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Abstract

A split graph is a graph whose vertices can be partitioned into a
clique and an independent set. Most results in spectral graph theory
do not address multigraph concerns. Exceptions are [2] and [4], but
these papers present results involving a special class of underlying
split graphs, threshold graphs, in which all pairs of nodes exhibit
neighborhood nesting, and all multiple edges are confined to the
clique. We present formulas for the eigenvalues of some infinite fam-
ilies of regular split multigraphs in which all multiple edges occur
betweeen the clique nodes and cone nodes, multiplicity of multiple
edges i > 1 fixed, and which have integer eigenvalues for the adja~
cency, Laplacian and signless Laplacian matrices.

Keywords: split graphs, regular graphs, integer eigenvalues, Ad-
jacency matrix, multigraphs

1 Introduction and Preliminaries

Let G = (V, E) denote a graph with a set on v vertices and e edges. For all
graph terminology not described we refer to [6] and for all matrix theory
definitions and operations we refer to [1]. A graph G is called a split
graph if its vertices can be partitioned into a clique and an independent set
[Figure 1]. A clique is a maximal connected complete subgraph of G and an
independent set is a subset of V(G) such that no two vertices in the subset
are adjacent. The vertices in the independent set are called cones. In this

CONGRESSUS NUMERANTIUM 232 (2019), pp.189-200



paper, we only consider split graphs whose cone vertices all have the same
degree, or a proper split graphs. Further, a split graph is ideal if every
node in the clique is adjacent to the same number of cones. We define an
x-Ideal Proper Split Graph, z — IPS(c; d; b), as split graphs satisfying the
following conditions:

# n nodes in the graph
e c cones of underlying degree d

e z-grouping of cone nodes adjacent to the same d clique nodes

b clique nodes not adjacent to any cones

¢ number of clique nodes
cd
*« =>

-
od—m

Figure 1: Ideal Proper Split Graph 1—IPS(2, 2,0). Note that all the nodes
in the box are adjacent to each other.

Formulas for Laplacian eigenvalues for inﬁnjte families of these graphs

appear in (7], and when when (z + d + —--)2 — 4£ is an odd perfect

square, these are Laplacian integral, the ﬁrst known Laplacian Integral

non-threshold split graphs.

Figure 2: Ideal Proper Split Graph 1—IPS(2,2,0). Note that all the nodes
in the box are adjacent to each other.
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In this paper, all edges within the cliques are single. Multiply edges only
appear between clique nodes and cone nodes. In order to generate a regular
split-multi graph, one must ensure that each node is of the same degree. To.
do this, we define 14 € Z* to be the multiplicity of each cone edge, where
p = £94=%  Then our degree of regularity is d(y).

Figure 1 can be modified to become a split multigraph by including u.

2(2)—1 _
b= g =3

Figure 3 shows this graph when p = 3:

Figure 3: Ideal Proper Split Multigraph 1- IPSM(2,2(3))

Once the graph is created it can be classified using the general form:
x — IPSM/(c,d(u),0)

Investigation of the eigenvalues of IPSM has resulted in the classification of
those with integer eigenvalues into five families. In the first three families,
the cone nodes are adjacent to all clique nodes, meaning that the underlying
graph is a special type of threshold graph called complete split.

e The first family is of underlying threshold graphs of the form = —
IPSM (z,(z + 1)(x),0).

Example 4 — IPSM(4,5(4),0):
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Figure 4: Ideal Proper Split Multigraph 4- IPSM(4,5(4))-each edge shown
is of multiplicity 4

® The second family is of underlying threshold graphs of the form z —
IPSM(z, (2z — 1)(2),0).

Example 4 — IPSM(4,7(2),0):

AALLE R DD

Figure 5: Ideal Proper Split Multigraph 4- IPSM(4,7(2))—each edge shown
is of multiplicity 2




e The third family is of underlying threshold graphs of the form z —
IPSM(z, (= +2)((z +1)/2),0).

