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Abstract: This project aims at investigating properties of channel detecting codes on specific do-
mains 1+0+. We focus on the transmission channel with the deletion errors. Firstly we discuss proper-
ties of channels with the deletion errors. We propose a certain kind of code that is a channel detecting
(abbr. γ-detecting) code for the channel γ = δ(m,N) where m < N. The characteristic of this γ-
detecting code is considered. One method is provided to construct γ-detecting code. Finally, we also
study a kind of special channel code named τ(m,N)-srp code.
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1. Introduction

The classical coding theory pays attention to substitution errors occurring when the messages are
communicated through the transmission channel. In [1], an abstract channel with combinations of
substitutions, deletions and insertions and its properties are discussed. Moreover, the authors [2] pro-
vide the concepts of singleton-detecting and (γ, ∗)-detecting codes which can detect both synchronous
and asynchronous errors when the finite-length messages are communicated through the transmission
channel. Some concepts related to the error detecting property have been studied in [3], [4]. In
this project, we first study the concept of γ-detecting codes which are applied for the infinite-length
messages communicated in the transmission channel. Furthermore we consider some properties of
γ-detecting codes. Next, we investigate some properties of the codes of the form 1n0n with n ≥ 1 for
the transmission channel δ(m,N) and propose one method to construct δ(m,N)-detecting code. Some
properties of the special channel code named τ(m,N)-srp code are studied in the final section. We
also find the maximal δ(m,N)-srp code on specific domains 1+0+.

2. Preliminaries

Let X be a finite alphabet and let X∗ be the free monoid generated by X. The set of natural numbers
is denoted by ℵ. Any element of X∗ is called a word. The length of a word w is denoted by lg(w). Any
subset of X∗ is called a language. Let X+ = X∗ \ {λ}, where λ is the empty word. The concatenation
of two words w and v over X is denoted by wv. For each positive integer n and L ⊆ X∗, the notation
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Ln = {u1u2 · · · un| ui ∈ L, 1 ≤ i ≤ n}. Let L0 = {λ}. Then Xn = {w ∈ X∗| lg(w) = n}. The set consisting
of all infinite sequences of nonempty words of L is denoted by Lω = {u1u2 · · · ui · · · | ui ∈ L \L0, i ≥ 1}.
Let L∞ = L∗ ∪ Lω, where L∗ =

⋃∞
n=0 Ln. Note that L∗ ∩ Lω = ∅.

Let Y ⊆ X∗. If y ∈ Yω, then a factorization of y over Y is an element (y1, y2, . . . , yn, . . . ) of
the countably infinite Cartesian product of Y , denoted by Π∞Y , for which y = y1y2 · · · yn · · · . If
y ∈ Y+, then a factorization of y over Y with order n is an ordered n-tuple (y1, y2, . . . , yn) such that
yi ∈ Y, 1 ≤ i ≤ n, and y = y1y2 · · · yn. A factorization of y ∈ Y+ over Y is a factorization of y over Y
with some order n.

A channel γ over X is a subset of the Cartesian product X∞×X∞. An element (y′, y) ∈ γmeans that
for an input y, the channel could output y′. A channel is noiseless if γ ⊆ {(y, y)|y ∈ X∞}. Otherwise, it
is noisy. Denote by π2 the projection onto the second coordinate, which is defined by π2(y1, y2) = y2

for every (y1, y2) ∈ X∞ × X∞. For γ ⊆ X∞ × X∞, this notation can be extended to π2(γ) =
⋃

y′∈X∞{y ∈
X∞|(y′, y) ∈ γ}. Thus ⟨y⟩γ is the set of all possible outputs of with respect to the input y. Given a
subset Y of π2(γ), we define ⟨Y⟩γ = ∪y∈Y⟨y⟩γ to be the γ-spanned set of Y .

