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MOMENTS
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ABSTRACT. An upper bounds on the energy of graphs is obtained
using the spectral moments of the eigenvalues of adjacency matrix
associated to the graph using the method of Lagrange multipliers and
properties of cubics.

1. INTRODUCTION

The energy of a graph was introduced by Gutman [5] in connection with
the total m—electron energy of a graph after it was recognised that spectral
graph theory can be used in Hiickel molecular orbital theory ([4],[6]). The
general theory and chemical applications can be found in [7].

Let G be a simple (no loops or repeated edges), connected graph with
vertices v; for 1 = 1,..n and m edges. Let A(G) be the nzn adjacency
matrix associated with GG such that

AG) = { 1 if v; is connected to v; where i # j
0 if v; is not connected to v; where i # j.

Let Ay, Az, ..., An denote the n eigenvalues of A(G) and the Spec(4) =
{A1, A2, ..., An} be the spectrum of A. We note that the tr(4) = 3 X and

i=1
T
det(A4) = HA;, and that the det(A) = 0 if and only if there exists at least
i==1
one eigenvalue equal to zero. In addition, since A is a real, symmetric ma-
trix, its eigenvalues are all real.

In the 1940’s, a close correspondence between the graph eigenvalues and
the Hilckel molecular orbital energy levels E, of electrons in conjugated
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hydrocarbons was realized. In particular,

Er =na+ 8 Z 'Ail

i=1
where «, 3 are constants. Since n is constant in chemical applications, the
only non-trivial part of E, is 3., |\|. In practice, the total 7—electron
energy of a graph applies only to molecular graphs where the maximm
vertex degree of G cannot exceed 3. In the 1978, Gutman [8] expanded the
concept to all graphs and defined the energy of any simple graph G on n
vertices, as

E(G) = _Zm.

This is a natural extension of this property as crystallographic groups tell us
about the structure of matter. Graphs based on groups are used to model
individual molecules as well as a variety of chemical systems. In fact, the
connection tables used by the Chemicals Abstract Service are essentially
adjacency matrices in that the list the atoms in a molecule along with their
binding linkages. Broader study of the energy of graphs began in the 2000’s
and has expanded the field of spectral analysis. Not only does this newer
graph invariant allow for a new relation on all graphs, the energy of a graph
is related to several other concepts in analysis, linear algebra and spectral
graph theory.

McClelland [12] proved the energy of a graph E(G) < v/2mmn.

For 2m > n, Koolen et al. [11] improved the bound to

E(G) < 27’"+\j(n— 1) [zm_ (2%:)2]

Both of these bounds are very broad. Although Cioslowski [1] presented
an improvement for the energy of bipartite graphs using variations of spec-
tral moments and differentiation techniques which provided motivation for
this paper, the techniques in [1] do not work for non-bipartite graphs.

2. DEFINITIONS

In this paper, we find another bound on the energy of all graphs using
spectral moments and properties of cubics. Relations between spectral
moments and energy have been studied in several papers in [3],[9], [10] and
[13]. Define the 6** spectral moment of a graph G as

Ms = Ms(G) =) X for 6 € Z*.

i=1




From the well-known fact in [2], M; is equal to the number of self-
returning walks of length ¢ in the graph G where

M, 2Zn:ﬁi2=2m and M4=i)«-4=id?—2m+8q

=1 i=1 =1
where d; is the degree of each of the vertices of the graph and g is the
number of quadrangles in the graph of G.

3. PROCEDURE

The goal is to find bounds on the energy E(G) of graphs by using the
second and fourth spectral moments, M and My. Since the eigenvalues )\,
of the adjacency matrix associated to the graph are real, set

n s b kG
Mp=3 =3 N =4 and M=) M= \|'=B
i=1 i=1 i=1 i=1
Thus both A and B are real and positive. Note that for a k—regular
graph, A > k? and B > k* as the largest eigenvalue of a k—regular graph
is k.
Let a,b be real and consider the following equation where a and b are
Lagrange multipliers

iIAiI +a (imz - A) +b (Zﬂ: I\l —B)

i=1 i=1 i=1

and to find the extrema, set

8Ty i+ (S0 NP = 4) (T2, Ml - B)]'
OA;
for all ¢ =1, ...,n. Then for each ¢, we have the equation

1+ 20.')\‘1 + 45%)&1;13 =)

Notice that [A;] is the root of a cubic whose zeros are of the form oy, 3;, v;
where a;+8;+7; =0 and where none of a;, 8; or ; is 0 for each i = 1, ... n.
Since |[A;| > 0 and [X;| must satisfy A and B, the roots o, B, must be
real where two of the three roots are positive. Without loss of generality,
assume o; > 3 > 0 and ; < 0. Then |Aj| = a; or B; foreachi =1, n.
Order |A;] such that

=0

[Ml=a; for1<i<j
and
Ml=8; forj+1<i<n
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For each i = 1,...,n, we want to optimize the j** — term
E(G) = jai + (n — 5)B..
Solving for the contraints A and B in terms of ¢; and 8;, we have
A=jol+(n-5)f  and B = joi + (n—j)B}.

4. RESULTS

Solving for a; and 3; using the properties above, we obtain

Q; = \% A+ n;ijQ—nB]
and.