Example 5 — TPSM(5,7(3),0):

Figure 6: Ideal Proper Split Multigraph 5- IPSM(5 ,7(3))—each edge shown
is of multiplicity 3

There are two other integral regular split multigraphs that do not fit
into either of the three preceding families:

e The single member of this family is not underlying threshold. It is of
the form, 2 — IPSM(3,6(2),0) and eigenvalues 12, —4(3) 3 3 —1(6)

e The single member of this family is not underlying threshold either. It
is of the form 2—IPSM (4, 5(3), 0) and eigenvalues 15, —10,9, -6, —1(® 0, 0.

Remark 1: There is one graph that is a member of both family 1 and
family 2. This graph is 2 — IPSM(2, 3(2),0) which has eigenvalues 6, -4,
<1, -1, O;

Remark 2: The discovery and generalization of families 1 and 2 allows
for the creation of infinitely many underlying threshold graphs with integer
eigenvalues.

We will prove in the sequel that families 1,2 and three have adjacency
eigenvalues (0)=1), (—1)@=1 [(d(u)] D, [ ()|

The following is an important theorem:

Theorem 1.1 For any r-regular multigraph, if the Adjacency matriz, A
has integer eigenvalues, then we can say the graph is triply integral. This
means its Adjacency, Laplacian, and Signless Laplacian Matrices all have
integer eigenvalues. The eigenvalues of D+ A are:

Fer e M X
where D is the degree matric and A is the adjacency matriz of M.
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e For Family 1 we have Eigenvalues:
r=xzl4z
Adjacency: (0)®=, (=1)®, (& + )@, (—a?)V)
Laplacian: (22 + z)@~2, (22 + z + 1)¥, (0)@, (222 + 2)(
Signless Laplacian: (z2+2)®=2, (£242—-1), (222422)@ | (z)V
e For Family 2 we have Eigenvalues:
r=4z —2
Adjacency: (0)&~1, (~1)2==2) (42 — 2)N), (=22)(V)
Laplacian: (4z — 2)@=2, (4z — 1)(?2-2) (0)?, (6z — 2)(V)
Signless Laplacian: (4z—2)@~2), (4z—3)(=~2) (8z—4)®), (22—

2)(1)
e For Family 3 we have Eigenvalues:
— {z+1){z+2)

2

Adjacency: (0)@-1), (—1)+D), (iﬁ%&ﬂl)(n, (-_x.(%Ll).)(l)
Laplacian: (0)@, (Ldﬂlz._ﬁii%l}{z-d): (i"’.ﬁl‘lz_ﬂl’ﬂ)(:+l}, [(z+1)2]®

(o hemless Laplactan: (=) =211, (etDet)@-2) (2t @4, (44
1)d

2 Three Families of Integral x — IPSM(c,d,0)
Multigraphs

We present the theorems relating the parameters for the regular split multi-
graphs in these families to their adjacency eigenvalues, and the proof of the
third family; families one and two are proven simiarly.

Theorem 2.1 The adjacency matriz for family 1 of integral regular split
multigraphs, x — IPSM (z, (z + 1)(x),0), has eigenvalues
@D, (~1)@, (22 + ), (~a?)®,

Theorem 2.2 The adjacency matriz for family 2 of integral regular split
maultigraphs, x — IPSM(z, (2z — 1)(2),0), has eigenvalues
(ﬁ)(x_l)s {"'“1)(%_2}: (4:1’: - 2)(1)*} (_23"){1}-

In the third family of integral regular split multigraphs, the underlying
simple graph is threshold, with all cones adjacent to all clique nodes. The
underlying split graph is sometimes called complete split, and they are not
always adjacency integral [5]. An example of this family is in Figure 5,
5 — IPSM(5,7(3),0).
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Theorem 2.3 The adjacency matrix ﬂir family 3 of integral regular split
multigraphs, * — IPSM(z, (z + 2)( ),0), has eigenvalues

(0)‘““*”,&-1){””,((:-:+2)("'"+1))<l> () (EE2)o.

