 = [bi, j] =

{
(−1)i− jSk,i− j, if i − j ≥ 0,

0, otherwise.

Proof. Note that it suffices to prove that F (t;q)
k,n (F (t;q)

k,n )−1 = In+1. For i > j ≥ 0, we have

n∑
k=0

fi,kbk, j =

i∑
k= j

fi,kbk, j

= Fk,i− j(t; q)Sk,0 − Fk,i− j−1(t; q)Sk,1 + · · · + Fk,0(t; q)(−1)i− jSk,i− j

and we know

Fk,i− j(t; q) =
k∑

s=1

(−1) j+1Sk,sFk,i− j−s(t; q)
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from Eq. (2). Therefore, we obtain
n∑

k=0
fi,kbk, j = 0 for i > j ≥ 0. It is obvious that

n∑
k=0

fi,kbk, j = 0 for

i − j < 0 and
n∑

k=0
fi,kbk, j = fi,ibi, j = Sk,0Fk,0(t; q) = 1 for i = j which implies that F (t;q)

k,n (F (t;q)
k,n )−1 = In+1,

as desired. □

In particular, if we take q = ti = 1, we obtain the inverse matrix of the k-Fibonacci matrix [21].

Definition 7. The generalized q-Lucas matrix L(t;q)
k,n := [li, j]0≤i, j≤n is defined by

li, j =


Lk,i− j(t; q), if i > j,

1 if i = j,

0, otherwise.

For example,

L
(t;q)
3,3 =


1 0 0 0
t1 1 0 0

(1 + q)t2 + t2
1 t1 1 0

(1 + q + q2)t3 + (1 + q + q2)t1t2 + t3
1 (1 + q)t2 + t2

1 t1 1

 .
Definition 8. The n × n Hessenberg matrix Ek,n := [ei, j]1≤i, j≤n is defined by

ei, j =


Lk,i− j+1(t; q), if i ≥ j,

1, if i + 1 = j,

0, otherwise.

Lemma 5. Let n ≥ 1 be an integer. Then

det(Ek,n) = Tk,n.

Proof. The proof runs like in Lemma 4. □

Theorem 4. Let L(t;q)
k,n be the (n + 1) × (n + 1) lower triangular generalized q-Lucas matrix. Then, we

have

(L(t;q)
k,n )−1 = [ci, j] =

{
(−1)i− jTk,i− j, if i − j > 0,
0, otherwise.

Proof. The proof runs like in Theorem 3. □

Definition 9. Let n ≥ 1 be an integer, (k, q, t)-symmetric generalized Fibonacci matrix
Q

(t,q)
k,n := [mi, j]0≤i, j≤n is defined by

mi, j =


i∑

l=0
Fk,l(t; q)Fk,l(t; q), if i = j,

i∑
l=0

Fk,i−l(t; q)Fk, j−l(t; q), if i + 1 ≤ j.

Theorem 5. The Cholesky factorization of Q(t,q)
k,n is given by

Q
(t,q)
k,n = F

(t;q)
k,n (F (t;q)

k,n )T
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Proof. Note that it suffices to prove that (F (t;q)
k,n )−1Q

(t,q)
k,n = (F (t;q)

k,n )T . We take F (t;q)
k,n )−1 =

[
bi, j

]
, Q(t,q)

k,n =[
mi, j

]
and (F (t;q)

k,n )T =
[
f i, j

]
and obtain

k∑
s=1

bi,sms, j for i, j = 0, 1, 2, ..., k. For i = j = n,

f i,i =

k∑
s=1

bi,sms,i

= (−1)nSk,nFk,n(t; q) + (−1)n−1Sk,n−1[Fk,1(t; q)Fk,n(t; q) + Fk,0(t; q)Fk,n−1(t; q)] + · · ·
−Sk,1[Fk,n−1(t; q)Fk,n(t; q) + · · · + Fk,0(t; q)Fk,1(t; q)]
+Sk,0[Fk,n(t; q)Fk,n(t; q) + · · · + Fk,0(t; q)Fk,0(t; q)]

= Fk,n(t; q)[(−1)nSk,n + (−1)n−1Sk,n−1Fk,1(t; q) + · · · + Sk,0Fk,n(t; q)]
+Fk,n−1(t; q)[(−1)n−1Sk,n−1 + · · · + Sk,0Fk,n−1(t; q)] + · · ·
+Fk,1(t; q)[−Sk,1 + Sk,0Fk,1(t; q)] + 1.

