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Abstract

An ordered tree, also known as a plane tree or a planar tree, is
defined recursively as having a root and an ordered set of subtrees.
A 3-zebra tree is an ordered tree where all edges connected to the
root (call this height 1) are tricolored as are all edges at odd height.
The edges at even height are all black as usual. In this paper we
show that the number of 8-zebra trees with n edges is the number of
Schroder paths with bicolored level steps.

1 Introduction

A 8-zebra tree is an ordered tree where every edge at the root (height 1) is
either red, black or white, as are all edges at odd heights.

In our research several sequences were found which were already in the
Online Encyclopedia of Integer Sequences (OEIS) [8]; the A-numbers in
this paper are from this source.

The companion concept is that of little 3-zebra trees where the tricolored
edges are at even heights.

This paper generalizes an article by L. Shapiro, D. Davenport, and L.
Woodson titled ” Zebra Trees”, see [3], where a zebra tree is an ordered tree
where edges at the root are black or white, as are those at odd heights. An
obvious question is what happens when odd edges are k — colored? This
question is investigated in this article. In Section 2, we consider the case
when the odd heights are 3 — colored (called 3-zebra trees). We prove that
the generating function counting such trees also counts Schréder paths with
bicolored level steps. Using RiordanArrays we show that the average root
degree of 3-zebra trees is 21/3 + 1. In Section 3 we examine the boundary
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of 3-zebra trees and find the proportion of such trees whose left boundary

edge is length 1. In the Section 4, we investigate general k-zebra trees.

2 3-Zebra Trees

Theorem 1. Let A be the generating function counting 9-zebra trees and

B be the generating function counting little $-zebra trees. Then,

o A(m)=A=1:3wg£21$—8a-:___—’_j:sx_md

Proof. Consider the following figure. Figure 1 is used to count $-zebra trees

and figure 2 is used to count [ittle 3-zebra trees.
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Figure 1: Counting 3-Zebra Trees
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Figure 2: Counting Little 3-Zebra Trees

From Figure 1, we get

1
. 2132 3 =
A=1+3%B+ (328 + 82)*B* + .. = T——
From Figure 2, we get
1
B=1+zA+2* A2+ + .. =
1—zA4

Using equations 1 and 2, we get
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1—-zA4

AT eA-5
Hence,
zA? + (22 —1)A+1=0. (3)
The result for A follows from equation 3 and the quadratic formula. A
similar argument gives B. O

Expanding the generating functions gives the following:

A = 1+43z+122% +572° + 3002 + 16862° + ... [A047891] (4)
B = 1+4z+42®+ 19+ 1002* + 5622° + . .. [4007564) (5)

The following can easily be proved using Theorem 1. The formulas will be
useful in studying 3-zebra trees.

Theorem 2. Let A and B be as defined in Theorem 1. Then,
LB = "‘4'%_'3',

x

The next theorem is known, but the proof is possibly new.
Theorem 3. A counts ordered trees with tricolored leaves.

Proof. Let T be the generating function counting ordered trees with tricol-
ored leaves. Consider the following figure.

o B

Figure 3: Ordered Trees With Tricolored Leaves

The figure gives all possible ordered trees with tricolored leaves. From this
we get
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T(z) = 1+3T+2T(T—1)
W 1 e

The results follows by solving for T using the quadratic formula. O

The Schroder numbers S,, count many objects, such the number of
lattice paths in the Cartesian plane that start at (0,0), end at (2r,0), do
not go below the z—axis, and are composed only of steps (1, 1) (up), (1,—1)
(down), and (2,0) (horizontal). Such paths are called Schréder paths. The
generating function for the Schréder Numbers is

1—z—+vV1~6zx+x2
Blay = .

= 1+ 22+ 62 + 222° + 902? + 3942° + - . . [4006318]

Theorem 4. The generating function counting Schrider paths with bicol-
ored level steps is A. And the generating function counting such paths with
no level steps on the x — axis is B.

Proof. The proof is similar to the classical proof of finding the generating
function counting Schroder paths. Let G(z) be the generating function
counting Schréder paths with bicolored level steps. And let F(x) be the
generating function counting such paths with no level steps on the z— axis.
Recall that a prime Schroder path is either simply a horizontal step of length
2 or an up step followed by a Schréder path above the x — axis, followed
by a down step. In our case the horizontal step has weight 2z. So, the
generating function for prime paths is 2z + xG(z).

