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Abstract

A polyhex is a set of hexagons of the euclidean tessellation of the
plane by congruent regular hexagons, Then a polyhex graph has
the vertexpoints of the hexagons as its vertices and the sides of the
hexagons as is edges. A rectilinear drawing of a graph in the plane
uses straight line segments for the edges. Partial results are given for
the maximum number of crossings over all rectilinear drawings of a

polyhex graph.

1 Introduction

A rectilinear drawing D(G) of a graph G is a realization of G in the plane
where the vertices of G are mapped into distinct points, also called vertices
of D(G), and where the edges are mapped into straight line segments, also
called edges of D(G), connecting the corresponding vertices in such a way
that two edges have at most one point in common, either at a vertex or a
crossing (point of intersection). The maximum number of crossings over all
rectilinear drawings D(G) is denoted by CR(G).

A polyhex (hexagon polyomino, hexagon animal) is a set of hexagons of
the euclidean tessellations of the plane by congruent regular hexagons such
that the set of hexagons and its complement are edge-connected. Then a
polyhex graph P has the vertexpoints of the hexagons as its vertices and the
sides of the hexagons as its edges. In honor of the 50th anniversary of the
Southeastern Conference on Combinatorics, Graph Theory, and Computing
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Figure 1: Polyhex graph (29, 13) with CR(5(29, 13)) = 10, 284.

Figure 1 presents an example of a polyhex graph with 29 hexagons. This
graph can have 10, 284 crossings in maximum.

In this paper we will consider CR(P) for polyhex graphs P continuing
earlier work in [1] for polyominoes (squares), in (2] for polyiamonds (tri-
angles), and in [3] for game boards as chessboard like parts of all three
euclidean tessellations of the plane.

2 Two gluing theorems

For certain polyhex graphs it is possible to glue together their extremal
drawings such that the resulting drawing has the maximum rectilinear
crossing number of the corresponding polyhex graph too.

Theorem 1. Let Gy and G, be polyhex graphs with e; and ey edges and with
extremal drawings as in Figure 2 having CR(G1) and CR(G3) crossings.
Then for Gy + Gy, i.e. the graph that results when Gy and Gy are glued
along the gluing edge AB, it holds

CR(G1 + G3) = CR(Gy) +CR(G2) + (e1—1){ez — 1) —2.

Proof. If the two extremal drawings D(Gy) and D(G3) from Figure 2 are
combined along the edge AB as depicted in Figure 3 then all e; — 1 edges
of G (excluding AB) and all e; — 1 edges of G2 (excluding AB) determine
pairwise crossings besides the two pairs of adjacent edges incident to A and
to B. Thus (e; — 1)(ez — 1) — 2 crossings are added to CR(Gy) + CR(G>).
Since these occur, there are no misses other than those within D(G1) and

D(Gy). Therefore, this gives the asserted maximum.
a
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Figure 3: G1 4+ G and its extremal drawing.

In the following a miss is a nonadjacent edge pair which does not determine
a crossing.

Remark 1. We may ask whether we can prove that any extremal drawing
of a polyhex graph P (or even of a bipartite graph) has a bipartite extremal
drawing as in Figure 2.

In any case, if there exists such an extremal drawing then there are ezactly
two gluing edges. By symmetry of P there may be other pairs too, but not
at the same time.

Theorem 2. If a hezagon H is glued along AB to a polyhex graph P where
the second gluing edge of H is adjacent to the opposite edge of AB, i.e, CD
or EF in Figure 4, then the subdrawing D(H) of D(P+H) with CR(P+H)
crossings has only siz crossings and CR(P + H) = CR(P) + 5e — 1, where
e s the number of edges of P.

Proof. Consider P and H as in Figure 4. If D(H) has CD as a gluing
edge and a maximum of 7 crossings then D(H) is unique as in the middle
of Figure 4 and AB cannot be the second gluing edge of Theorem 1. If
a gluing edge AB would be done corresponding to Theorem 1, then that
edge of P being incident to B would induce at least two misses (AE, EF, or
CD, ED). However, that D(H) on the right of Figure 4 has six crossings,
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Figure 4: Gluing of H by nonopposite edges.

i.e. one miss only in addition, and both AB and CD are possible as gluing
edges corresponding to Theorem 1. Thus

CR(P+H)=CR(P)+6+5(e—1)—2=CR(P)+5e~ 1.
O

A snake is a polyhex with a path as its skeleton where each hexagon deter-
mines a vertex and edges are between hexagons having an edge in common.
In other words, a snake has two hexagons at its two ends and each further
hexagon has exactly two neighboring hexagons at one edge and either at its
opposite edge or at one of the two edges which is adjacent to the opposite
one.