Three basic error types σ, ι, and δ indicate substitutions, insertions, and deletions, respectively.
For a natural number N and a nonnegative integer m with m ≤ N, γ(m,N) denotes that at most m
errors of type γ can occur in any consecutive N symbols in a channel, where γ may be σ, ι, δ, or their
combinations. Note that (see [5]) for a nonempty word w with lg(w) = n where n ≤ N,

⟨w⟩γ(m,N) =

⟨w⟩γ(m,n), if N ≥ n ≥ m;
⟨w⟩γ(n,n), if m > n.

For instance, ⟨1100⟩δ(1,4) = {1100, 100, 110} = ⟨1100⟩δ(1,5) and ⟨1100⟩δ(1,3) = {1100, 100, 110, 10}.
Items not defined in this project can be found in ( [6], [5]).

Remark 1. Let N2 ≥ N1 ≥ N for some nature numbers N,N1,N2. Then ⟨w⟩δ(1,N2) ⊆ ⟨w⟩δ(1,N1) where
lg(w) = n ≤ N.

Definition 1. Let γ be a channel. A code C ⊆ X+ is detecting for γ or γ-detecting, if the following
condition is satisfied : for all w ∈ C∞, C∞ ∩ ⟨w⟩γ = {w}.

From the above definition of the channel detecting code, we have that if the code C is called
channel detecting, then for all w1,w2 ∈ C∞ with w1 , w2, w1 < ⟨w2⟩γ for channel γ. For instance, let
C = {1204, 1606}, w1 = 110000(1606)ω,w2 = 110000110000(1606)ω ∈ C∞. It is clear that w1 , w2,
but w1 ∈ ⟨w2⟩γ where γ = δ(3, 4) because w1 can be obtained from w2 = 110000110000(1606)ω after
deleting the underlined symbols. Then C is not δ(3, 4)-detecting code.

3. Properties of Channel Detecting Codes

In this section, the channel with deletion errors is considered. We consider the case γ = δ(m,N)
where m < N. The case γ = δ(m,N) where m ≥ N is omitted because there does not exist such
a γ-detecting code. First, we study the sufficient conditions of γ-detecting code. For instance, let
X = {0, 1}, C = {1204} and γ = δ(6, 10). Let w1 = (1204)4 and w2 = (1204)5. Then w1 , w2 for
w1,w2 ∈ C∞. We have w1 ∈ ⟨w2⟩γ. This implies that C is not γ-detecting.

Remark 2. Let C = {w} and γ = δ(m,N) where m < N. If lg(w) ≤ m, then C is not γ-detecting.

Proof. Suppose that C is γ-detecting. Let wk,wk+1 ∈ C∞ for some k ≥ 1. Then wk , wk+1. Since
lg(w) ≤ m, by the definition of channel detecting code, wk ∈ ⟨wk+1⟩γ, a contradiction. Thus C is not
γ-detecting. □

Remark 3. Let γ = δ(m,N) where m < N. Let C be a γ-detecting code with N ≥ max{lg(w)| w ∈ C}.
If there exist p, q ∈ X∗ such that w, pwq ∈ C, then pq = λ or lg(pq) > m.
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Proof. Let C be a γ-detecting code. Suppose that there exist w, pwq ∈ C such that u = pwq for some
p, q ∈ X∗ with 1 ≤ lg(pq) ≤ m. Since N ≥ max{lg(w)|w ∈ C}, we have w ∈ ⟨u⟩γ. This contradicts that
C is a γ-detecting code.

□

Lemma 1. Let X = {0, 1} and w1 = 1i0i, w2 = 1 j0 j where i, j ∈ ℵ and j > i. Let γ = δ(m,N) where
m < N and t = ⌊ lg(w2)

N ⌋. Then w1 ∈ ⟨w2⟩γ if and only if lg(w2) − lg(w1) ≤ tm +min{m, lg(w2) − tN}.

