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Abstract

We utilize the flexible tile model presented in [13] to design self-
assembling DNA structures from a graph theory perspective. These
tiles represent branched junction molecules whose arms are double
strands of DNA. We consider 2xn triangular lattice graphs G.,, where
n represents the number of triangles. Given a target graph G,, we
determine the minimum number of tile and bond-edge types needed
in order to create G, as a complete self-assembled complex in three
different scenarios. Each scenario corresponds to a distinct level of
laboratory constraint. In the first scenario, graphs of a smaller size
than G, are allowed. In the second scenario, non-isomorphic graphs
of the same size as G, are allowed, but not graphs of smaller size.
In the third scenario, only graphs isomorphic or larger in size to the
target graph are allowed. We provide optimal tile sets for all 2 x n
triangular lattice graphs G, in Scenario 1 and Scenario 3. We also
include some small examples in Scenario 2.
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1 Introduction

DNA self-assembly is an emerging and rapidly advancing field, with ref-
erences [22, 24] providing good overviews. Synthetic DNA molecules have
been designed that self assemble into nanostructures in a particular shape,
starting with branched DNA molecules [14, 27], nanoscale arrays [28, 29],
numerous polyhedra [3, 9, 10, 25, 32|, arbitrary graphs [11, 2, 30], a va-
riety of DNA and RNA knots [17, 18, 26|, and the first macroscopic self-
assembled 3D DNA crystals [33]. These nanostructures have a wide range
of applications such as containers for the transport and release of nano-
cargos, templates for the controlled growth of nano-objects, biomolecular
computing, biosensors and in drug-delivery methods [1, 7, 8, 15, 16, 19, 21,
23, 31, 6, 4]. While several self-assembly methods exist [3, 12], we focus
on the flexible-tile model introduced in [13] and we expand on the results
presented in [5].

In this paper, we focus on the graph-theoretical aspect of designing
the building blocks that will construct 2 x n triangular lattice graphs of
DNA structures. In the flexible tile model these building blocks are star-
shaped molecules whose flexible k-arms are double strands of DNA as shown
in Figure 1 [20]. These arms have cohesive ends that can bond to any
other cohesive end with a complementary Watson-Crick base. We call the
k-armed molecule a “tile” and represent it as a vertex of degree k in a
graph. We represent the complementary cohesive-ends or bond-edges of
these tiles using letter labels, where complementary sequences of bases are
represented by hatted and unhatted letters. For example, given the bond
end type a, its complementary sequences of bases is represented by a. We
say a collection of tiles, called a pot realizes a graph, G, if the collection of
tiles constructs the same structure as G. The tile type is the multiset of
letters corresponding to the cohesive-end types for the tile. We require no
unmatched cohesive ends in the resulting DNA complex.

The central point of our research is to find the minimum number of
bond-edge and tile types needed in order to realize a target graph G,,
where G, represents a triangular lattice graph and n represents the number
of triangles. An example is shown in Figure 2.

We consider these numbers under three different scenarios corresponding
to three laboratory constraints:

e Scenario 1. The incidental construction of a graph smaller than G,,
is allowed.

e Scenario 2. The incidental construction of a graph smaller than G,
is not allowed but a non-isomorphic graph with the same size as G,
is allowed.
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Figure 1: k-armed branched junction molecules

Figure 2: The triangular lattice graph G7

e Scenario 3. Any non-isomorphic graph incidentally constructed
must be larger than G,,.

An example how these scenarios differ can be found in Example 1.1.

Additionally, we let T;(G,) for i = 1,2,3 be the minimum number
of tiles required to construct a complex in each of the scenarios above.
Similarly, B;(G,,) denotes the minimum number of bond-edge types needed
for each scenario. Currently, known results include optimal solutions for
cycles, trees, complete graphs and bipartite graphs for all scenarios [5]. We
built upon these results and found optimal solutions for 2 x n triangular

lattice graphs in Scenarios 1 and 3. We also include some results for small
graphs in Scenario 2.

Example 1.1. Suppose we want to construct the triangular lattice graph
Gg with two triangles. The pot P = {{a,a}, {a?, &}, {a,a%}} realizes G; as
can be seen in Figure 3. However, this pot does not satisfy Scenarios 2 or
8 as the tile {a,a} can also realize the graph with a single a vertez and a
loop by connecting the ends a and é.

