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The pseudograph threshold number =(r, s, a,t)

A.J.W. Hilton! and A. Rajkumar?

1 Introduction

A pseudograph is a graph in which multiple edges and multiple loops may
be allowed. The degree d(v) of a vertex v in a pseudograph is the number of
edges incident with v, where a loop counts as two edges. A (d,d -+ s)-graph
is a graph in which the degree of each vertex v satisfies d < d(v) < d+s. An
(r,r+ a)-factor is a spanning (r,r + a) subgraph. An (r, r + a)-factorization
of a graph G is the expression of G as the union of edge disjoint (r,r + a)-
factors.

Earlier papers on factorizing pseudographs include [13] and [14] by
Hilton and [15] by Hilton and Rajkumar. There was a mistake in [14]
by Hilton and this caused an error in [15] by Hilton and Rajkumar. Unfor-
tunately, to rectify these errors is a non-trivial exercise, and this was the
motivation for the present rather long paper. Where results were correct
in the earlier papers and in a suitable form to be quoted without causing
the reader any difficulty we have quoted them. But to preserve coherence
we have included the main development in this paper.

1.1 The threshold numbers

We let 7(, s, a,t), the pseudograph threshold number, to be the least
value of d, say d = dy, such that every (d,d + s)-simple graph with d >dy
has an (r,r + a)-factorization with z factors for at least ¢ values of . In
the case when there is no such dy, we put =(r, s, a, t) = oo.

The multigraph threshold number, u(r, s, a,t) is defined similarly
except that we consider (d,d + s)-multigraphs (without loops), instead of
pseudographs.

Similarly we have the simple graph threshold number o(r,s,a,t)
where we consider (d, d + s)-simple graphs.

We also have the bipartite graph threshold number B(r, s,a,t),
where we consider (d, d + s)-bipartite multigraphs, and the simple bipar-
tite graph threshold number 3,(r, s, a,t), where we consider (d, d + s)-
simple bipartite graphs.
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There are some relationships between these threshold numbers which
can be deduced immediately.

Lemma 1. Forr > 0,5 >0,a > 0,¢t > 1, we have

Bs(r, 8,a,t) < o(r,s,a,t) < p(r, s, a,t) < 7(r, s, a,t).

Lemma 1 is almost obvious. It is also almost obvious that if p < r and
7+a < p+o then any (r, r+-a)-factor of a pseudograph is a (p, p+a)-factor.
From this simple fact we deduce:

Lemma 2. Let p,7,s, a,a,t be integers with p,r,a, o, t positive and s non-
negative, Let p<r <r+a<p+a. Then

n(r,s,a,t) > 7(p, s, , ?)

Proof. We note that a graph could have a (p, p + a)-factorization, and
yet not have an (r,r + a)-factorization. But if a graph has an (r,r + a)-
factorization then it does have a (p, p + a)-factorization. O

Lemma 2 has two useful consequences.

Corollary 3. Letr, s, a,t be integers withr, a,t positive and s non-negative.
Then

(i) m(r,s,a,t) > n(r,s,a+1,t)
(i) w(rys,a,t) < w(r+1,sa—1,t).
The same result holds for the same reason in the case of all the other
threshold functions: 8,(r, s, a,t), B(r, s, a,t),0(r, 8, a,t), u(r, s, a, t).
Another inequality which is almost obvious is:

Lemma 4. Letr, s, a,t be integers withr, a,t all positive and s non-negative.
Then

7(r, s,a,t) <w(r,s+1,a,t).

The first result on (r, r + a)-factorizations seems to be the following one
due to Akiyama, Avis and Era [1] in 1980.

Theorem 5. Every regular pseudograph is (1,2)-factorable. In particular,
if 7 is an odd integer then every r-regular pseudograph can be decomposed
into T2 (1,2)-factors.
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In the case when r and a are both even we have the following striking
result, due to Hilton.

Theorem 6. Let integers r, a,t be positive and s be non-negative and r and
a both even and positive. Then

B(r,s,a,t) = Bo(r,s,a,t) =0(r,s,a,t) = p(rs,a,t)= w(r, s, a,t)

r[t—"i’ai‘—l]ﬂt-m.

i

It is convenient to define
N(r,s,a,t) = [m] +{Et—r
a

when 7, s, a,t are integers with r, a,¢ positive and s non-negative.
The pseudograph threshold numbers are completely determined in the
following two theorems.

Theorem 7. Letr,s,a and t be integers with r and t positive, a > 2 and
s non-negative.