Proof. Let w1 = 1i0i, w2 = 1 j0 j where i, j ∈ ℵ and j > i. Let t = ⌊ lg(w2)
N ⌋. Then t ≤ lg(w2)

N < t + 1. It
follows that tN ≤ lg(w2) < tN + N. We have w2 = 1 j0 j = a1 · · · atN · · · a2 j, where ak ∈ {0, 1} for 1 ≤
k ≤ 2 j. First, we consider to delete m digits from asN+1 · · · asN+N whenever 0 ≤ s < t. Then the total
tm digits are deleted from 1 j0 j. Secondly, the min{m, lg(w2)− tN} digits are deleted from atN+1 · · · a2 j.
Thus for any word w1 = 1i0i with i < j, the condition lg(w2)−lg(w1) ≤ tm+min{m, lg(w2)−tN} implies
that w1 ∈ ⟨w2⟩γ. By an analogous proof, the condition lg(w2) − lg(w1) > tm + min{m, lg(w2) − tN},
implies that w1 < ⟨w2⟩γ.

□

Corollary 1. Let γ = δ(m,N) where m < N. Then ak ∈ ⟨a j⟩γ with j ≥ k for some a ∈ X and k, j ∈ ℵ
if and only if k ≥ j − (tm +min{m, j − tN}) where t = ⌊ j

N ⌋.

We study the relationship between words which have the form 1s10s2 ∈ ⟨1 j0 j⟩γ with s1, s2 ∈ ℵ and
words which have the form 1i0i < ⟨1 j0 j⟩γ with i ∈ ℵ where j ∈ ℵ for the channel γ = δ(m,N) where
m < N. For instance, let γ = δ(1, 3). Then ⟨1505⟩γ = {1s10s2 | 3 ≤ s1 ≤ 5, 3 ≤ s2 ≤ 5}. It is clear that
10, 1202 < ⟨1505⟩γ.

Lemma 2. Let X = {0, 1} and w1 = 1i0i, w2 = 1s10s2 , w3 = 1 j0 j where i, j, s1, s2 ∈ ℵ and j > i. Let
γ = δ(m,N) where m < N. If w1 < ⟨w3⟩γ and w2 ∈ ⟨w3⟩γ, then s1, s2 > i.

Proof. Let γ = δ(m,N) where m < N and t = ⌊ lg(w3)
N ⌋. We consider w1 < ⟨w3⟩γ and w2 ∈ ⟨w3⟩γ. As

w2 ∈ ⟨w3⟩γ, by Lemma 1, we have lg(w3) − lg(w2) ≤ tm +min{m, lg(w3) − tN}. Since w1 < ⟨w3⟩γ, by
Lemma 1 again, we have lg(w3)− lg(w1) > tm+min{m, lg(w3)− tN}. It follows that lg(w3)− lg(w2) <
lg(w3) − lg(w1). Thus lg(w1) < lg(w2). We have 2i < s1 + s2. There are the following cases:

(1) i ≥ s1. By corollary 1, we have s1 ≥ j − (tm +min{m, j − tN}) and i < j − (tm +min{m, j − tN})
where t = ⌊ j

N ⌋. It follows that s1 > i, a contradiction.

(2) i < s1 and i ≥ s2.

As i ≥ s2, the proof is similar to case (1). It follows that s2 > i, a contradiction. From case (1) and
case (2), we have s1, s2 > i.

□

Lemma 3. Let X = {0, 1} and w1 = 1i0i, w2 = 1 j0 j where i, j ∈ ℵ and j > i. Let γ = δ(m,N) where
m < N and k = ⌊ lg(w1)

N−m ⌋. Then the following statements are true:

(1) w1 ∈ ⟨w2⟩γ when lg(w2) ≤ lg(w1) + (k + 1)m.

(2) w1 < ⟨w2⟩γ when lg(w2) ≥ lg(w1) + (k + 1)m + 1.

