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ABSTRACT. Let S, be the random walk
on (0,1). The Sy have been the subject of
intense study; their definition is immedi-
ately intuitive. Nevertheless, they are quite
disorderly and this disorder is mirrored by

the fact that, pointwise, (%m € N+)

behaves quite badly. In this paper we
provide our results on the fine structure of
the random walk that give insight into this
behavior.

1. INTRODUCTION

Let S,, be the random walk on (0,1). The
random walk has been the subject of intense study
(sce the work of Erdos and Revesz [3] and Shi and
Toth [6]). Indeed, the definition of the S, is
immediately accessible and intuitive and each S, is
readily representable as the sum of an i.i.d. family
(of size n) of irreducibly simpler random variables.
While immediately intuitive, the S,, are quite
disorderly. This disorder is mirrored by the fact that,
for almost all z, {Sy, (x) //n} diverges ([1], [2], [4],
and [5]).
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Definition 1. Let A will denote Lebesgue measure
on [0,1] (or on one of the variants with either end-
point or both excluded). As usual, a probability space
is a triple (Q, %, P), where 1 is the set of points, .%
is the o-algebra of Borel subsets of (1, and P : .% —
[0,1] is the (o-additive) probability measure. In this
paper we will have Q = [0, 1), .% will be the o-algebra
of Borel subsets of 2, and P will be the restriction
of Lebesgue measure to the Borel sets.

We will use card (z) to denote the cardinality of

the set z. C will denote Cantor space, {0, 1}N+, We
also take C’ to be the set of those z € C such that
1 [{0}] is infinite, i.e., such that for infinitely many
1, z; = 0. Thus, as usual, C’ is canonically identified
with the half-open unit interval, [0, 1), by identifying
x with 3772, 2 €[0,1).

i=1
Definition 2. For z € C’, and n € N, by S, (=)
we mean Y7 (—1)1%.

Note that, obviously, S,, depends only on the first
n coordinates of z. We exploit this to regard S, as
having domain {0, 1}” when it suits our purposes to
do so:
Sy (1) := S, (z) for any z € C’ such that z D r.

We now define the set of extreme sequences as
follows.

Definition 3. For such z € C’, and k € N*, we set
z € X n if and only if |8, (2)] > kv/n (2 is extreme
at level n). We also take X to be |J,,cp+ Xk,n, and
we define Y » t0 be g " Xpm. For k € Nt,

m=1
we set Uy 1= {n € N*|9n # 0}.

The n € U are the levels at which some = €
C’ first. become extremes. We sometimes refer to
the n € Ug as “successes”. Note that clearly X, =
Unen+ Dk It is immediate that if 2 € C'NXy, then
there is a unique n* = ng (z) such that x € Y n-,
and that this n* is the least n such that = € X .
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Our main result, Theorem 19, gives a purely
arithmetic condition on n that characterizes
membership in Uy. On the way to this result, we will
see that Uy is infinite and we take (uy ;|7 > 1) to be
its increasing enumeration. We provide a complete
analysis of Uy, concentrating on the “gaps”, i.e., the
Uk j+1 = Uk, j-

Proposition 21 shows that far enough out, the
gaps of four disappear and the gaps of two predom-
inate. The number of gaps of two in between each
gap of three depends on the interplay between the
greatest integer function [ky/n] and S,. Combined
with our results about the gain/loss A (Xy,u,41) —
A (%k,4;) [7], this analysis would provide a new proof
of the almost everywhere failure of pointwise
convergence for %

In this paper we provide our results on the fine
structure of the random walk that give insight into
the disorderly behavior of the S,,. It turns out that
much of the fine structure of the random walk on
(0, 1) depends on how often the sequence {|ky/n]}>7_,
increases and the way the fractional part of ky/n is
distributed, for a fixed positive integer k. This work
lays the groundwork for further developments where
k is a function of n.

2. EXTREME SEQUENCES

For x € ', and n € N*, we set maj, (z) := 1
if and only if Sy, (z) > 0; otherwise, maj, (z) :=
—1. We set min, (z) := ~maj, (z). The maj, (z)
and min, (z) are the majority and minority values
in S, (z), with ties (when S, (z) = 0) being in favor
of 1 as the majority. We set

Maj, (z) == {z’ € [1,n] NN| (=1)"** = maj, {3;)}

and similarly for Min,, (z) and min,, (z), and we set
M, (z) := card (Maj,, (), mn (z) := card (Min,, (z)).
Thus, for example, for such =z and n, Maj, (z) is
the set of coordinates, 7, with 1 < i < n, where
the majority value in S,, (z) occurs. Also, note that
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n = M, (z) + mn (2), |Sa (2)] = Mn (z) — mn (z) =
n—2my, (z) = 2M,, (z) —n, and so Sy, (z) always has
the same parity as n.