(1) If r and a are both even, then

w(r,s,a,t) = N(r,s,a,t).
(2) If r and a are both odd then

N(r+1,s,a—1,¢t)~1 if (r+1)t+ss£2

( 9 (moda — 1),
w(r, s, a,t) = ) B
Nir+1l,s,a—1,t)—(r+1)—1 g’l(:dtl—)tlis=2

(8) If r is odd and a is even, a > 4, then

N(r+1,s,a—2,t) -1 if(r+1)t+s#2,3

( t) (moda — 2),
mr, 8, a,l) = '
N(r+1,s,a—2,t)— (r+1) -1 z;ﬁzi);;rsﬂ,s

(4) If v is even and a is odd, then

_ f N(r,s,a—1,1) if rt+s#2(moda~—1),
m(ry 8 a,t) = { N(r,s,a—1,t) —r ifrt+s=2(moda—1).
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For a=0or 1, or a = 2, r odd we give the results in Theorem 8. Note
that we use the notation 7(r, s, a,t) = oo when there is no finite threshold
number for the given value of r, s, a and ¢.

If a = 2 then n(r, s, a,t) is given in Theorem 7 if r is even, but if r is
odd it is given below in Theorem 8.

Theorem 8. Let r, s and t be integers with r and t positive and s non-
negative. Then
m(r,s,0,t) = 00
and
2 ifr=2,s=0andt=1,
w(r,s,1,t) = 1 ifr=1s=0andt=1,
oo otherwise,

and if r i3 odd, then

i f r > d t>1
7r(r,s,2,t)={°o ifr>1,ands>1lort>1,

1 ifr=1,s€{0,1}andt=1.

As already remarked, the earlier published versions of these theorems
were wrong. The original error was in Theorem 24 of the paper by Hilton
[14], with similar errors in Theorems 27 and 30 of that paper. Corrected
versions of these theorems are given in this paper as Theorems 13, 16 and
19 respectively. The error in the paper by Hilton [14] affected the determi-
nation of 7 (r, s, a,t) in the earlier paper by Hilton and Rajkumar [15]. In
particular, part (3) of Theorem 7 is a corrected result of the similar theorem
in [15].

We remark that the topic of (r,r + a)-factorization of graphs has been
considered by various Japanese Mathematicians. Akiyama and Kano [4]
have recently published a book “Factors and factorization”. The main
topic is just factors, and they do not specifically aim to evaluate thresh-
old numbers. They do not draw much distinction between simple graphs,
pseudographs and multigraphs, and the parameter ¢ is not mentioned.

One result of Kano [16] in 1985 is of particular interest:

Theorem 9. Let a and b be even integers such that 0 < a < b, and let
n > 1 be an integer. Then the pseudograph G can be decomposed into n
(a, b)-functions if and only if G is an (an, bn)-graph.

Theorem 9 is a corollary of Theorem 10.

Theorem 10. Let d, r, x be positive integers and let a and s be non-negative
integers. Letr and a be even. Then every (d, d+s)-pseudograph is (r,r+a)-
factorizable with x factors if and only if

d+s (_i
=

<z <
r+a
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Proof. (1). If d and s are even this is proved in [15].
(2). If d and s are both odd, if

d+s
r—+a

d
Sz~
.

then 4
(d-1)+(s+1) <p< d-—1
r+a R
so, by part (1) above, every (d—1, (d—1)+(s+1))-pseudograph is (r, r+a)-
factorizable with « factors. But a (d, d+s)-pseudograph is a (d—1, (d— 1)+
(s + 1)-pseudograph. Therefore every (d,d + s)-pseudograph is (r,r + a)-
factorizable with « factors.
Conversely, if every (d, d+ s)-pseudograph is (r, r + a)-factorizable with

z factors, then it is proved in [15] that

d+s <z il

r+a T
(3). If dis odd and s is even and 442 < z < ¢, then

=7

(d—1)+(s+2) <z< d_—:_l’
r+a - T r
so every (d — 1,(d — 1) + (s + 2))-pseudograph is (r,r + a)-factorable with
x factors. But every (d,d + s)-pseudograph is a (d — 1, (d — 1) + (s + 2))-
pseudograph, so every (d, d + s)-pseudograph is (r,r 4 a)-factorable with z
factors.
The converse is true as in part (2) above.

74N

(4). If d is even and s is odd and &t <z <4, then

d+(s+1) < d
r+a T 7’

so every (d, d + (s 4 1))-pseudograph is (r, r + a)-factorable with z factors.
But a (d,d + s)-pseudograph is a (d,d + (s + 1))-pseudograph, so every
(d, d + s)-pseudograph is (r,r + a)-factorable with z factors.