Proof. Let w1 = 1i0i, w2 = 1 j0 j where i, j ∈ ℵ and j > i. Let t = ⌊ lg(w2)
N ⌋. Then t ≤ lg(w2)

N < t + 1. It
follows that

tN ≤ lg(w2) < (t + 1)N. (1)

Let k = ⌊ lg(w1)
N−m ⌋. We consider the following cases:

Ars Combinatoria Volume 159, 51–58



Jen-Tse Wang and Cheng-Chih Huang 54

(1) lg(w2) ≤ lg(w1) + (k + 1)m. Since k = ⌊ lg(w1)
N−m ⌋, we have k ≤ lg(w1)

N−m < k + 1. It follows that

k(N − m) ≤ lg(w1) < (k + 1)(N − m). (2)

This in conjunction with lg(w2) ≤ lg(w1) + (k + 1)m yields that lg(w2) < (k + 1)(N − m) + (k +
1)m = (k + 1)N. By Eq. (1), we have t ≤ lg(w2)

N . Thus tN ≤ lg(w2). This in conjunction with
lg(w2) < (k + 1)N yields that t < (k + 1); hence t ≤ k. By Lemma 1, we want to show that
lg(w2) − tm − min{m, lg(w2) − tN} ≤ lg(w1). It will imply that w1 ∈ ⟨w2⟩γ. We consider the
following subcases:

(1-1) lg(w2)− tN < m. We have lg(w2)− tm−min{m, lg(w2)− tN} = lg(w2)− tm− (lg(w2)− tN) =
t(N−m) ≤ k(N−m). This in conjunction with Eq. (2) yields that lg(w2)−tm−min{m, lg(w2)−
tN} ≤ lg(w1).

(1-2) lg(w2) − tN ≥ m. We have lg(w2) − tm −min{m, lg(w2) − tN} = lg(w2) − tm −m = lg(w2) −
(t + 1)m. From Eq. (1), we have lg(w2) < (t + 1)N. It follows that lg(w2) − (t + 1)m <
(t + 1)N − (t + 1)m = (t + 1)(N − M) ≤ k(N − M) ≤ lg(w1) whenever t < k. If t = k, then
lg(w2) − (t + 1)m = lg(w2) − (k + 1)m. This in conjunction with lg(w2) ≤ lg(w1) + (k + 1)m
yields that lg(w2) − tm −min{m, lg(w2) − tN} ≤ lg(w1).
Therefore, we showed that lg(w2) − tm −min{m, lg(w2) − tN} ≤ lg(w1). Thus w1 ∈ ⟨w2⟩γ.

(2) lg(w1)+(k+1)m+1 ≤ lg(w2). From Eq. (2), we have k(N−m) ≤ lg(w1). This in conjunction with
lg(w1)+(k+1)m+1 ≤ lg(w2) yields that k(N−m)+(k+1)m+1 ≤ lg(w1)+(k+1)m+1 ≤ lg(w2). Thus
kN+m+1 ≤ lg(w2). By Lemma 1, we want to show that lg(w2)−tm−min{m, lg(w2)−tN} > lg(w1).
We consider the following subcases:

(2-1) lg(w2) − tN ≤ m. We have kN + m + 1 ≤ lg(w2) ≤ tN + m. This implies that k < t. Since
lg(w2)− tN ≤ m, we have lg(w2)− tm−min{m, lg(w2)− tN} = lg(w2)− tm− (lg(w2)− tN) =
t(N − m). This in conjunction with k < t yields that t(N − m) ≥ (k + 1)(N − m). From Eq.
(2), we have lg(w1) < (k + 1)(N − m). Hence lg(w2) − tm −min{m, lg(w2) − tN} > lg(w1).