The pot P = {{a.b},{a%}, {a?, &}, {a, &, b}} realizes G2 as can be seen
in Figure 4. It is not possible to realize a graph with less than four vertices
with this pot. However, it is possible to construct the graph in Figure 5,
which is not 1somorphic to Ga. Therefore, this pot satisfies Scenario 2, but
not Scenario 8.
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Figure 3: A construction of G that satisfies Scenario 1

Figure 5: A graph realized by the same pot as G in Scenario 2

Finally, the pot P = {{a, b}, {42, b}, {b%}} realizes G2 as can be seen in
Figure 6. It can be checked that any graph that can be realized by this pot
has at least four vertices and if it has four vertices it is isomorphic to Gs.
Therefore, this pot satsifies Scenario 3.



Figure 6: A construction of G that satisfies Scenario 3

2 Scenario 1

It is clear that B;(G) = 1 for any graph G, since one can just use the same
bond-edge type for every edge of the graph. Therefore, we only have to
determine T7(G,). We prove the following theorem for triangular lattice
graphs.

Theorem 2.1. Ti(Gy) = 1, T1{(Gy) = 3, T1(G3) = 3, T1(G4) = 4,
Ty(Gs) = 3. Ifn > 6, then Ty(G.) — 4.

Proof. We have T1(Gy) = 1, since the pot P = {{a,a}} realizes G;.

The triangular lattice graph with two triangles, G, has two vertices
of degree two and two vertices of degree three. Therefore, T}(G5) > 2.
However, T1(G2) # 2, since it is impossible to use the same tile twice for
both of the degree two and degree three vertices. A degree two tile has a
difference between the hatted and unhatted bond-edge types of either -2, 0
or 2. A degree three tile has a difference between the hatted and unhatted
bond-edge types of either —3, —1, 1 or 3. If each tile is used twice, the
sum of the differences cannot be equal to zero. However, in order to be a
complete complex the difference between the hatted and unhatted bond-
edge types in a graph has to be zero.

The pot P = {{a?}, {a, 4%}, {43} } realizes G5 as can be seen in Figure 7.
Since T1(G2) > 2 and we find a pot with three tiles, we conclude that
Ti(Gg) = 3.

The triangular lattice graph with three triangles, G, has two vertices
of degree two, two vertices of degree three and one vertex of degree four.
Therefore, T1(G3) > 3. The pot P = {{a?}, {a, 4%}, {a,a®}} realizes G4
and has three tiles as can be seen in Figure 8. Therefore, T} (G3) = 3.
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Figure 7: A construction of G that satisfies Scenario 1

Figure 8: A construction of G5 that satisfies Scenario 1

The triangular lattice graph with four triangles, G4, has two vertices
of degree two, two vertices of degree three and two vertices of degree
four. Therefore, T1(G4) > 3. With a little effort, one can show that
at least one of the tiles has to be repeated, so T1(G4) > 3. The pot
P = {{a*},{a?,a},{a, a3}, {a*}} realizes G4 and has four tiles as can be
seen in Figure 9. Therefore, T1(G4) = 4.

The triangular lattice graph with five triangles, G5, has two vertices of
degree two, two vertices of degree three and three vertices of degree four.
Therefore, T1(Gs) > 3. The pot P = {{a?}, {a? &}, {a,a®}} realizes G5
and has three tiles as can be seen in Figure 10. Therefore, T;(Gs) = 3.

If n > 6, the triangular lattice graph G,, has two vertices of degree two,
two vertices of degree three and n — 2 vertices of degree four. Therefore,
T1(Gr) > 3. Suppose T1(G,) = 3. Then the pot consists of exactly one tile
of degree two, one tile of degree three and one tile of degree four. Any tile
of degree two has a difference of 0 or +2 between the hatted and unhatted
bond-edge types. Any tile of degree three has a difference of +1 or +3
between the hatted and unhatted bond-edge types. Any tile of degree four



Figure 10: A construction of G5 that satisfies Scenario 1

has a difference of 0, £2 or 4 between the hatted and unhatted bond-edge
types. If T1(G,) = 3, then the degree two tile is used twice, the degree three
tile is used three times and the degree four tile is used n — 2 times. The
differences between hatted and unhatted bond-edge types in a complete
complex has to be zero. We can therefore express this as an equation and
check whether this equation has a solution. The equation is

20 +2y+ (n—2)z2=0

where x = 0,+2, y = +1,+3 and z = 0, +2, +4.

First note that z # 44, since then |(n — 2)z| > 16, but |2z + 2y| is at
most 10.