The converse is true as in part (2) above again. 0

IA

2 Bounds for n(r, s, a,t) when 7, a are not both
even

We first find reasonable bounds when r and a are not both even. Later, in
the next section, we refine those bounds to obtain actual evaluations.
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The earlier errors in the paper [14] by Hilton are manifested here in
Theorem 13 (Case 3(iii)) where originally it was not noticed that the as-
sumption (r + 1)t +s—1# 2(mod a — 1) (or (r + 1)t + s # 3(mod a — 1))
was needed. It is manifested similarly in Theorem 16 (Case 3 (iii)) and
Theorem 19 (Case 3 (iii)). This oversight affects the contents of Section 3,
making it much longer, and it also affects the final result obtained there,
in particular the evaluation of n(r, s, a,t) when r is odd and a is even.

Let us bound =(r, s, a,t) when r and a are both odd.

Lemma 11. Let r,s,a,t be integers with r,t positive, a > 3 and s non-
negative. Letr,a be odd and s be even, let (r+1)t+s # 2 (mod a—1). Then

m(r+1,s,a—1,t) ~1< n(r,s,a,t) <7w(r+1,s,a—1,t).

Note that, as r+1 and a—1 are both even, w(r+1, s, a—1,1) is evaluated
in Theorem 6.

Proof. By Lemma 2, n(r, s,a,t) <n(r+1,s,a — 1,1).

To prove the other inequality, let d = w(r+1,s,a — 1,t) — 2, so that, by
the formula in Theorem 6, d is even. Let G be the (d,d + s)-pseudograph
with two components, G; and Go, where Gy has one vertex on which are
placed % loops, and G4 has one vertex on which are placed d—}‘i loops. Since
r and a are both odd and all the edges of G are in fact loops, any (r,r +a)-
factor of G is actually an (r+1, r+a)-factor, i.e. an ((r+1), (r+1)+(a—1))-
factor.

By Theorem 10, it follows that for any ((r + 1),(r + 1) + {(a — 1))-
factorization of G into z ((r + 1), (r 4+ 1) + (a — 1))-factors,

d+s <d‘

(r+1)+{(a-1) =*=

Since d = w(r + 1,s,a — 1,t) — 2, it follows from Theorem 6 (since s, r + 1
and a — 1 are even and positive) that

d=(r+l){%s—-|+(t——l)(r+l)—-2,
% d  [tr+1) 2
r4+1)+s
_ t— - .
r+4+1 [ a-—1 ]+( b r+1
Therefore

o< [t(r+1)+s
- a—1

]+(t—2).
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We also have that

t 1
dts=(r+1) [—(’":_)1“]+(t—1)(r+1)+s—2,
so that
(r+1)
d+s=z;:—-l—)—(t(r+1)+s+c)+(t—1)('r+1)+s——2,
where 0 < £ < 221 —1anda—1|(r+ 1)t + s+ c. Therefore
t 1
dts = {G+D)+ -0} ELERE gy paig
t
-1 +1)+s—2 =(r+a)((’"+:)_ﬁs+°>-(r+1)—c—2
so that
d+s _ Hr+1l)+s+c r+c+3
r+)+(a-1) a—1 r+a
_ |tr+)+s] r+c+3
o a—1 r+a

Since 0 < £ < 251 —1 and (r + 1)t + s # 2 (mod a — 1), it follows that
r4+c+3<r+a, and so

- a-—1

o> l‘t(r-%—l)-l-s'l _

There are therefore only ¢ — 1 values that « can take, so there do not exist
t values of z for which G has an ((r +1), (r + 1) + (a — 1))-factorization into
z ((r +1),(r + 1) + (a — 1))-factors. Therefore there do not exist ¢ values
of z for which G has an (r,r + a)-factorization into z (r, 7 + a)-factors. It
follows that d < =(r, s, a, t).

We now deduce that 7(r +1,s,a — 1,¢) — 1 < n(r, s, a, t), so that

w(r+1,s,a~-1,t) =1 < n(r,s,a,t) <7w(r+1,sa— 1,¢).
O

The missing case of Lemma 11, when (r + 1)t + s = 2 (mod a — 1), is
covered less well by Lemma 12:

Lemma 12. Letr,s,a,t be integers with r,t positive, a > 3 and s > 2. Let
r,a be odd and (r + 1)t + s =2 (mod a — 1) (so0 that s is even). Then

m(r+1,5s-2,a-1,t) -1 < n(r,s,a,t) <w(r+1,s—2,a—1,¢) + (r+1).
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Note that 7(r + 1,5 — 2,a — 1,t) can be written down explicitly using
Theorem 6.