Lemma 4. We have the following three simple
observations.

{(a) Ifn < k? then X, =0.

(b) Xeprt1 = D241 =
{a|x | [1,k* +1] NN is constant }.

(c) A1) = A Drprs1) =2 ohm =
7

Proof. Immediate from the definitions. O

Before going farther, it is worth noting that if
Q,Jk,t = @: (i'e°: if t ¢ Uk)? then Uie[],g)nmxk,i =
Usept g Xk,i- A key step is the formulation of the
following notion.

Definition 5. For k,n € NT, we define o, =
|ky/] + 2, if |ky/n| has the same parity as n, and
Ok,n = |ky/n] + 1, otherwise. We also set my n, =

L (n—0k,n) and cx,n = card (Uy N {1, 7)).

Lemma 6. If 2 € N . then |S, (2)| = opn-

Proof. ok n is the smallest integer greater than k/n
which has the same parity as n. Also, |Sy (z)| always
has the same parity as n. So |5, (z)| > k/n if and
only if |Sy, (z)| 2 ok n. Let 2 € Y. Thenz € Xy s
50 |S, (z)] > okn. Assume, towards a contradic-
tion, that |S, (x)| > ok n. Then |S, (z)| > ok n + 2,
since they have the same parity. Since |S, (z)] <
|Sn—1(z)| + 1, we have

|Sn—1(z)] 2 |Sn (3)‘ —-120kn+2-1

T+ 1
> kvn

> kvn-—1.
So |Sp-1(z)l > kv/n—1 and = € X4 1, & con-

tradiction, since x € k. This proves |S, (z)| =
Ol O
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Lemma 6 implies that for n € Uy, my ,, = my, (z)
for all x € Yy » and we can let m,, := m, (z) for any
z € Pi,n- And so for n € Uy, m,, = mi -

The next Definition and Lemma are purely
arithmetical:

Definition 7. We define the following notions.

(a) The greatest integer jumps at n if and
only if |kvin + 1] = |kv/n| + 1.
(b) The parily situation is the same at n if

and only if |ky/n] = n (mod 2) and the
parity situation is different otherwise.

Lemma 8. The relation between Definition 7 (a)
and (b) is as follows: if the greatest integer does not
Jump at n, then, in passing from n to n+1, the parity
situation changes. If the greatest integer jumps at n,
then, in passing from n to n+ 1, the parity situation
does not change. Further, oy, depends on whether
the greatest integer jumps at n as described below. In
particular, |6k ni1 — op | = 1.

Proof. There are four possible cases. In Cases 1 and
2, we assume that the greatest integer does not jump
at n, and we consider the possibilities for the parity
situation. In Cases 3 and 4, we assume the greatest
integer does jump at n and the parity situation is as
in Cases 1 and 2, respectively.

So first assume that |kv/n+ 1] = |ky/n]. The
four possible cases are as follows.

Case 1. Suppose |ky/n] = n (mod 2). Then
|kvn] = |kv/n+ 1] # n+1 (mod 2), i.c., the parity
situation changes. Note also that in this case, oy ,, =
[kv/n] +2, Gkpnir = [BVR+T) +1 = [kv/7m) + 1,
i.e., Tkntl = Ok — 1.

Case 2. Suppose |ky/n| # n (mod 2). Then
lkv/n| = |kv/R+ 1] = n+1 (mod 2), so, here too,
the parity situation changes. Also, here oy, ,, = | k/n|+
1, and ki1 = |kvn+1) +2 = [ky/n] + 2, ie.,
Tk,ntl = Ok + 1.
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So, when the greatest integer does not jump, the
parity situation changes. Now assume that the great-
est integer does jump, i.e., |kv/n+1]| = |kv/n] + 1,
and, in addition:

Case 3. Suppose |ky/n| = n (mod 2). Then
lkvn) +1 = |kvn+1] = n+ 1 (mod 2) so the
parity situation does not change. Also, here, ok, =
| kv +2 and also o ny1 = | kv + 1]4+2 = (kv + 1)+
2, 16 Okn+l = Okn + 1z

Case 4. Suppose |kv/n| # n (mod 2). Then
lkval +1 = |kv/n+ 1] # n+ 1 (mod 2), so, here
too, the parity situation does not change. Also, here,
okn = kvl +1 and a1 = [(kVR+ 1 +1 =
(k\/'?_'& + 1) + 1, 1.e., O ntt =Ckn + 1. O

Lemma 9. If z € Dy, then |S, (z)] > |Si (z)] for
all | < n. Therefore if x € Yi.pn, then Ty, Ty =

mag, ().