We know (−1)nSk,n + (−1)n−1Sk,n−1Fk,1(t; q) + · · · + Sk,0Fk,n(t; q) = 0 from the definition of Sk,n, so
f i,i = 1 for i = 0, 1, 2, ..., k. For i > j,

k∑
s=1

bi,sms,i = (−1)iSk,iFk, j(t; q) + (−1)i−1Sk,i−1[Fk,1(t; q)Fk, j(t; q) + Fk,0(t; q)Fk, j−1(t; q)]

+(−1)i−2Sk,i−2[Fk,2(t; q)Fk, j(t; q) + · · · + Fk,0(t; q)Fk, j−2(t; q)]
+ · · · + Sk,0[Fk,i(t; q)Fk, j(t; q) + · · · + Fk,i− j(t; q)Fk,0(t; q)]

= Fk, j(t; q)[(−1)iSk,i + (−1)i−1Sk,i−1Fk,1(t; q) + · · · + Sk,0Fk,i(t; q)]
+Fk, j−1(t; q)[(−1)i−1Sk,i−1 + (−1)i−2Sk,i−2Fk,1(t; q) + · · · + Sk,0Fk,i−1(t; q)] + · · ·
+Fk,0(t; q)[(−1)i− jSk,i− j + (−1)i− j−1Sk,i− j−1Fk,1(t; q) + · · · + Sk,0Fk,i− j(t; q)].

We know (−1)nSk,n + (−1)n−1Sk,n−1Fk,1(t; q) + · · · + Sk,0Fk,n(t; q) = 0 from the definition of Sk,n, so
f i,i = 0 for i = 0, 1, 2, ..., k. Finally, for i < j, equation f i,i = Fk, j−i(t; q) is shown in a similar way. □

Definition 10. Let n ≥ 1 be an integer. Then (k, q, t)-symmetric generalized Lucas matrix
P

(t,q)
k,n := [ni, j]0≤i, j≤n is defined by

ni, j =


i∑

l=0
Lk,l(t; q)Lk,l(t; q), if i = j,

i∑
l=0

Lk,i−l(t; q)Lk, j−l(t; q), if i + 1 ≤ j.

Theorem 6. The Cholesky factorization of P(t,q)
k,n is given by

P
(t,q)
k,n = L

(t;q)
k,n (L(t;q)

k,n )T

Proof. The proof runs like in Theorem 5. □

4. The Determinantal and Permanental Representations

In this section, we obtain any term of q-generalized Fibonacci and Lucas polynomials using deter-
minants and permanents of Hessenberg matrices.

Theorem 7. Let n ≥ 1 be an integer, Fk,n(t; q) be the nth q-generalized Fibonacci polynomial and
−U

(q)
k,n = [ui, j]i, j=1,2,...,n be the n × n Hessenberg matrix defined as

ui j =


(−1)i− jSk,i− j+1, if i − j ≥ 0,
−1, if i + 1 = j,

0, otherwise.
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Then, det(−U
(q)
k,n) = Fk,n(t; q).

Proof. We proceed by induction on m. The result clearly holds for m = 1, since det(−U
(q)
k,1) = Sk,1 =

t1 = Fk,1(t; q). Now, suppose that the result is true for all positive integers less than or equal to m. We
prove it for (m + 1). In fact, using Lemma 3 we have

det(−U
(q)
k,m+1) = um+1,m+1 det(−U

(q)
k,m) +

m∑
i=1

(−1)m+1−ium+1,i

m∏
j=i

u j, j+1 det(−U
(q)
k,i−1)


= t1 det(−U

(q)
k,m) +

m−k+1∑
i=1

(−1)m+1−ium+1,i

m∏
j=i

u j, j+1 det(−U
(q)
k,i−1)


+

m∑
i=m−k+2

(−1)m+1−ium+1,i

m∏
j=i

u j, j+1 det(−U
(q)
k,i−1)


= t1 det(−U

(q)
k,m) +

m∑
i=m−k+2

[
um+1,i det(−U

(q)
k,i−1)

]
= t1 det(−U

(q)
k,m) − Sk,2 det(−U

(q)
k,m−1) + · · · + (−1)k−1Sk det(−U

(q)
k,m−k+1).