Proof.
a(r+1,s—2,a~1,¢)—1

< w(r,s—2,a,t) by Lemma 11,

< n(r,s,a,t) by Lemma 4,

< wlir,s+2,a,t) by Lemma 4 again,

< w(r+1,5+2,a-1,1) by Lemma 11,

= (r+1) [t rii (o2 —1] =D +1) by Theorem 6,

= (r+1) [‘ i j_j-”“] + (¢ —1)(r+1)+(r+1) since(r+1)t+s
=2 (mod a—1),

= n(r+1,s—2,a—1,t)+ (r+1) by Theorem 10.

O

Theorem 13. Suppose r > 1, a > 3 are odd, and s > 0, t > 1. If

(r+1t+s#1,2,3 (moda— 1) then
n(r+1,s,a—1,8) =1 < w(r,s,a,t) <w(r+1,s,a—1,).
Ifr+Dt+s=1€{1,2} (moda—1) and s > 1, then
n(r+1,s—d,a—-1,t)~1<n(r,sat)<nw(r+1,s—ia—1t) +r+1
If r + 1)t 4+ s =3 (mod a — 1) then
ar+1,s,a—1,t) =1 < n(r,s—3,a,t) + (r+1) < n(r+1,s,a—1,%)
and

n(r+1,8,a—1,t)—1<m(r,s+1,a,t) <m(r+1,s,a— 1,1).

Note that the outer bounding terms are given explicitly in each case in
Theorem 6.

Proof. We consider various cases.

Case 1: (r+1)t+s=2 (mod a —1).
In this case s is even and the theorem follows from Lemma 12.

Case 2: (r+1)t+s# 2 (mod a — 1) and s is even.
In this case we also have that (r + 1)t +s # 1 (mod a — 1) and so the
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theorem follows from Lemma 11.
Case 3: (r+1)t+s#2 (mod a—1) and s is odd.
Case 3(i) (r+1)t+s=1 (mod a — 1).

Then
m{r+1,s—la—-1,t)—1
< mw(r,s—1,a,t) by Lemma, 11,
< m(r, s, a,t) by Lemma 4,
< #w(r,s+1,a,t) by Lemma 4 again,
< mr+1l,s—1la-1t)+r+1 by Lemma 12 since (r + 1)t + (s + 1)
= 2(mod a — 1).
Case 3(ii)

(r+1)¢t+s=3(moda—1). Then

m(r+1,s,a—1,¢) ~1

= (r+1) [iﬂis—'——l +(E—1)(r+1)-1 by Theorem 6,

_ r 3—3)—

= (r+1) [‘i*é—)—“‘j_l 2 1] + -1+ =1+ (+1)

= wr+1l,s—3a—1,t)—1+4+(r+1) by Theorem 6,

< w(r,s—3,a,t) +(r+1) by Lemma 11 since
(r+1)t+s—3# 2(mod a — 1),

< 7w(r+1,s—3,a—1,8)+(r+1) by 11 again,

pa— T —i,

= (r+1) [—L—~—(—-—t +0:+(e-3) 1]4-(t—1)(r+1)+r+1 by Theorem 6,

= (r+1) [-iﬂ12+8—]+(t_1)(r+1)

= 7(r+1,s,a—1,t).

Also

T(r+1,s,a—1,t) -1
= (r+1) [iﬂ&] +E-D(r+1)-1 by Theorem 6,
= (r+1)‘rw-’+(t_l)(r+l)_l

] since (r + 1)t + s
= 3(mod a ~ 1),
= wmr+1,s+1l,a-1,¢) -1 by Theorem 6,
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n(r,s+1,a,t) by Lemma 11,

IA

mr+1,s+1,a—1,¢)
(r+1) ﬂm—}aﬂ_i—ﬂﬂ] +(t—-1)(r+1) by Theorem 6,

(r+1) ﬁi;_b;;l] +(t—1)(r+1)  since(r+1)t+s
= 3(mod a — 1),

by Lemma 11 again,

i

= m(r+1,s,a— 1,¢).
Case 3(iii)
(r+1)t+s#1 (moda—1) and (r + 1)t + s # 3 (mod a—1).
Then
m(r+1,s,a—1,¢) -1

(r+1) [iﬂ;;)——l] +(t—1)(r+1)—1 by Theorem 6,

= (r+1) [mgféff—l‘h—l] +@—1)(r+1)—1 since (r+1t+s—1

# 1(mod a — 1),
= m(r+1,s—1,a—1,t)—1 by Theorem 6,
< w(r,s—1,a,t) by Lemma 11 since
(r+1)t+(s—1) #2(mod a — 1),
< w(rs,a,t) by Lemma 4,
< 7w(r,s+1,a,t) by Lemma 4 again,
< wr+1,s+1,a—1,%) by Lemma 11, since

(r+1t+(s+1) #2(mod a — 1),
= (r+1) [wﬂﬁ] +(t—=1)(r+1) by Theorem 6,

a—1
= (r+1) [ﬂilﬁr—‘] +@—1)(r+1)  since(r+1)t+s
# 1(mod a — 1),
n(r+1,sa—1,t) by Theorem 6.

il

a

Our results and proofs in the remaining cases, when one of r and a is
even and the other is odd are very similar to the case when both 7 and o
are odd. The reader might feel like breezing through our accounts of these
cases, but we include all the details so that proofs can be checked easily.