(2-2) lg(w2) − tN > m. Since kN + m + 1 ≤ lg(w2), this in conjunction with Eq. (1) which
lg(w2) < (t+1)N yields that kN +m+1 < (t+1)N = tN +N. Note that m < N. This implies
that k ≤ t. Since lg(w2)−tN > m, we have lg(w2)−tm−min{m, lg(w2)−tN} = lg(w2)−tm−m
and lg(w2) > tN + m. It follows that lg(w2) − tm − m > tN + m − tm − m = t(N − m). If
t > k, then t(N − m) ≥ (k + 1)(N − m). From Eq. (2), lg(w2) − tm − min{m, lg(w2) − tN} <
(k + 1)(N − m). We have lg(w2) − tm − min{m, lg(w2) − tN} > lg(w1). If t = k, then
lg(w2) − tm − m = lg(w2) − km − m. Since lg(w1) + (k + 1)m + 1 ≤ lg(w2), we have
lg(w2) − km − m ≥ lg(w1) + (k + 1)m + 1 − km − m = lg(w1) + 1 > lg(w1).
Therefore, we showed that lg(w2) − tm −min{m, lg(w2) − tN} > lg(w1). Thus w1 < ⟨w2⟩γ.

□

We extend the concept of the above Lemma 2 and Lemma 3. We have the following lemma.

Lemma 4. Let X = {0, 1} and w1 = 1i0i, w2 = 1s10s2 , w3 = 1 j0 j where i, j, s1, s2 ∈ ℵ and j > i. Let
γ = δ(m,N) where m < N and k = ⌊ lg(w1)

N−m ⌋. If w2 ∈ ⟨w3⟩γ and lg(w3) ≥ lg(w1) + (k + 1)m + 1, then
s1, s2 > i.

Proposition 1. Let X = {0, 1}, C ⊆ {1n0n| n ∈ ℵ}, and γ = δ(m,N) where m < N. Let k =
min{ lg(w)| w ∈ C} and k > m. If the following conditions hold:

(1) for w1,w2 ∈ C with lg(w2) > lg(w1), lg(w2) > lg(w1) + (⌊ lg(w1)
N−m ⌋ + 1)m;

(2) for w3,w4 ∈ C with lg(w3) ≥ lg(w4), {w3} ∩ ⟨w∗w4w∗ \ w3⟩γ = ∅ where lg(w) = k,

Ars Combinatoria Volume 159, 51–58



Some Properties of Channel Detecting Codes on Specific Domains 55

then C is γ-detecting.

Proof. Assume that there exist u, v ∈ C∞ such that u ∈ ⟨v⟩γ. Let u = u1u2 · · · ui · · · and
v = v1v2 · · · v j · · · , where ui, v j ∈ C and i, j ∈ ℵ. Now we consider the first subword u1 of u such
that u1 ∈ ⟨v1v2 · · · vk⟩γ where k ≥ 1. By Lemma 3, the statement (1) implies that ui′ < ⟨v j′⟩γ for some
i′, j′ ∈ ℵ. It follows that ui′ < ⟨xv j′y⟩γ where x, y ∈ C∞. Indeed, if ui′ ∈ ⟨xv j′y⟩γ, then we have
lg(xv j′y) − lg(ui′) ≤ (⌊ lg(w1)

N−m ⌋ + 1)m < lg(v j′) − lg(ui′), a contradiction. Therefore, u1 ∈ ⟨v1v2 · · · vk⟩γ

implies that lg(u1) ≥ lg(vi) for all 1 ≤ i ≤ k. Let k = min{ lg(w)| w ∈ C} and k > m. We consider the
following cases:

(1) 2m < k.

From the definition of the channel with deletion errors, we have 1s < ⟨C∞⟩γ and 0t < ⟨C∞⟩γ
where s, t ∈ ℵ. Thus for u1 ∈ ⟨v1v2 · · · vk⟩γ, we have u1 ∈ ⟨v1⟩γ. Note that if lg(u1) > lg(v1), then
u1 < ⟨v1⟩γ. This in conjunction with lg(u1) ≥ lg(v1) yields that u1 = v1.