A general upper bound for CR(G) for a graph G with vertex set V, edge set
E, and vertex degrees deg(v) is the so-called thrackle number #(G) which
counts the number of nonadjacent edge pairs of G, that is,

TR(G) < 4(G) = (fl) 57 (deg?(v))l

veV

For a polyhex graph P, with n hexagons the subthrackle number s(FPyp)
improves the upper bound as follows,

CR(P,) < s(P,) =t(P,) — 2n,

since for each of the n hexagons there are two misses in its unique extremal
rectilinear drawing (see Lemma 1 in [1], [4], and [6]).

Corollary 1. For a snake polyhex graph S(n,h) with n hezagons where
h < n—2 of them have nonopposite neighbors it holds

TR(S(n, b)) = %(251.-12 ) =,
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Proof. The snake S(n, h) has 5n + 1 edges, 4n + 2 vertices, 2n + 2 of them
of degree 3 and 2n + 4 of degree 2. Then the subthrackle number s is

oSl ) = (5";’ ‘) - (3) (@n—2) — (2n—4) =

a -;-(25?-;2 — 151 + 4).

Furthermore, by Theorem 2 there is exactly one further miss for each
of the h hexagons and thus CR(S(n, h)) = s(S(n, h)) — k. O

The example in Figure 1 shows 5(29, 13) implying CR(S(29,13)) =

10,284. For h = 0 the n hexagons are positioned in a straight line and the
subthrackle bound is attained,

OR(S5(n, 0)) = s(S(n, 0)) = %(255# ~ 16n + 4).

It may be remarked that using the gluing theorems we can get CR for
a chain of polyhexes glued along the two gluing edges and connected to
arbitrarily long snakes. However, it is an open problem to get an octopus,
i.e. to have three or more snakes growing in more than two directions.

3 Small polyhex graphs

All polyhexes with up to 4 hexagons are depicted in Figure 5 where the
numbers following the names are the corresponding values of CE.

G oo & o e

1A:7  2A57 3A:73 3B:91 3C:92

& 00 B,

4A:129 4B:172 4C:148 4D:165

Lo BE o5

4E:171 4F:170 4G:170

Figure 5: All polyhex graphs with » < 4 hexagons and their values of CR.



For all polyhex graphs which are snakes Corollary 1 can be applied to
determine the values of CR as given in Figure 5. Graphs 3A4, 44, 4C, and

4D remain.

3A: This is a game board graph and it was proved in [3] that CR(34) = 73.
4C: Since there exists an extremal drawing of 34 having the appropriate
gluing edges another hexagon can be glued to 34 to obtain by Theorem 1
that CR(4C) =73+ 7+ (15— 1)(6 — 1) — 2 = 148.

4A: The lower bound follows from Figure 6.

Figure 6: CR(4A) > 129, gluing edges 2, 3 and 14, 15.

For the upper bound we use the thrackle numbers ¢(44) = 143 and
t(3A) = 84. Since CR(3A) = 73 there are at least 11 misses in a subdrawing
3A. An additional hexagon completing 34 to 44 has either at least 3 misses
or 2 misses. At least 3 misses yield ﬁ(ﬂl}l) < 143 - 11 - 3 = 129. If the
hexagon has 2 misses then it has a unique subdrawing D(Cs) of D(4A4) and
there are 3 edges of 44 connected to 3 of its vertices as in Figure 7 with all
three possible labelings of the D{Cs).

0 7 11 1 4 2 5 3 6

Figure 7: Additional hexagon with 2 misses.
Since 6, 7||2,3V 3,4, 1,10|3,4V4,5, and 5,11]|1,2V2, 3 we have at least
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one further miss so that CR(44) <143 —-11—-2—1 = 129.

4D: The lower bound follows from Figure 8.

\\V//

‘\‘\\ f//’

Figure 8: CR(4D) > 165, gluing edges 8,9 and 12, 13.

The subthrackle number is s(4D) = 180 — 8 = 172 so that for the upper
bound 7 further misses are needed. Note, that misses within one of the four
hexagons may have been counted already by s(4D).

(I) The center hexagon has 7 crossings. Then there is a unique drawing of
this Cs. Use the labeling as in Figure 9.

1 4
3 6
5 2

Figure 9: Labeling used for the unique D(Cj) of the center hexagon.

Consider the paths 6,7,8 and 3,14,13. If both determine at least 4
misses then CR(4D) < 172 — 8 = 164. For 6,7, 8 there are only 7 cases
with less than 4 misses (see Figure 10).

If in addition the path 1,10, 9 has at least 2 misses then together with
6,7,8 we have at least 4 misses. There are only two cases of 1, 10,9 with
at most one crossing (see Figure 11).
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Figure 10: Possible paths 6, 7,8 with the numbers of misses in bold.

(@ 1 ®1 9

%K

Figure 11: Paths 1, 10,9 with at most 1 miss in bold.