We look next at the case when r is even and a is odd.

Lemma 14. Let r,s,a,t be integers with r,t positive, a > 3, and s non-
negative. Let r and s be even and a be odd. Letrt +s # 2 (mod a — 1).
Then

n(r,s,a—1,t) —1 < w(r,s,a,t) < 7(r,8,0—1,¢).

Proof. By Lemma 2, n(r, s,a,t) < w(r,s,a — 1,1).

To prove the other inequality, let d = n(r,s,a — 1,t) — 2, so that d is
even. Let G be the (d,d + s)-pseudograph with two components, G; and
G2, where G has one vertex on which are placed % loops, and G2 has one
vertex on which are placed d—}ﬂ loops. Since r is even and a is odd, any
(r,7 + a)-factor of G is actually an (r,r + (a — 1))-factor.

By Theorem 10, it follows that, for any (7,7 + (a — 1))-factorization of
G into & (r,r 4+ {a — 1))-factors,

L1 NS
r+(a—1) " ~r

Using Theorem 6 and using the facts that a is odd and r and s are even,

d t

_=[’"+s] t—1-2,

r a—1 r
so that

xﬁ[tr+s-|+t—2
a—1
We also have that
it
d+s = r[r+s]+(t—1)r—2+s
a—1
= ail(tr+s+c)+(t—1)r+s-——2.

where 0 < £ < 3'2‘—1—1, cis even and a — 1| rt + s + c. Therefore

d+s=—-——r+(a_1)(tr+s+c)—r—c-—2
a—1
so that

d+s _ tr+s+c r+c+2
r+{a—1) - a—1 r+(a—1)

_ tr+s c+r+2
T la—1 r+(a—1)
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But ¢ = a—3 if and only if rt+s = 2 (mod a—1) so that, since rt+s # 2

(mod a - 1),
> [tr+s-|’

“la-—1

and so there are at most ¢ — 1 possible values of z.
Therefore there do not exist ¢ values of = for which G has an (r,r + a)-
factorization into z (r,r + a)-factors. Therefore

d < m(r,s,a,t)

and so
n(r,s,a—1,t) — 1 < n(r,s,a,t).
O

The missing case of Lemma 14, when rt + s = 2 (mod a — 1) is covered
in Lemma 15.

Lemma 15. Let r,s,a,t be integers with r,t positive, a > 3, a odd and
8> 2. Letr be even and rt + s =2 (mod a — 1) (so that s is even). Then

w(r,s —2,a—1,t) — 1 < n(r,s,a,t) < w(r,s— 2,a— L, t) + 7.

Proof.
m(r,s—2,a—1,t) =1
< w(r,s—2,a,t) by Lemhma 14,
< w(r,s,a,t) by Lemma 4,
< 7w(r,s+2a,t) by Lemma 4 again,
< w(r,s+2,a—1,1) by Lemma 14,

, [tr+£:ff!—1] + (- Dr by Theorem 6,

,.[ET_J:E:T—I%)_:A—' +{t~1)7r+r sincert+s=2(moda—1).
m(r,s —2,a—1,¢) +r.
O

Theorem 16. Suppose r > 1 is even, a > 3 isodd and s >0, t > 1. If
rt+s#1,2,3 (mod a—1) then

n(r,s,a—1,t) — 1 < n(r,s,a,t) < n(r,s,a—1,2).
Ifrt+s=1i€{1,2} (moda—1) and s > i, then

w(r,s —i,a—1,t) — 1 < w(r,s,a,t) < w(r,s—i,a—1,¢t) + 7.

Ifrt+ s =3 (mod a — 1) then
n(r,s,a—1,t) -1 < n(r,s—3,a,t) +r < 7(r,s,a — 1,1)

and
n(r,s,a—1,t) —1 < n(r,s+1,a,t) < n(r,s,a — 1,¢).

The bounding terms in each case are given explicitly by Theorem 6.
The proof of Theorem 16 follows that of Theorem 13, but uses Lemmas
14 and 15 instead of 11 and 12.