(2) 2m ≥ k. Let lg(w) = k where w ∈ C. From the the statement (1), we have lg(w′) > lg(w) +
(⌊ lg(w)

N−m⌋ + 1)m for some w′ ∈ C \ {w}. This in conjunction with lg(w) ≥ m yields that lg(w′) >
m + (⌊ lg(w)

N−m⌋ + 1)m > 2m. Then we have 1s < ⟨C∗⟩γ \ ⟨w∗⟩γ and 0t < ⟨C∗⟩γ \ ⟨w∗⟩γ where s, t ∈ ℵ.
Now we consider u1 ∈ ⟨v1v2 · · · vk⟩γ with lg(u1) ≥ lg(vi) for all 1 ≤ i ≤ k. If k = 1, then we have
u1 ∈ ⟨v1⟩γ. By the similar proof used in case(1), we have u1 = v1. If k > 1, then we can assume
that u1 = 1p1m0n0q where p, q,m, n ∈ ℵ ∪ {0} such that 1p ∈ ⟨w∗⟩γ, 1m0n ∈ ⟨vi⟩γ where 1 ≤ i ≤ k,
and 0q ∈ ⟨w∗⟩γ. There are the following subcases:

(2-1) m = 0 or n = 0 or m = n = 0.
Since 1s < ⟨C∗⟩γ \ ⟨w∗⟩γ and 0t < ⟨C∗⟩γ \ ⟨w∗⟩γ where s, t ∈ ℵ, this in conjunction with
u1 ∈ ⟨v1v2 · · · vk⟩γ yields that u1 ∈ ⟨ww · · ·w⟩γ = ⟨w∗ww∗⟩γ. This result contradicts the
statement (2).

(2-2) p = 0 and q , 0.
We have u1 = 1m0n0q. Since u1 ∈ ⟨v1v2 · · · vk⟩γ, this implies that u1 ∈ ⟨viw · · ·w⟩γ =
⟨w∗viw∗⟩γ. This result contradicts the statement (2).

(2-3) p , 0 and q = 0.
We have u1 = 1p1m0n. Since u1 ∈ ⟨v1v2 · · · vk⟩γ, this implies that u1 ∈ ⟨w · · ·wvi⟩γ =

⟨w∗viw∗⟩γ. This result contradicts the statement (2).

(2-4) p = 0 and q = 0.
We have u1 = 1m0n. Then u1 ∈ ⟨v1⟩γ. This implies that u1 = v1.

(2-5) p , 0 and q , 0.
We have u1 = 1p1m0n0q. Since u1 ∈ ⟨v1v2 · · · vk⟩γ, this implies that u1 ∈ ⟨w · · ·wviw · · ·w⟩γ =
⟨w∗viw∗⟩γ. This result also contradicts the statement (2).

Therefore, we can conclude that for u1 ∈ ⟨v1v2 · · · vk⟩γ with k ≥ 1, we have u1 ∈ ⟨v1⟩γ and u1 = v1. By
similar discussion, we can conclude the results that u2 = v2, u3 = v3, · · · . Thus u ∈ ⟨v⟩γ implies that
u = v and C is γ-detecting.

□

4. A Construction of Channel Detecting Codes

Let γ = δ(m,N) for any given 1 ≤ m < N. In this section, we provide a method to construct
γ-detecting code which is the subset of {1n0n|n ≥ 1}.
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Proposition 2. Let X = {0, 1} and γ = δ(m,N) where m < N. Let C = {w} where w = 1s10s2 for some
s1, s2 ∈ ℵ. Then w < ⟨w2⟩γ implies that C is γ-detecting.