ﬂi=\§i A - -'g:—,VAz—nB:I.

B3

To verify that «; and §; are real, we need to verify that
A—qxn—i——'j\fAz—nBIjﬂ.

Lemma 1. Assume that A2 > nB.

Then inequality A — ;;‘E?V’Az ~nB >0 holds for all n > 2.

Proof. Solving the inequality A — \/E VAT = nB = 0, we have
Without loss of generality, remove the subscripts from «; and B; and
substitute into A and B to obtain
A=jo? +(n—35)* and B=ja'+ (n—j)B%
Then we have
n (jo? + (n —j)ﬁ2)2 + jn(jet + (n ~ 5)BY)
> 2(jo + (n — 5)B%)?

n(jat +2j(n — j)a®B% + (n— §)28%) + jn(jat + (n— j)8%)
> 2j(jo* + 2j(n ~ §)a?B% + (n - 5)284)

njo + 2jn(n — 5)a?B? + (n - j)*nB* + j2na + jn(n — 5)8*
> 2% + 45%(n — §)a?B% + 2j(n — 7)2B%.
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Notice that all of the terms on each side of the equation are positive.
Comparing the coefficients of each term on the right with the respective
terms on the left, at the very least we obtain:

ot : P+ nj > 252
o’ : 2jn(n - j) 2 45%(n - j)
B*: (n—7)n > 2(n - 5)*
Simplifying the bounds on these coefficients, at the very least we obtain
at:n>1
o?B8%:in>2
Bt:n> 23.
Thus for n > 27, A — ;%»’AQ —nB > 0 whenever A? > nB. O
Recall that we want to optimize the term E(j) where

E(3) = jai + {n — j)B.
=j\j 711 [A+» E‘—;—j\/z‘iz - nB] +(-n—j)J 7—1; [A -—1/;{—3,-\/142 —nB]
T vAeava=
/2 (v 324~ Vit =3PV A =]

Lemma 2. The values of E(j) decrease as j increases such that
E(1) > E2) > ... > E(n).
Proof. Let E(j) = ja+ (n— j)B. Let
E(z) = za; + (n — z)8;
denote a continuous function in  such that E(z) = E(j) for all j = 1,...n.
Also, recall that « > 8 >0 and let a = a, >f=f>0when z=j.
Taking the derivative of A,, B, and E(z) with respect to z and setting
the equations equal to 0, we get
A, =2jaz0, +2(n~ )8, 8L — B2 =0
and
B, =4jola, +4(n—z)B3B, — B =0
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which give

a2 - ‘52 0:2 _ﬁ2
ol e b o ool
%= " ira, and  f; 4(n — z)B;

Combining with

E'(z) = a; +zal + (n— z)B, — B2

we obtain
oy — (@2 = Ba)®
E(x) = 0.,
which is negative as a, > 8, > 0. Thus E(z) is a decreasing function in z
and E(1) > E(2) > ... > E(n). O

Note that any connected graph has to have at least n = 2 vertices, else
the graph is simply a single point. Thus j = 1 is valid for all connected
graphs. By the lemma above, the maximal energy for G at any given
eigenvalue occurs at F(1). Since we have n values of E(j), we can now
prove the following theorem.

Theorem 1. For a graph G with spectral momenis are Ma and My such
that M3 > nMy, the upper bound for the graph energy E(G) is

\/n {M2+\/m\/ﬁm1
+(n- 1)\/n [(n—an—\/m_—T)i\/M].

Proof. From above,

BG) = /2 [24+ Vi - WA -]
/2 (=324~ Vi 37V A —nB]

where A = My and B = Mj.
Since we have n values of E(j) and E(1) > E(2) > ... > E(n) by the above
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lemma,

E(G) = E(1) + E(2) + ... + E(n)
<nE(1)

|

" (""”\J ! [MQ—EJM]
_ \/n [+ V=T = 0
+(n_1}Jn[M2_\/g\/m].

O

Unfortunately, the same techinique does not work for lower bounds as
the value for 8 becomes complex when A% — nB < 0 which occurs at some
i>%.

Aflditionally, recall that if k is the degree of the vertices of G, then G
is called k-regular. We also note that this inequality M2 > nM,, will not
hold for k-regular graphs. For any k—regular graph, it is easy to see that
on n vertices and m edges, 2m = kn. Thus the spectral moments become

My=3) X =kn and Mg=) A =2nk®—kn+8q

t=1 =1

If a k-regular graph is not quadrangle-free, then its degree k = 4 and the
spectral moments are

T i)
My=> M=4n and My ="Ml =32n—4n + 8q.

i=1 i=1

If a k-regular graph is quadrangle-free, then ¢ = 0 and the spectral
moments are

T T
Mp=3 XN =kn and Mg=3 X =2nk?—in.
i=1

i=1
For M2 > nMj to hold, we would need
k2n? > 2n%k? — kn® + 8gn
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which would mean that
kn? > k*n? + 8¢n.
The only solutions to the inequality occur if the graph is quadrangle-free.

Then we have that 1 > k whose solutions are k = 1 which is a cycle or
k = 0 which is a disconnected graph with no edges.
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