Proof. We consider various cases.

Case 1:
rt+s= 2 (mod a —1). In this case s is even and the theorem follows from
Lemma 15.

Case 2:
rt+s # 2 (mod a—1) and s is even. In this case we also have that r¢+s 1
(mod @ — 1) and so the theorem follows from Lemma 14.

Case 3:
rt+s#2 (mod a—1) and s is odd.

Case 3(i)
rt+s=1 (moda—1). Then

m(r,s—1l,a—1,¢t) —1

< nw(r,s—1,a,t) by Lemma, 14,
< w(rs,a,t) by Lemma 4,
< #w(r,s+1,a,t) by Lemma 4 again,
< #(r,s—1,a—1,¢) +r by Lemma 15 since
rt+ (s +1) = 2(mod a — 1).
Case 8(ii)

rt+s=3 (mod a — 1). Then
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m(r,s,a—1,%) — 1

,.,-Lris_—_-, +@Et-1r—1

by Theorem 6,

r[EHeeR=t g g ) —1 47

m(r,s—3,a—1,t) —1+r
w(r,s —3,a,t) +r

n(r,s —3,a—1,¢8) +r
r [—-——LTH‘Q— = -'-f-(t—— r+r

r [t—’"—"“’—"-1 + (@ -1)r

w(r,s,a—1,t)

m(r,s,a—1,t) ~1

= rlrﬂ"i”;‘l-l-(t—l)r—l

= 7(r,s+1l,a~1,t)
< wrs+1,a—1¢)
< #w(r,s+1,a—1,¢)

r["+8+1-]+(t—1)r

I

r[ﬁ—tﬂr—] F(t—1)r

= w(r,s,a—1,t)

Case 3(iii)
rt+s# 1 (mod a—1) and rt + s # 3 (mod a — 1). Then

by Theorem 6,

by Lemma 14 since

rt+ s — 3% 2(mod a — 1),

by Lemma 14 again,

by Theorem 6,

by Theorem 6.

by Theorem 86,

= r [fi(-:_illﬂ] +(—1)r—1 by Lemma 14 since

rt + s = 3(mod a — 1),

by Theorem 6,
by Lemma 14,

by Lemma 14 again,

by Theorem 6,

since rt 4+ s = 3(mod a — 1),

by Theorem 6.

n(rys,a—1,¢) —1
= r[w—t-]Jr(t—l)r—l

, "tr+gs—13—1" +—1)r—1

a—1

m(r,s—1,a—1,%)

IN

m{r,s—1,a,t)

IA

mw{r, s, a,t)

n(r,s+ 1,a,t)
m(r,s+1,a—1,%)

INIA

it

a—1

r [Mﬂ-l +(t—-1)r

reest] @ -y

= x(rs,a—1,t)

by Theorem 6,

since 7t + s ¥ 1(mod a — 1),

by Theorem 6,

by Lemma 14 since
rt+ (s — 1) # 2(mod a — 1),

by Lemma 4,

by Lemma 4 again,

by Lemma 14, since

rt+ (s+1) # 2(mod a — 1),
by Theorem 6,

since 7t + s % 1(mod a — 1),

by Theorem 6.

Finally we consider the case when r is odd and a is even.

O

Lemma 17. Let r,s,a,t be integers with r,t positive, a > 3 and s non-
negative. Let v be odd and a,s be even. Let (r + 1)t + s # 2 (mod a — 2).

Then

m(r+1,s,a—2,t) —1 < n(r,s,a,t) <n(r+1,sa—2,t).

Proof. By Lemma 2,

71'(7", s, a, t) < 1r(r + 175’0' -

To prove the other inequality, let d = 7(r + 1,s,a —

Lt)<m(r+1,sa—21).
2,t) — 2. Then d is

even. Let G be the (d,d + s)-pseudograph with two components, G; and
G2, where G4 has one vertex on which are placed £ loops, and G5 has one

vertex on which are placed —'Z',:— loops. Since r is odd and a is even, any
(r,r + a)-factor of G is actually an ((r + 1), (r + 1) + (a — 2))-factor.