If z = +2, there is a solution only if n = 7, namely z = 2, ¥ = 3 and
z = —2. However, this would mean that the degree two and degree three
tiles both have only hatted or unhatted bond-edge types. Since in Gy, the

degree two and degree three vertices are connected by an edge this is a
contradiction.
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We can therefore deduce that z = 0. But then the equation reduces
to 2z 4+ 2y = 0, which can be simplified to z + y = 0. Since z = 0,+2
and y = 1,43, we have reached a contradiction. Therefore, if n > 6,
Ti(Gr) > 3.

The pot P = {{a?}, {a, &}, {a, 4%}, {&¢*}} realizes G, and has four tiles.
Figures 11 and 12 show the construction and this can easily be generalized
to G,, with more more triangles. Therefore, if n > 6, T1(G,,) = 4.

a a

33
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Figure 12: A construction of G'7 that satisfies Scenario 1

3 Scenario 3

The following lemma from [5] is useful to determine which bond-edge types
can be repeated.

Lemma 3.1. If P is a pot such that {G} = Cpun(P), and two nonadjacent

edges {u,v} and {s,t} of G = {V, E} use the same bond-edge type, then G is
isomorphic to G' = {V, E'}, where E' = E—{{u,v}, {s,t}}U{{w,t}, {s,v}}.



Figure 13 shows how edges with the same bond-edge type are replaced
according to Lemma 3.1. Replacing edges in that manner has to yield an
isomorphic graph, otherwise the pot does not satisfy scenario 3.

a ]
i &
a a
®— P

Figure 13: Switching edges according to 3.1

Using this lemma, we prove the following lemma for triangular lattice
graphs.

Lemma 3.2. In a triangular lattice graph with at least five triangles, a
bond-edge type can only be repeated on the same tile or as shown in Fig-
ure 14,

Figure 14: Repeated bond-edge type on different tiles

Note that the dotted lines mean that there may be more triangles to the
left or right, but there do not have to be.

Proof. We first note that a bond-edge type can be repeated on the same
tile, as long as the tile includes exclusively the hatted bond-edge type or ex-
clusively the unhatted bond-edge type. In that case no other nonisomoprhic
graph can be created from the pot.

Thus, we only have to consider repeating a bond-edge type on edges
that are not adjacent. By Lemma 3.1, if a bond-edge type is repeated,
removing the two edges and reconnecting the vertices with different edges
as stated in the lemma has to result in an isomorphic graph.
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We introduce some terminology to discuss the different edges in a trian-
gular lattice graph. Note that a triangular lattice graph allows exactly one
Hamiltonian circuit. We call the edges that form this Hamiltonian circuit
the outside edges, except for the two edges connecting a degree two vertex
with a degree three vertex, which are called the side edges. The edges that
are not part of the Hamiltonian circuit are called the inside edges. Note
that this nomenclature requires us to consider triangular lattice graphs with
at least five triangles to distinguish between outside edges and side edges.
We will also later see that a smaller number of triangles allows for certain
special cases. Figure 15 shows the different types of edges of a triangular
lattice graph.

outside edges

side edge

inside'edges

side edge

outside edges

Figure 15: Different edge types

Now suppose an inside edge is repeated elsewhere in the graph, not on
the same tile. As this inside edge is then removed according to Lemma 3.1
it will leave a cycle of length four in the graph where none of the opposite
vertices are connected. This type of cycle does not exist in a triangular
lattice graph, thus the resulting graph is not isomorphic. Therefore, no
inside edge can be repeated elsewhere in the graph except on the same tile.

As a consequence, we only have to consider repeated bond-edge types
where both edges are outside edges or side edges. We first consider consider
two outside edges on the same side as in Figure 16.

Figure 16: Two outside edges on the same side



Applying Lemma 3.1 creates the graph in Figure 17. Note that the
other possible graph created by Lemma 3.1 would have a double-edge and
is definitely not isomorphic to a triangular lattice graph.

Figure 17: Two outside edges on the same side

We notice that this graph contains a cycle of length six with only two
of these vertices also connected with another edge. This does not exist in
a triangular lattice graph, so the resulting graph is not isomorphic. If the
two outside edges on the same side are even further apart, it will create a
cycle of length six where no vertices are connected with another edge, so
this also is not isomorphic to a triangular lattice graph.

We can therefore restrict ourselves to outside edges that are on opposite
sides.

Let us first consider the following two outside edges on opposite sides
in Figure 18 that are close to each other.

Figure 18: Two outside edges on opposite sides that are close

We see that the only two ways to apply Lemma 3.1 yield the following
two graphs in Figure 19.