Proof. Suppose that C is not γ-detecting. There exist w1,w2 ∈ C∞,w1 , w2 such that w1 ∈ ⟨w2⟩γ.
Without loss of generality, we can assume that ww1 = w and ww2 = w∞ \ {w} such that ww1 ∈ ⟨ww2⟩γ

where ww1 and ww2 are subwords of w1 and w2 respectively. Now we consider w ∈ ⟨w∞ \ {w}⟩γ. There
exist u ∈ ⟨w2⟩γ and v ∈ ⟨w∞⟩γ such that w = uv. Since w = 1s10s2 , it follows that u = 1i10i2 for some
0 ≤ i1 ≤ s1 and 0 ≤ i2 ≤ s2. This in conjunction with the definition of the transmission channel
γ = δ(m,N) yields that {1 j10 j2 ∈ w2| i1 ≤ j1 ≤ s1, i2 ≤ j2 ≤ s2}. This implies that w ∈ ⟨w2⟩γ, a
contradiction. Thus C is γ-detecting.

□

In the following we define a function for constructing the γ-detecting code where γ = δ(m,N). A
function fγ : ℵ → ℵ is defined as

fγ(1) = m + 1

and

fγ(k + 1) = fγ(k) + ⌈
(⌊ 2 fγ(k)

N−m ⌋ + 1)m + 1
2

⌉

for k ∈ ℵ.
For instance, let γ = δ(1, 4). Then fγ(ℵ) = {2, 4, 6, 9, 13, · · · }. We have ⟨1606⟩γ = {1s10s2 | 4 ≤ s1 ≤

6, 4 ≤ s2 ≤ 6} \ {1404} and ⟨1404⟩γ = {1s10s2 | 3 ≤ s1 ≤ 4, 3 ≤ s2 ≤ 4}. Note that 1202 < ⟨1404⟩γ.

Proposition 3. The code C = {1 fγ(k)0 fγ(k) | k ∈ ℵ} is γ-detecting where γ = δ(m,N).

Proof. Let X = {0, 1}, γ = δ(m,N), and C = {1 fγ(k)0 fγ(k) | k ∈ ℵ}. We take w1 = 1 fγ(i)0 fγ(i) and
w2 = 1 fγ( j)0 fγ( j) with j > i where i, j ∈ ℵ. It follows lg(w2) − lg(w1) = 2( fγ( j) − fγ(i)) ≥ 2( fγ(i + 1) −

fγ(i)) = 2⌈ (⌊
2 fγ(i)
N−m ⌋+1)m+1

2 ⌉ ≥ (⌊ 2 fγ(i)
N−m ⌋ + 1)m + 1 > (⌊ 2 fγ(i)

N−m ⌋ + 1)m. By Lemma 3, we have w1 < ⟨w2⟩γ. By
Proposition 2, it follows that C is γ-detecting.

□

5. A Special kind of Channel Code

In this section, we study a special kind of channel code. Let τ = {δ, σ, ι} and let γ be a channel
of the form τ(m,N) where m < N. We consider the following properties from [5]. For a language
L ⊆ X+, let

Pref(L) = {x ∈ X+| xX∗ ∩ L , ∅},

and
Ls = {y ∈ X+| X∗Ly ∩ L , ∅}.

A language L ⊆ X+ is called strongly residue preventive if Pref(L) ∩ Ls = ∅. For instance, let
L = {ab, a2ba}. Then Pref(L) = {a, ab, a2, a2b, a2ba} and Ls = {a}. Since a ∈ Pref(L) ∩ Ls, L is not
strongly residue preventive. A language L is an τ(m,N)-srp code [5] if ⟨L⟩τ(m,N) is strongly residue
preventive. For instance, let X = {0, 1}, γ = δ(1, 4). We take w = 1302 ∈ 1+0+. Then ⟨w⟩γ =
{1302, 130, 1202, 120}. It follows that (⟨w⟩γ)s = {0} and Pref(⟨w⟩γ) = {1, 12, 13, 130, 1302, 120, 1202}.
Thus Pref(⟨w⟩γ) ∩ (⟨w⟩γ)s = ∅. We study the characteristic of τ(m,N)-srp code in the following
proposition. For L1, L2 ⊆ X+,

L−1
1 L2 = {x ∈ X+|L1x ∩ L2 , ∅}.

and
L2L−1

1 = {x ∈ X+|xL1 ∩ L2 , ∅}.
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Proposition 4. Let X = {0, 1} and γ = τ(m,N) where m < N. Let L ⊆ X+. Then L is an τ(m,N)-srp
code if and only if D−1D ∩ DD−1 = ∅ where D = ⟨L⟩γ.