By Theorem 10, it follows that, for any ((r + 1), (r + 1) 4 (a — 2))-
factorization into x ((r + 1), (r + 1) + (a — 2))-factors,

d+s

r+1)+(@-2) —

29
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By Theorem 6,

d = (r+1) -&%s;l-'+(t—l)(r+l)—2

= (r+1) &;L_%“L—S)} =D +1) -2

since r is odd and a and s are even. Therefore

S| e
SO
z < [t(r_—i—l)_i{l + (t —2).
a2
We also have -

ars = (an) [TEDE L one s D 4o

(T+1)(t(r+1)+s+c)

= +E-D(r+1)+s-2

where 0 < £ < “—52 —1, cis even and (a — 2) | t(r + 1) + s + c. Therefore

d+s = (r+1)+éa—2)(t(r+1)+s+c)+(t-—1)(r+1)+
‘T s—2—(r+t—s—c
= (r+1)+g’—2)(t(r+1)+s+c)—-(r+1)—2—c
SO
d+s _ tr+l+s+c r+3+c
(r+1)+(@-2) a—2 (r+1)+(a—2)

_ [tr+1)+s _(r+1)+(c+2).
N a—2 (r+1)+(a—2)
But ¢ = a — 4 if and only if (r + 1)t + s = 2 (mod a — 2) so that, since
(r+1)t+s#2 (mod a—2),

.s "t(r :_1)24- s‘, |

Therefore there do not exist ¢ values of z for which G has an (r,7 + a)-
factorization into z (r,r + a)-factors. Therefore d < mw(r,s,a,t) and so
n(r+1,8a—2,t) —1 < w(r,s,a,t).
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The case when (r + 1)t + s = 2 (mod a — 2), missed by Lemma 17, is
covered by Lemma 18.

Lemma 18. Letr,s,a,t be integers with r,t positive, a > 3 and s > 2. Let
7 be odd, a be even, and (r + 1)t + s =2 (mod a — 2) (30 s is even). Then

m(r+1,8—-2,a=2,t) ~ 1< m(r,s,a,t) Sa(r+1,8—2,a—2,t)+ (r+1).

Proof.
m(r+1,s—2a~-2,¢t)—1
< w(r,s—2,a,t) . by Lemma 17,
< n(r,s+2,a,t) by Lemma 4,
< wr+1ls+2a—2¢) by Lemma 17 again
= (r+1) l’t ril :_82“ —1] +@E-1(r+1) by Theorem 6,
= (r+1) [’(’"“ (-2 ‘11 + (=1 +1)+(r+1) since (r+1)t+s
= 2(mod a — 2),

= mr+1,s+2,a-2,t)+ (r+1).

O

Theorem 19. Suppose r > 1 is odd, a > 3 is even, and s >0, ¢ > 1. If
(r+Dt+s#ie{1,2,3} (moda—2), then

m(r+1,s,a —2,t) ~ 1< n(r, s, a,t) <w(r+1,sa~—2,1).
If(r+1)t+s=ie{1,2} (moda—2) and s > i, then
m(r+1,s—~4,a—2,t)~1< 7(r,s,a,t) Salr+1,s—i,a—2,t)+r+1.
If(r4+1)t+s=3(mod a—2) then
m(r+1,s,a—2,¢)—1 Sw(rns—3,a,t)+r<m(r+1,s,a—2,¢t)
and

1r(r+l,s,a—2,t)—1§7r('r,s+1,a,t)§7r(7'+1,s,a—-2,t).

The bounding terms in each case are given explicitly in each case in
Theorem 6. The proof of Theorem 19 follows the proof of Theorem 13, but
uses Lemmas 17 and 18 instead of Lemmas 11 and 12.
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Proof. We consider various cases.

Case 1:

(r+1)t+s =2 (mod a—2). In this case s is even and the theorem

follows from Lemma 18.

Case 2:
(r+1t+s#2 (mod a—2) and s is even. In this case we also have that
(r+1)t+s#1 (mod a— 2) and the theorem follows from Lemma 17.

Case 3:
(r+1)t+s#2 (mod a—2) and s is odd.

Case 3 (i)
(r+1)t+s=1(moda—2). Then

ININ A IA

m(r+l,s—1,a—2,¢)—1

m(r,s—1,a,t) by Lemma 17,
w(r, s, a,t) by Lemma 4,
w(r,s+1,a,t) by Lemma 4 again,

by Lemma 18 since (r + 1)t + (s + 1)
= 2(mod a — 2).

mr+1l,s—1la—-2,t)+r+1

Case 3(ii)
(r+1)t+s=23(mod a—2). Then

IN

IA

m(r+1,s,a—2,t) —1

(r+1) [ﬂ"—“)f"—“]+(t—1)(r+1)—1

s by Theorem 6,

a—2

(r+1) A=D1 4 - 1)+ 1) = 14 (4 D)

m(r+1,s-3,a—2,t)—1+(r+1) by Theorem 6,

w(r,s—3,a,t) — 14 (r+1) by Lemma 17 since

(r+1)t+s—3£2
(mod a — 2),

mr+1,5s—3,a—2,t)+ (r+1)
(r 4+ 1) [ A== 4 ¢ - 1)+ 1) + (r+ 1)

a—-2

by Theorem 6,

(r+1) [Lte=t] 4 ¢ - 1)+ 1)
w(r+1,s,a0—2,t).
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by Lemma 17 again,

Also

N IN

m(r+1,s,a—2,t)—1
(r+1)4s—1
(r+1) l't— ot .I +

(r+1) l'tgr+12+gs+12—1

a—2

m(r+1,s+1,a~2t)
”(T7s+ ]‘7a7t)
n(r+1,s+1,a—2,t)
T —
r+1) I'tg +12:_g;+11 1
a—-2

(r+1) [t(r+12+e—1] +

w(r+1,s,a —2,t).