Proof. We observe that in this family of regular split multigraphs, ¢ =

ed =242, 0 = gorl . Without loss of generality, we set up the adja-

cency matrix in a specific form. Rows 1 through ¢ will be the ¢ cone nodes,
and the remaining n — ¢ rows will be the cones. The matrix will take the
form:

My | M,

—_— —

My | M,
where M; is a £ x = submatrix consisting of all zeros, M5 a = x (z + 2)

1
et y M3 an (x + 2) x z submatrix of all u, and M, an

(x + 2) x (z + 2) submatrix consistng of zeros on the main diagonal and
ones off it. To compute the eigenvalues, we consider the determinant of the
matrix A - Al =

submatrix of all

I TR S 0 E-.zhl %l-_. 7
0 : : A :
0 0 X %-_1 Ej-rl
mé'..l cow  EER [ OX) 1 waw waw 1
: 1 5 . i
: : f : 5 : : ™ 1
r_%l_ x_-gl:.l_ ; TR . (. |

The proof proceeds by a series of three matrix row operations to create
an upper triangular matrix. This matrix has the same form as the adja-

cency matrix, so we refer to the four quadrants. The first is to transform
o+l
submatrix Mj into one having all zeros by taking —2— times rows 1 through

x and adding each to rows x + 1 through 2z + 2, putting the respective
results in rows z + 1 through 2z + 2. The matrix takes on this form:
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A 0 e 0 [ 2t 1
" :
0 . 0 al=mt o i
0 0 A B B
: B
: 1 ! : : : : . B
L. & s owen 0 B -+ . B A |
1) + 1oy
where A = -—-—Eﬂ—— A B —E-— + 1. The next step is to

mutiply the bottom row by —1 and add the result to each of the rows from
row z + 1 to row 2z + 1, puttmgtherﬁult in rows :x:+1 to 2z + 1. The

wX fF wes 0 _-ﬂhl 5 Elz-_l 7
5 ;
0 . o |l = o
fesitig | O 0 |A-B 0 0 B-A
0
;3 & @ 0 . ¢ A-B B-A
L 0 W ses O B B A ]
observing that A~ B = —A—1, and B— A = A+ 1. The final row

operation is to multiply rows ¢ + 1 through 2z + 1 by oA adding

each result to the last row. This creates the upper triangular matrix
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oA 0 0| =g B
0 :
0 0 Al = - o
0 0O |A-B 0 0 B-A
0
: . : ’ 0 : : A-—-B B-A
L B e @m0 0 0 A+(d-1)B |

The characteristic polynomial is the product of the diagonal entries,

x41.,
which is (=A)*(A + 1)7H (=1)22+1 (= A-1+(m+2)(—f—— +1) =
—A2+(m+1)A+(m)(m+2)(‘”“)

(R Y (TR A = (=27 1(A+
P (=1)(=A% + (2 + DA+ (@)= + 2) (5= )2) Applying the quadratic

formula to (=A% + (z + DA + (z)(z + 2)( )2) yields the result. W

3 Future Work

Since there are two integral regular split multigraphs that do not fit into
the three existing infinite families, finding if there are others is one direc-
tion for future study. Also, there exist some integral regular split multi-
graphs that have varied multiplicites on the cone edges. This type of Reg-
ular Split Multigraphs are neither ideal nor proper; instead, these graphs
have more than one value for d and u. The cones are incident on all the
clique nodes but a different number of times. We denote these graphs:
@ — RSM(c,di(p1) + - - - + di(ps), b), where:

¢ 1 is the number of cone multiedges incident on each clique node
o d; is the number of clique nodes each cone nodes u; times

. Zle di(u;) is the degree of regularity

e n= '§=1 di+c

e (z — 1)? is the number of clique nodes
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e b is the number of clique nodes not adjacent to any cones

Category:
x—RSM(x -1, (x—1)(2),[(x — 1)(x— 2)](1)) where z > 3

Exzamples
3— RSM(2,2(2) +2(1),0)
Eigenvalues: 6, -3, -2, -1, -1, -1

Figure T: 3 — RSM(2,2(2) + 2(1),0).

4— RSM(3,3(2) + 6(1),0)

Eigenvalues: 12, -4, (=1538), (=1&8) _1(6)
5 — RSM(4,4(2) + 12(1),0)

Eigenvalues: 20, -5, (=1£¥17)(3) 1012,

These multigraphs need to be studied futher to determine their param-
eters, and under what conditions they are integral.
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