Proof. Let X = {0, 1} and γ = τ(m,N) where m < N. Let L is an τ(m,N)-srp code and D = ⟨L⟩γ.
Suppose that D−1D ∩ DD−1 , ∅. There exists x ∈ X+ such that u = w1x and v = xw2 for some
u, v,w1,w2 ∈ D. Since v = xw2, we have x ≤p v ∈ D. It follows that x ∈ Pref(D). Since u = w1x, we
have x ∈ Ds. Thus x ∈ Pref(D)∩Ds, a contradiction. Conversely, suppose that L is not an τ(m,N)-srp
code. There exists x ∈ X+ such that x ∈ Pref(D) ∩ Ds. This implies that D−1D ∩ DD−1 , ∅, a
contradiction. Thus L is an τ(m,N)-srp code.

□

Proposition 5. Let X = {0, 1} and γ = δ(m,N) where m < N. There exist p, q ∈ Z with p ≥ 1 and
q ≥ 0 such that 1m+p0m+q is an δ(m,N)-srp codeword.

Proof. Let X = {0, 1} and γ = δ(m,N) where m < N. Let L ⊆ 1+0+ be an δ(m,N)-srp code and
D = ⟨L⟩γ. Suppose that 1m+p0m+q is an δ(m,N)-srp codeword where p, q ∈ Z with p ≥ 1 and q ≥ 0.
If p ≤ 0, then we have 1m+p0m+q, 1m+p0m+q−1, 0m+q ∈ D. This implies that 0 ∈ Pref(D) ∩ Ds, a
contradiction. If q < 0, then we have 1m+p, 1m+p−1 ∈ Ds. This implies that 1 ∈ Pref(D) ∩ Ds, a
contradiction. Thus 1m+p0m+q is an δ(m,N)-srp codeword with p ≥ 1 and q ≥ 0.

□

Proposition 6. Let X = {0, 1} and γ = δ(m,N) where m < N. The language L = {1m+p0m+q| p ≥
1, q ≥ 0} is a maximal δ(m,N)-srp code on 1+0+.

Proof. Let X = {0, 1} and γ = δ(m,N) where m < N. It is sufficient to show that L∩{w} is not δ(m,N)-
srp code for any w ∈ 1+0+ \ L. If a word w ∈ 1+0+ \ L, then w = 1k,w = 0k,w = 1m−p10k,w = 1k0m−q1

for some k ≥ 1, p1 ≥ 0, q1 ≥ 1. We consider the following cases:

(1) w = 1k. Let L′ = {w = 1k|k ≥ 1} and D = ⟨L′⟩γ. We have 1k, 1k−m ∈ D. This implies that
1 ∈ Pref(D) ∩ Ds, a contradiction.

(2) w = 0k. This case is similar to case (1). We get 0 ∈ Pref(D) ∩ Ds where D = ⟨{w = 0k|k ≥ 1}⟩γ,
a contradiction.

(3) w = 1m−p10k. Let L′ = {w = 1m−p10k|k ≥ 1, p1 ≥ 0} and D = ⟨L′⟩γ. We have 0k−k1 ∈ D for some
k1 ≥ 0. This implies that 0 ∈ Pref(D) ∩ Ds, a contradiction.

(4) w = 1k0m−q1 . Let L′ = {w = 1k0m−q1 |k ≥ 1, q1 ≥ 1} and D = ⟨L′⟩γ. We have 1k−k2 ∈ D for some
k2 ≥ 0. This implies that 1 ∈ Pref(D) ∩ Ds, a contradiction.

□
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