Both of these graphs have double-edges, so the result is not isomorphic.
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Figure 19: Applying Lemma 3.1 to two close opposite edges

Let us now consider two outside edges that are further apart from each
other as in Figure 20.

Figure 20;: Two outside edges on opposite sides that are far apart

The two possible graphs from Lemma 3.1 are the ones shown in Fig-
ures 21 and 22. Neither one of these graphs is isomorphic to a triangular

lattice graph, since both decrease the distance between the vertices of de-
gree two.

a

-

-----

Figure 21: First possibility from Lemma 3.1 applied to two outside edges
that are far apart
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Figure 22: Second possibility from Lemma 3.1 applied to two outside edges
that are far apart

A similar argument works for two outside edges that are even further
apart than the previous case.

If we consider the cases of one side edge having the same bond-edge
type as an outside edge or the two side edges having the same bond-edge
type, similar arguments apply to show that we obtain a graph that is not
isomorphic to a triangular lattice graph.

We now turn our attention to the most interesting case, namely having
repeated bond-edge types as in Figure 14.

We remove and reattach edges as in Lemma 3.1 and obtain the graph
in Figure 23.

Figure 23: Second possibility from Lemma 3.1 applied to two outside edges
that are far apart

This graph is indeed isomorphic to a triangular lattice graph. It is there-
fore possible to repeat a bond-edge type for this particular configuration,
in addition to repeating bond-edge types on the same tile.

in|

An immediate consequence of Lemma 3.2 is the following theorem.



Theorem 38.3. Ifn> 5, then T3(G,) =n +2.

Proof. By Lemma 3.2, we see that no tile can be repeated in a triangular
lattice graph with at least five triangles. Note that even if a bond-edge
type is repeated as in Figure 14, the tiles cannot be repeated because that
would imply that a repeated bond-edge type would appear on an inside
edge. Since a triangular lattice graph with n triangles has n 4 2 vertices,
the theorem follows. O

We now just state the results for 73 for triangular lattice graphs with less
than five triangles and give pots that realize them. It is then straightforward
to verify that no smaller pot satisfies scenario 3.

Theorem 3.4. T3(Gy) = 3, T3(G2) = 3, T3(G3) = 4 and T3(G4) = 4.

G is a complete graph so the result follows from [5]. We still give the
pot and graph for it for completeness.

A minimal pot for Gy is P = {{a,b},{a?}, {a, b}} and the construction
is shown in Figure 24.

Figure 24: Construction of G

A minimal pot for G is P = {{a, b}, {42, b}, {$*}} and the construction
is shown in Figure 25.

Figure 25: Construction of G2




A minimal pot for G3 is P = {{a, b}, {4,b,c}, {4,b, &}, {*}} and the
construction is shown in Figure 26.

Figure 26: Construction of G3

A minimal pot for Gs is P = {{a, b}, {4, &, d}, {b, 3}, {b, &, d*}} and the
construction is shown in Figure 27.

d d _ b b
¢

Figure 27: Construction of G4

We see that in G4 the special case of Lemma 3.2 is used to create a
pot with less tiles than one would expect. This pot also takes advantage
of obtaining an isomorphic graph if the first triangle and the last triangle
are moved to the top and bottom respectively when applying Lemma 3.1.
This allows the side edges to be repeated.

This explains that there is a sharp increase in the minimum tiles needed
from G4 to Gs, namely T3(G4) = 4, but T3(Gs) = 7.

Lemma 3.2 can also be used to determine Bj for triangular lattice graphs
with at least five triangles. The result is stated in the next theorem.

Theorem 3.5. Ifn > 5, then B3(G,) = [3—’3&] if n is odd and Bs(G,) =
[32427 if n is even.
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Proof. From Lemma 3.2 we know that bond-edge types can only be re-
peated on the same tile or in the configuration as in Figure 14. For de-
termining the minimum number of bond types for at least five triangles,
this special configuration can be ignored. Note it will not allow less bond
types used when compared to reusing a bond-edge on the same tile, where
it possibly can be reused even more often.

We therefore focus our attention to reusing the same bond-edge type
on the same tile as often as possible. All of the inside and side edges have
to be labeled, so in order to do this most efficiently, we use the same label
for the two inside/side edges from the same vertex. We then may as well
label any attached outside edges with the same bond-type. Figures 28 and
29 show this process.

Figure 28: Labeling of a side edge and an inside edge with the same bond-
edge type

Figure 29: Labeling of the side edges and all inside edges

This process allows us minimize the number of bond-edge types used
for the inside edges, side edges and upper outside edges. For example, we
need four bond-edge types to label these edges for G7. In general, we need
2tL bond-edge types to label inside, side and upper outside edges for G,,.