Thus
G@) = Y (20+26@)"
n=0
_ 1
T 1-2z—2G(x)
Hence we get
1—2z—+1— 8z +4z?
G(z) = o= =
By a similar argument we get
™ b
F(z) = 142z —/1—8z+4zx _B

6x
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In our calculations for Theorem 6 we will use Riordan Arrays. In
1991, Shapiro, Getu, Woan, and Woodson introduced a group of infinite
lower triangular matrices called the Riordan group, see [7]. The elements
of the group are defined by two power series g = 1 + g1 4 g2z + ... and
f = fiz+ fox® + fazd + ... with f; # 0, where the coefficients of g gives the
left most column and the k*”® column is given by the coefficients of g- f*, for
k=0,1,23,.... The power series f is called the multiplier function. Let
dn e be the coefficient of ™ in g(z)(f(z))*. Then D = (dy, x)n kx>0 is a Rior-
dan array and an element of the Riordan group. We write D = (g(z), f(z)).

Theorem 5. (The Fundamental Theorem of Riordan Arrays): Let
A(z) = Y22 parz® and B(z) = Y 1 bka® and let A and B be the column
vectors A = (ag, a1, 02, - .)T and B = (bg, by, by, - - - )T . Then (g, f)A= B,
if and only if B(x) = g(x)A(f(z)).

The proof of the following is similar to that of Theorem 3 from [3].

Theorem 6. The average degree of the root for $3-zebra trees is 2v/34+1~
4.464.

Proof. Our proof is motivated by Figure 1, where the first diagram gives
all 3-zebra trees with root degree one, the second those with root degree 2,
the third those with root degree 3, and so on. This gives us the following
Riordan array where the multiplier function is 3zB.

1 0 0 o0 0 0O )

0 3 0 0 0 o0

0 3 9 0 0 0

0 12 18 27 0 0 = (1, 3zB)
0 57 81 8 81 0

0 300 414 405 324 243

Recall that E:-E:EF =x+222+ 32 + 42t .. .

Thus using The Fundamental Theorem of Riordan Arrays, we get
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1t 0 0 0 0 o 170671 [ o ]
03 0 0 0 o0 1 3
6 3 9 0 0 o0 2 21
0 12 18 21 0 O 3 | =| 129
06 57 8 8 8 0 4 786
0 300 414 405 324 243 5 4854

= (1,3zB) (1—=z)2 = (1—3zB)2

— 3zBA? = 3x(£_ét2)A2
== z(2A+ A A= (A-1)A

A% - A
Thus the average root degree is
[z"](A% —~ A)
[en}A
Note that for n > 1,
e
n | A
-
= Gu4l1 — 2%
Thus
)42~ &) anyy —2an —ag
[z7]A an

Il

%_3_}4+2\/§—3=1+2\/§%4.4ﬁ4
O

The asymptotic result comes from 224 = 1 — 2z — /1 — 8z + 422 having
its smallest singularity at 1 — £4/3, together with the ratio test.

Using similar calculations and Figure 2, we get the following theorem
on the average root degree for the little 3-zebra trees.

Theorem 7. The average degree of the root for little 3-zebra trees is §\/§+
1 =2 2.155,
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By way of comparison, the average degree at the root for ordered trees
approaches 3, see [5]; and the average degree at the root for zebra trees
approaches 3.828, see [3].

3 The Boundary of 3-Zebra Trees

In [4] the notion of the boundary of ordered trees was introduced. The
definition is given below.

Definition 1. The right boundary of an ordered tree is the rightmost path
that emanates from the root and terminates at the right most leaf. The
left boundary is defined similarly. The boundary of an ordered tree is the
union of the left and right boundaries.

As in [4], we start by examining the left boundary edges. We consider
two cases, when the left boundary edge terminates at an even height and
when it terminates at an odd height. Finding our generating functions is
motivated by the following figure.

Using Figure 4, the generating function counting trees with odd left
boundary height is
0:= 3zA+3%*BA® + 3*25A%B% + ...
_ 3z A
~ 1-3z2AB
= 3z + 922 + 452> + 2342? 4 18142° + 771325 4 ...
and the generating function counting trees with even left boundary height
is
E:=1+322AB +3%22'42B? + 3%:54%B% 4 ...
R
" 1-—3z2AB
=14 322 4 1223 + 662* + 37225 + 21992° + ...