Proof. If x € X, | < n and |S, (x)] < |5 (z),
then |5, (2)| > 1S (2)] > [ky/] > |kVi |, and s0
xr € Xpy. Suppose x € Y, and n € Min, (x).
Note that the case where S,,_; (z) = 0 and the ma-
jority value at n switches cannot arise, since n €
Us=>n>k*+1=|S,(z)| > k% + 1. Then since
|8y (z)| = 2, |Sp ()] = |Sn-1 (x)] — 1, which we just
saw was impossible. If n — 1 € min,, (z), then, since
n — 1 € maj, (=), we have that S, (z) = S,_2(x),
which, again we saw was impossible. Thus we have a
contradiction in both cases which proves the second
sentence of the lemma. ' O

3. STRUCTURAL PROPERTIES

Proposition 10. Suppose n € Uy. Then there is
1 <j* <4 such that n+ 5* € Uy.

Proof. Suppose z € i, We will construct a
modification, z*, of z, which is in X ;4 and not in
Xj,n, as follows.

Step 1. 2} =x; fori<nori>n+4.

Step 2. z¥ =1 —zy,.
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Step 3. z}, +i is such that (~1)1+°’"+=‘ = mayj,, (z),
1<j3<4.

Then Step 1 implies z* satisfies all the side
conditions below level n. Step 1 and Step 2 imply
|Sn (z*)] = |Sn (z)] — 2, so z* ¢ X . Note that, by
construction, |Sy, 4 (z*)] = |Sn ()| + 2. Recall that
D # ¢ = n > k? = /n > k. We have that

1Snta ()P =[S0 (@) + 4150 (@)| +4 > K*n+4kJn+4
> kn+4k®+4
> k?n+4k?
K (n+4),

80 | Sy 44 (z*)| > kv/n F 4, and therefore, z* ¢ & SR

We will not show z* € (Xk nt1 UXk ni2 U Xpnys);
indeed this may be false. Rather, we have shown
there is 1 < j < 4 such that z* € Xy ;. Let j*
be the least such j. Then &* € Yy n4j+. So there is
u € U such that n < u < n+ 4. )

Corollary 11. Thus, Uy is infinite.

If we let (ug,;|j > 1) be the increasing enumera-
tion of Uy, then Proposition 10 can be restated as
Uk jtl — Uk,; < 4 for all 5 € Nt. It is also worth
noting that for all 7 > 1, Chan,, =J— 1.

When we are taking k to be fixed, we will lighten
the notation by using u; in place of uy ;.
Conventionally, we set ux g = ug = 0 for all k € N+,

Lemma 12. Ift € Uy, then oy, = [kvE] + 1.

Proof. Lety € Yye. Theny ¢ X y_1,50 |S_y (¥} <
|kvt —1|. Suppose, towards a contradiction, that
Tpt = lk\/t_J + 2. Since y € Dt 1S (¥)| = Okt =
(kvt|+2. Also, Lemma 9 shows that |S;_, (y)|+1 =
1St (y)|. Then |S;_1 (y)| + 1 = |kv?]| + 2, and so
1Sec1 ()| = [kvE] +1 > |kvE—1] + 1. Then
1Se—1 (¥)| > kv/t =T, a contradiction since y ¢ X ,_;.

B
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Lemma 13. Ifn € Uy, thenmy, = cin (= card(Up N [1,7))).
That is, the minority count is the number of previous
successes.

Proof. Suppose n € Uy, son = u,, for some ¢. Then,
for all x € Y,y |Su, (€)] = e — 2my,.

Claim: m,, =t—1(= ¢k, = card (Up N [1,u))).