We now just have label the lower outside edges and we do this in pairs of
two edges attached to the same vertex to minimize the number of bond-edge
types. This is shown in Figure 30 for G5.




Figure 30: Complete labeling of G

We see that we need an additional two bond-edge types for G;. In
general, we have 2+l lower outside edges, so we need an additional [
bond-edge types.

If n is odd, we therefore need a total of 2L+ [241] = [3243] hond-edge
types.

We use a similar idea if n is even. We first use the minimum number of
bond-edge types for the inside and upper outside edges. Note that since n

is even, the right side edge cannot be labeled this way. This is shown for
Gg in Figure 31.

Figure 31: Labeling of the inside edges and upper outside edges

There are four bond-edge types needed for this for Gjg, and in general
it would be § for G,,.

We then label the remaining lower outside edges and the right side edge
in pairs of two as show in Figure 32.

For G'g we need three bond-edge types to label the remaining five edges.
In general, there are £ 41 edges remaining, so for G,, we need an additional
[24%] bond-edge types. If n is even we then need a total of % + [242] =

[2£2] bond-edge types.
O
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Figure 32: Complete labeling of Gg

We complete Scenario 3 by stating the results for B; for triangular
lattice graphs with less than five triangles. It is straightforward to verify
these.

Theorem 3.6. B3(G1) = 2, B3(G2) = 2, B3(G3) = 3 and B3(G4) = 3.

The same pots as in Figures 24, 25 and 26 can be used for B3(G)),
B3(G2) and Bz(G3). For G4 the pot that minimizes the number of tiles
does not minimize the number of bond-edge types, so we have to use a
different pot. A pot that minimizes the number of bond-edge types for G4
is P = {{a,d}, {a,c},{8,b,c}, {*}, {b,43}} and the construction is shown
in Figure 33.

b b b b
Figure 33: Construction of G4

4 Scenario 2

‘We found the minimum number of tile and bond-edge types for several small
graphs. The construction matrix presented in [5] was employed in order to
show that a smaller graph than the target graph cannot be created from
a given pot. Since we know the minimum number of tiles needed for each
graph in Scenario 1 and Scenario 3, the bound T} (G) < T2(G) < T3(G)
presented in [5] granted T5(G,,) for some graphs.



4.1 G,

Since we found T3(Gz) = I};(G’g)A= 3, we must have T5(G3) = 3 as well.
The pot P = {{a, b}, {a,b},{4,b, b}} realizes G2 and no smaller graph can
be constructed from this pot. It is then straightforward to verify that
By (Gz) = 2.

4.2 G;

Since there are vertices of degree 2, 3, and 4 respectively, we know T»(G3) >
3. The pot P = {{a,b}{a,b,b}, {a, &, b*}} realizes Gs.

Figure 34: Construction of G5

Since the construction matrix for this pot yields a unique solution, we
know that there is no smaller graph tha.t can made from this pot. Thus,
Tg(Gg) 3. We also found BQ(G:;) = 2.

4.3 Gy

Since T} (G4} = T3(G4) = 4, we know Tg(G.g) = 4.
The pot for the graph pictured is P = {{a%}, {a?, b}, {a, &, b, ¢}, {a, &, b, &} }.

Since the construction matrix for this pot yields a unique solution, we
know that there is no smaller graph that can made from this pot. We also
found that By(Gs) = 2 with P = { {&,b}, {4, b}, {a®}, {2, b}, {&2, )}
realizing G4.



Figure 35: Construction of G4

4.4 Gs

Even though T5(G4) = 4, we found that T5(Gs) = 3. The pot P =

{{a,b}, {,b*}, {b?, ¢, é}} realizes G5 and it is straightforward to show that
no smaller graph can be created from this pot.

s
o
o

b

a a a a a a

Figure 37: Construction of G5 minimizing B3(G5)




5 Conclusion

Although we found optimal pots for 2 x n triangular lattice graphs in Sce-
nario 1 and Scenario 3, we still need to determine an efficient way to design
pots in Scenario 2. Particularly, we need to explore whether the behav-
ior for the minimum number of tiles from four triangles to five triangles
is a special case, or whether we need to consider even and odd number of
triangles separately. Also, we provided some examples in Scenario 2 and
3 were it is not possible to find a pot that simultaneously achieved both
the minimum number of bond-edge types and the minimum number of tile
types. We need to explore conditions under which a pot will simultaneously
achieve both minimums.
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