For (a) with (1) to (7) there are always at least 4 misses since for
each of (1) to (3) we have 1,2|8,9 and for (6) we have 3,4||8,9 as addi-
tional misses so that 4 misses occur. For (b) with (4) to (7) additional
misses are 1,2||8,9, 2,3}8,9, 2,3||8,9, and 5, 6|8, 9, respectively. Together
there remain the three cases of Figure 12 for paths 6,7,8,9,10,1 with 2
misses each. The corresponding three cases with 2 misses each for the path
3,14,13,12,11,2 are depicted in Figure 13. For all six pairs of (b,) and
(d,7) we have 2 4 2 + 2 = 6 misses since always 3,4||6,7 and 1, 10||2,11 as
well. Then the seventh miss for CR(4D) < 172 — 7 = 165 is guaranteed
since either 9,10]|11,12, or 9 is to the left of 11 so that 2,11||8,9, or 12 is
to the right of 10 so that 1,10||12, 13 (see Figures 12 and 13).

(b. ﬂ g 7 {b2} (b3) 9
1 4
5
3 6
5 2
10 8

Figure 12: Paths 6,7,8,9,10, 1 with two misses.



@11 13 @211 13 @3 4 13

1 4 1 4 1 4
6
3 6 3
S ¢ 14
5 2 5T N2 5 2
12 12
2 2

12 14
2

Figure 13: Paths 3, 14, 13,12, 11, 2 with two misses.

(IT) The center hexagon has 6 crossings so that CR(4D) < 172 — 1 = 171.
There is a unique drawing of this Cy depicted in Figure 14. This can be
checked in [7] where only one of the 29 nonisomorphic drawings can be
drawn rectilinear or it can be directly proved that the 3 possibilities of an
edge with 2 crossings cannot be completed to a drawing where each edge
has exactly 2 crossings, and that all completions of the 3 possibilities of an
edge with 3 crossings only once result in a drawing with 6 crossings. With
the labeling of Figure 14 we have 4 possible directions to insert 5,18 as in
Figure 15.

1 2
5 4
3 6

Figure 14: The unique D(Cg) with 6 crossings.

(a) 18 (b) (c) (d)
1 2 1 2 1 2 1 2
18
5 4 5 4 5 4 5 4
6 6 o
3 3 3 6
3% e
Figure 15: Edge 5,18 in the center hexagon.

For each case there are at least the following 3 misses: (a) 5,18]|2, 3;
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5,18}(3,4; 2,11||4,5 Vv 5,18. (b) 5,18||3,4; 5,18|[1,2; 17,18|11,2 v 3,4. (c)
5,18||1,2; 17,18||1,2 v 5,6; 6,7||1,2 v 1,10||5,6 v 6, 7||1,10. (d) 5, 18||1, 6;
5,18}1,2; 6,7||4,5V 5,18. In all cases the path 5, 18,17 and the edges 2,4
and 6,7 have been used. If then the path 4, 15, 16 and the edges 1, 10 and
3,14 are used then due to symmetry we have again 3 misses in all 4 cases.
Thus together we have 3+ 3 = 6 misses yielding CR(4D) < 171 — 6 = 165.
It may be remarked that there may be another labeling in Figures 14 and
15 where 1, 6 is the labeling of the edge without a crossing. However, then
the path 3, 14, 13 with edges 6,7 and 2, 11 and the path 4, 15, 16 with edges
1,10 and 5, 18 determine the corresponding 6 misses in each case.

(III) The center hexagon has i crossings, ¢ < 5. Then CR(4D) < 172 —
(7 — 1) = 165 + i so that ¢ misses are needed. From [7] or directly proved
all rectilinear D(Cs)s with ¢ < 5 crossings are depicted in Figure 16,

TRX R ~N X
XA =7 X g4 ) W
Wd K=o XX

v X, Q

Figure 16: Rectilinear D(Cg)s with i crossings, i < 5.

For each of these drawings it can easily be checked that at least i misses
are determined between the edges of the center Cg with vertices 1,2, 3,4, 5,6
and the 6 edges incident to the vertices of the center Cg (see Figure 8).

Now all values CR asserted in Figure 5 are determined. There are 22
polyhexes with five hexagons. For 19 of them, CR can be settled by gluing
and with the results of Figure 5. There remain open the three polyhexes of
Figure 17.
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Figure 17: Polyhexes with 5 hexagons and CR = 7

4 Order of magnitude

What about maximum and minimum of CR(P)?

Theorem 3. For a polyhex graph P it holds max CR(P) = O(£n?) and
min CR(P) = O(3n?).

Proof. From [4] it follows that the maximum and minimum number of the
edges of a polyhex with n hexagons is of order 5n and 3n, respectively. Thus
the thrackle numbers give the order of the corresponding upper bounds of
CR(P) to be £n? and 3n2 By the linear snake Bn? is attained (see
Corollary 1). In [3] it was proved that CR(By) is at least of order L3k
where By, is a game board of order k with n = 2k? hexagons and having a
minimum number of edges. Then k? = 3n implies 28344 = In?. 0O

In future work CR for polyomino like parts of platonic solids and of
noneuclidean tessellations of the plane can be discussed.
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