We prove, by induction on s, that the equation of
the Claim holds, with s in place of t. The basis is
my, = 0, which is true since u; = k? + 1. Assume
my, = s — 1. We will show m,,_ ., =m,, +1. Then
My, =(8—-1)+1=8=(s+1)—1. Let ¢ € Yiu,
and construct z*, 7* as in Proposition 10. Then w,+
J* = us4+1 and, by construction of z*, my,, 4+ (z*) =
My, (w)'i"l‘ So Mgy = Mugy, (‘r*) = My, (m)"' 1=
My, + 1. O

Lemma 14. Ifn € Uy, thenn+ 1 € Uy, (so there
are never two consecutive successes).

Proof. Towards a contradiction, suppose n,n+ 1 €
Uy and let x € Yy ny1. Then, by Lemma 9, we have
Tni1 = Tn = Maj,y; (z) = maj,

Note that ckni1 = ckn + 1 (since n € Ug). But
M, (€) = Mpy1 (@), by the previous paragraph, and
this contradicts Lemma 13. ]

The next Lemma gives the converse of Lemma 13.
Lemma 15. If my; = cxy, thent € Uy.

Proof. Recall mg 5, = & (n— 0%,n). Suppose my; =
ek, We construct a y € i+ by setting
_J1 ifie UyN|[l,¢)
=1 o otherwise.

Appealing to the construction of y; and Lemma, 14,
it is an easy induction to see that for all ; > k?,

S, (y) < —k% + 1, and so in particular, for all j < ¢,
maj, (y;) = 0.

Then m, (y) = card (Ux N [1,8)) = mpe = 5 (t — oke).
So S ()| =t—2my(y) =t—t+ok: =0k > kv,
s0 Yy € X . Now weshow that forall1 <r <t,y ¢
X . Towards a contradiction, suppose otherwise,
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Consider the smallest r such that y € Xg,r. Then also
Y € Yy, Then r € Uy, so Ckr = Mg =My, (y). By
construction, my (y) = card(Up N [1,7]) = ¢k + 1
since 7 € Ug. But then we have ¢p, = m, (y) =
¢k,r + 1, a contradiction. So there is no such r. So

Y€ Dpi- O

Note that if my s < ck 4, then t ¢ Uy. This is since
if t € U, then mp = ¢ by Lemma 13.

Lemma 16. We have that my, ,, < Ckm for alln > 1.

Proof. By induction. Our induction hypothesis is
that

mk‘ﬂ < Ck,n..

Ck,n 18 non-decreasing and increases by 1 from n
to n+ 1 if and only if n € Uy. Also oy, either
increases or decreases by 1. Therefore, my n s also
non-decreasing, increases by 1 from » to n + 1 if
Tknt1 = Ok — 1, and does not change if o, =
Trn+ 1. We show that Mintl < Ckntl-

Case 1. Suppose that M < Clyn- Thenmy piq <
Cio n+1-

Case 2. Suppose that my , = Ckn. Thenn e Uy,
80 Ckng1 = Ckn + 1. Thus migppy < me, +1 <
Ckn + 1= cknt1. O

Lemma 17. For alln > 1, Chn < Mpp + 1.

Proof. We prove that for all ¢ > v, Miy < Chp <
™My, -+ 1. Lemma 16 gives the first inequality, so we
are only concerned with the second. The proof is by
induction on ¢; the basis is that for ¢ = u;, we have
Ck,uy = 0 = my 4, . For the induction step, the
crucial point is that the my,’s are non-decreasing.
S50, suppose that ¢, < mg: + 1. Towards a
contradiction, assume that cg 41 > mie1 + 1. We
consider two cases.

Case 1. Suppose t ¢ Uy. Then ¢, > Mgz, and
s0, by the induction hypothesis, ¢, , = my.+1. Also,
since t & Uy, ckpq1 = Ciyts 80 Mp + 1 = cgpqq >
MEt+1 + 1, i.e, Mgt > Mit+1, & contradiction.

Case 2. Suppose t € Ug. Then ¢y = My ¢, and
Mes+ 1 = Ckt+1=cpey1 > mit+1 + 1, and the
contradiction is as before. O
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The next corollary follows immediately from Lemma
13.

Corollary 18. For all j, there is exactly one n such
that Dien # 0 and card(UpN[L,n)) =j~1=m,

(namely n = u; ).

4. MAIN RESULTS
We can now state our major result.

Theorem 19. n+1 € Uy, if and only if
([kvn+1] = [kv/n] and n= |kv/n] (mod 2)).