215




Figure 4: Left Boundary Edges

Combining the two cases gives
3zA = 1 14324
1-3224B ' 1—-322AB  1-—3z2AB

Theorem 8. The proportion of 3-zebra trees whose left boundary edge is
of length 1 approaches 2(3 — 2/2) ~ 0.879.

= A, as expected. (6)

Proof.
{.'2"1333.4 . 314.".,_1
[z"]lA A,
oD —3(1-1\/§)~0379
4 + 2‘\/5 = 2 ~ U, ]

4 General k-Zebra Trees

A k-zebra tree is an ordered tree where every edge at the root (height 1) is
one of k colors, as are all edges at odd heights. The proof of the following
is similar to that of Theoreml.

Theorem 9. Let Ax be the generating function counting k-zebra trees and
By be the generating function counting little k-zebra trees. Then,

1—x(k—1)—+/1-22(k+1 2(k—-1)2
a. Ac(z) = Ax = z(k—1)—/ 2:( A1) and

14z(k—1)—+/1-2z(k+1)+z2(k—1)2
b. Bre(z) = By = x( )—v/ 2;;( )+-z2( )

Proof. Consider the following figure that is similar to Figure 1 and 2 in
section 1. Figure 5 is used to count k-zebra trees and figure 6 is used to
count kttle k-zebra trees.

kx kzx kz kx r /kz
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Figure 5: Counting K-Zebra Trees
T i & T

Figure 6: Counting Little K-Zebra Trees

From Figure 5, we get

Ax = 1+ kaBy + (kz)?Bx? + (kz)°Bed 4 oo = —— 7)
1 — kzBx
From Figure 6, we get
1
Bx =1+zAc + 22 Al + 28 A3 + = — (8)
1—zAx
Using equations 7 and 8, we get
1 —zAx
A e T
Hence,
A 4 (kz —z — 1) Ax + 1 = 0. (9)

The result for Ax follows from equation 9 and the quadratic formula. A
similar argument gives Byx. O

Note that when k£ = 1 we get A4 = By = 1:21:_@* which is the gen-
erating function counting Dyck paths. This makes sense, since Dyck paths
have no level steps and the 1—zebra tree is simply an ordered rooted tree.

Expanding the generating functions gives the following:

Ac = 1+kz+ (B +k)a? + (k% + 3k + k)2® + (k* + 6k + 6k2 + k)2* +(10)
Be = l+z+(k+1)2®+ (k2 +3k+ 1)a® + (k* + 6k + 6k + 1)a* +... (11)

The following, which is similar to Theorem 2 in section 1, can easily be
proved using Theorem 9. Hence, we get similar relationships between the
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generating function counting little k-zebra trees and big k-zebra trees as
is seen with the generating functions for little Schréder numbers and big
Schréder numbers.

Theorem 10. Let Ay and By be as defined in Theorem 9, Then,
_ Ax+(k—1)
- k

1. Bx

2 Ac? = Ax—(kz—x)Ax—1

x

The proofs of the following theorems are similar to those of Theorem 8
and Theorem 4; simply change the 3 in the Figure § to k for Theorem 9
and the weight of the level steps to kz for Theorem 4.

Theorem 11. A, counts ordered trees with k— colored leaves.

Theorem 12. The generating function counting Schréder paths with k — 1
colored level steps is Ax. And the generating function counting such paths
with no level steps on the = — azis s By.

5 Bijections

We can easily find a bijection between Schréder paths with k¥ — 1 colored
level steps and ordered trees with & colored leaves. We will illustrate the
bijection using the following tree with k—colored leaves.

Figure 7: Ordered Tree With k—colored Leaves
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Using the preorder traversal algorithm, with U denoting up and D down,
we get the following UUDDUDUUUUDDUDDD. This corresponds to
the Schroder path given below.

. ’/’\lﬁ | //,/ \\\ .
P2 S N2

Each peak corresponds to a leaf in the ordered tree. Leaves that are
colored k are mapped to the path with a peak, while those that are colored
i for 1 < i < k—1 are mapped to the path with level step of the same color.

We could not find a bijection involving the k-zebra trees. That is an
ongoing project.
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