From the hypothesis of induction and Eq. (3), we obtain

det(−U
(q)
k,m+1) =

k∑
j=1

(−1) j−1Sk, jFk,m+1− j(t; q) = Fk,m+1(t; q).

Therefore, det(−U
(q)
k,n) = Fk,n(t; q) holds for all positive integers n. □

Theorem 8. Let n ≥ 1 be an integer, Fk,n(t; q) be the nth q-generalized Fibonacci polynomial and
+V

(q)
k,n = [vs,t]i, j=1,2,...,n be the n × n Hessenberg matrix defined as

vs,t =


i3(s−t)Sk,i− j+1, if s − t ≥ 0,
i, if s + 1 = t,

0, otherwise.

Then, det(+V
(q)
k,n) = Fk,n(t; q).

Proof. Since the proof is similar to the proof of Theorem 7 using Lemma 3, we omit the details. □

Theorem 9. Let n ≥ 1 be an integer, Lk,n(t; q) be the nth q-generalized Lucas polynomial, −W
(q)
k,n =

[wi, j]i, j=1,2,...,n and +Y
(q)
k,n = [yi, j]i, j=1,2,...,n be the n × n Hessenberg matrices defined as

wi, j =


(−1)i− jTk,i− j+1, if i − j ≥ 0,
−1, if i + 1 = j,

0, otherwise,

and ys,t =


i3(s−t)Tk,i− j+1, if s − t ≥ 0,
i, if s + 1 = t,

0, otherwise.

Then, det(−W
(q)
k,n) = det(+Y

(q)
k,n) = Lk,n(t; q).

Proof. Since the proof is similar to the proof of Theorem 7 using Lemma 3, we omit the details. □

The permanent of an n-square matrix is defined by perA =
∑
σ∈S n

n∏
i=1

aiσ(i), where the summation

extends over all permutations σ of the symmetric group S n (cf. [38]). There is a relation between
permanent and determinant of a Hessenberg matrix (cf. [33, 39]). Then, it is clear that the following
corollaries hold.
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Corollary 7. Let n ≥ 1 be an integer, Fk,n(t; q) be the nth q-generalized Fibonacci polynomial, +U

(q)
k,n =

[ui, j]i, j=1,2,...,n and −V
(q)
k,n = [vs,t]s,t=1,2,...,n be the n × n Hessenberg matrix defined as

ui j =


(−1)i− jSk,i− j+1, if i − j ≥ 0,
1, if i + 1 = j,

0, otherwise

and vs,t =


i3(s−t)Sk,i− j+1, if s − t ≥ 0,
−i, if s + 1 = t,

0, otherwise,

where i =
√
−1. Then, per(+U

(q)
k,n) = per(−V

(q)
k,n) = Fk,n(t; q).

Corollary 8. Let n ≥ 1 be an integer, Lk,n(t; q) be the nth q-generalized Lucas polynomial, +W
(q)
k,n =

[wi, j]i, j=1,2,...,n and −Y
(q)
k,n = [ys,t]i, j=1,2,...,n be the n × n Hessenberg matrices defined as

wi, j =


(−1)i− jTk,i− j+1, if i − j ≥ 0,
1, if i + 1 = j,

0, otherwise

and ys,t =


i3(s−t)Tk,i− j+1, if s − t ≥ 0,
−i, if s + 1 = t,

0, otherwise.

Then, per(+W
(q)
k,n) = per(−Y

(q)
k,n) = Lk,n(t; q).
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31. Kaygısız, K. and Şahin, A., 2013. A new method to compute the terms of generalized order-k
Fibonacci numbers. Journal of Number Theory, 133, pp.3119–3126.
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