Proof. (=) By the proof of Lemma 8, (| kv/n + 1| = |ky/n]
and n = |ky/n] (mod 2)) if and only if oppnyy =
Ckn—1,and, if n+ 1 € Uy, then oy 1y = 05, — 1,
by Lemma 8 and the Claim of Lemma 14.
(<) Suppose (|kvn +1| = |kv/n| and
n = |ky/n| (mod 2)), ie., ok ni1 = Fkn — 1. Then
Tppn = lk\/ﬁj 42, Okl = I_kﬁj + 1. Since
Ok,n 7 |kvn| + 1, by Lemma 12, n ¢ Uy. Note that

ntl—oknt1 . ntil—ogntl _ n—0kn _
= silguatl _ 2ogua ]

Mpgntl = 2

Mpn + 1. Since n & U, Ckn = Ckntl- Also, by
Lemmas 153, 16, 17, Mkn + I = Thus MEptl =
M + 1 = Ckn = Chkntls and so, b}’ Lemma 195,
again, n+ 1 € Uy. [

As already noted, Theorem 19 gives a purely
arithmetical condition on n equivalent to n + 1 €
Uy. As is clear from the proof, the Theorem can be
reformulated as n + 1 € Uy if and only if ok ny1 <
Tl

Corollary 20. Suppose n € Uy.
(a) n+2 € Uy if and only if | k+/n] = |kv/n +2].

(b) If n+2 ¢ Uy then
(i) n+3 € Uy, if and only if |kv/n + 3| =
kA +1,
(it) n+4 € Uy if and only if |kv/n+ 3] =
lkv/m) + 2.
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Proof. For (a), suppose n € Uy.

(=) If also n + 2 € Uy, then we are in the case
whe_re Tkn+2 = Ok,nt+1—1 and [_k\,*n + 2J = |_k«.,rn + 1J *
n + 2 (mod 2). Since n € Uy, we also have Tl =
Okn_t — 1 and |ky/R] # n (mod 2). X |ky/n| #
[kv/n + 1] then we would have [kv/n + 1| = n=n+
2 (mod 2), a contradiction. So |k/n| = |[ky/n+1| =
Lk\fn + 2J "

(<) Let |kv/n| = |kvn+2|. Since n € U,
we are in the case where o, = 05,1 — 1 and
Lkv/n] # n (mod 2). Then |kv/n'+ 2| # n (mod 2)
and o ny2 = |kvn + 2| + 1 = o4 5. Since there are
never two
consecutive successes,
card (Ux N [1,n + 2)) = card (Up N [1, p))+1 = 2-Fhn
1= %{{M,son+2eUk.

For (b), suppose n € Ug but n 4+ 2 ¢ Uy. Since
n € Uy, I_k\/f_i.J # nmod 2 and oy, = lkv/n| + 1.

For (i): (=) Suppose n+ 3 € Ui. Then, by Theo-
rem 19, [kv/n+2| = |ky/n +3|. So the greatest in-
teger does not jump at n+2. Since n+2 ¢ Uy, by (a),
above, |k\/n| # |kv/n + 2|, so there is a jump at n
or n+1. Since there is no jump at n+2, thus there is a
jump only at nor n+1, i.e., [kv/n + 3| = [ky/n] +1.

(«=) First suppose there is a jump only at n + 1,
ie, [kvV/n+3] = |kv/nF2] = |kvnt1|+1 =
lkv/n|+1 # n+1 (mod 2). Then we have |kv/n + 3| =
[kvn+2] = n + 2 (mod 2), so by Theorem 19,
n+3e Ug.

Now suppose there is a jump only at n, i.e., |kv/n+3| =
|kvR+2]| = |kvn+1] = [kv/n]+1 £ n+1 (mod 2).
Then, just as above, we have |kv/n + 3] = [kvn+ 2| =
n+ 2 (mod 2), and so n+ 3 € U,.

For (ii): (=) Suppose n + 4 € Uy. Then, by
Theorem 19, |kv/n + 4] = |kv/n + 3| = n+3 (mod 2).
So the greatest integer does not jump at n+3. Since
n € Ugand n+2 & Uy, |kv/n+2| # |kyn] #

n (mod 2), so thereis a jump at n or n+1, and|kv/n + 2| =
n = n+ 2 (mod 2). Then, since |ky/n+3| = n+
3 (mod 2), [kvn+2| # |kv/n+3|, ie., the great-

est integer jumps at n + 2. We cannot have two
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consecutive jumps, so we conclude there are jumps
at n and at n + 2, i.e, |kvn+ 3] = |ky/n] +2.

(<) Suppose |[kvn+4] = [kv/n+3] = [kvn+2|+
1=|kvn+1|+1=[k/n]+2 #n+2 (mod 2).
Then |kv/n+4| = |kv/n + 3| =n+3 (mod 2), and,
by Theorem 19, n + 4 € Uy. O

Proposition 21. Suppose 3,1 € Nt. Then

{a) for sufficiently large 7, ujy1 —u; < 3,
(b) Iimg_;m 1‘;}' —_ 2.

Proof. For (a), a fairly tight lower bound is u o L’f.
In order to have u;,1—u; = 4 (a gap of four) for some
7 € Nt letting n = uy, there must be a jump at »
and n+2; we must have |k/n|+2 = |kv/n +3]. We
consider the necessary conditions so that the least {
such that |kv/n+1] > |ky/n] + 2 is greater than or
equal to four.

Note that kv/n+1 = ky/n - y/1+ L. The series
expansion at 0 of /1 + z, for |z| < 1, is 1+ the
alternating series

x 2 x2® Bx? T2

wo B L ikt G
s~ T w1 tTawe o)

Since it is alternating, the sum is less than 1 + %.
Putting 2 for «, we have /1 +2 < 1+ 2. Then
kvn+3 < kyv/n(1+ 5%) = kv/n + 5= If there is
a gap of four, i.e., [ky/n] + 2 = |kv/n + 3], then we
will have

[kVA] +2 < [WVA T3] < hVAT < v+ 5o

For a contradiction, it is sufficient to have %‘; <1
Thus for n > 3k? there are no more gaps of four, so
for n = u; with j sufficiently large, u; 41 —u; < 3.
For (b), for g’ﬁi <j<llet

Ty (5, 0) i={i|ls <i<land u; —uj—1 = 2},

T3 (4,1) = {i]j <t <l and u; —u;—1 = 3}.
Then T (, ) UTs (5, 1) = (G, {] AN. Also w; — uj =
2card (T3 (5,1)) + 3card (T3 (4,1)).
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Claim: Fgr any £ > 0 there is a j such that for
- Card(Ts(y,l

all i > 7, WM <&

To prove the claim, fix ¢ > 0 and let d = 2 +
3 (in fact d > 2 + 3 is enough). Choose j suffi-
ciently large so that u; > %{"—, u; —u;_1 = 3 and
5% < 713+ Let j <1, let ¢ = card (T3 (4,1)) and
let (t;]1 <4< ¢) be the increasing enumeration of
T3 (j,1). Also, let t; = j. Note that by Lemma, 20,
for all 0 < ¢ < ¢, ky/ug,, — 1 — kv/ug, =3 > 1.
Therefore, by the Mean Value Theorem, for all such

i, d+2 < (ug,, — 1)~ (ug, —3), i, d < Ug,yy — U,
But

3c-|-2card(T2(j,£)) = U -y

e—1

> Z (uti+1 = u'ti)
i=0
> cod.
So
c ” 2 i
card (T3 (5,1)) d—3~ 7
as required.

Temporarily fixing £ > 0, fix a j as in the Claim.
For large enough ! > j, card (T3 (5, 1)) is large enough

i
so that m < &. We have
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Uy = Uj + u; — uj
u; + 2card (T} (4, 1)) + 3card (T3 (4, 1))

card (T G5, )) 24 (B2 G, 0) + 2card (T3 (3,0))

card (T (4, 1))
card (T3 (4,1))

card (T (7,1))

uj card (73 (7,1))
(Cal‘d (T2 (5, 1) * s3+3*&'%11‘*11(1"2 (4,0)
< (e+2+3¢e)card (T3 (4,1)

So u < (4e + 2) card (T (4,1)), and since I > I —j >

. L 1
card (T3 (4,0)), % < XS < 4.E+ 2. So for
sufficiently large I, ¥ < 4e + 2. This is true for any

€, 80 limy o § = 2. %

+3

) card (T3 (3, )

Numerical calculation has shown that (even for k =
3, for example), gaps of four do occur and in fact,
early on, gaps of three and four predominate, but the
gaps of four disappear fairly quickly, and eventually,
the gaps of two predominate.
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