Case 3(iii)
(r+1)t+s#1 (mod a—2) and (r + 1)t + s # 3 (mod a — 2). Then

AN

IN A

IA

m(r+1,s,a—2,t) —1
tir+1)+e—1
(r+1) [ o -' +

t-D(r+1)-1

J+@-De+1-1

-1

l+e-ne+1)

t-1(r+1)

(t-1)r+1) -1

by Theorem 6,

since (r + 1)t +s=3
(mod a — 2),

by Theorem 6,

by Theorem 16,

by Theorem 16 again since

(r+1t+(s+1)=2
(mod a — 2),

by Theorem 6,

since (r + 1)t +s=3
(mod a — 2),

by Theorem 6,

(r+1) [‘—"—“E&‘Fﬁ] +(¢-1)(r+1)—1 since (r+1)t+s%1

m(r+1,s—1,a—2,t)

m(r,s —1,a,t)

mw(r, s, a,t)
n(r,s+1,a,t)
w(r+1,s+1,a—2,¢t)

-1
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(mod a — 2),
by Theorem 6,

by Lemma 17 since
(r+Dt+(s—-1)£2
(mod a ~ 2),

by Lemma 4,
by Lemma 4 again,

by Lemma 17, since
(r+Dt+(s+1)£2
(mod a — 2),



a—2

= (r+1) [w—ﬂﬁgs—H)“—l] +(t—1)(r+1) by Theorem 6,

It

(r+1)[ﬂttl_—li;f:1]+(t—1)(r+1) since (r + 1)t +s # 1
{mod a — 2},

= wr+1,sa—21t).

O

3 Exact Evaluation of the pseudograph thresh-
old number #(r, s, a,t)

3.1

In this section we refine the results in Section 2 and obtain exact evaluations
of 7(r,s,a,t) in the cases when r and a are not both even. We recall from
Theorem 6 that when r and a are both even and «a is positive then

w(r,s,a,t) = N(r,s,a,t) =71 "w.l +(t—-1)r

For the reader’s convenience, we repeat Theorems 7 and 8, giving the exact
evaluations of 7 (r, s, a,) in all cases.
The exact evaluations when a > 2 are given in Theorem 7 below.

Theorem 7. Let r,s,a and t be integers with r,t positive, a > 2 and s
non-negative.

(1) If r and a are both even, then

w(r,s,a,t) = N(r, s, a,t).
(2) If r and a are both odd then

N(r+1,s,a—1,t)-1 if P+ 1)t+s#2

(moda — 1),
b b ’t =
m(r, 5, 0,1) ifr+1)t+s=2
Nir+lsa—-1t)—(r+1)—1 (moda — 1).

(8) If r is odd and a is even, a > 4, then

N(r+1,s,a—2,t)— 1 if (r+1)t+s#2,3

(moda—2),
b ?t =
7(r,s,a,t) if(r+Dt+s=2,3
N(r+1l,s,a-2,t)—(r+1)—1 (moda — 2).

(4) If v is even and a is odd, then

) = N(r,s,a—l,t) ’lf'l't+8¢2(moda—1),
mr s at) = N(r,s,a—1,t)—r ifrt+s=2(moda—1).

For a =0or 1 or a=2, r odd, we give the results in Theorem 8. Note
that we use the notation n(r, s, a,t) = oo when there is no finite threshold
number for the given value of r, s,a and ¢. If a = 2 then n(r, s, a,t) is given
by Theorem 6 if r is even, but if 7 is odd is given below in Theorem 8.

Theorem 8. Let r,s and t be integers with r and t positive and s non-
negative. Then
m(r,s,0,t) = oo

2 ifr=2s=0andt=1,
w(r,s,1,t)=¢ 1 if r=1,s—0andt=1,
otherwise,

and

and if r is odd then

_Joo ifr>l,s>1lort>1,
77(7',3;2at)—{ 1 ifr=1s€{0,1}andt=1.

The recent discovery of the mistake mentioned before in the paper by
Hilton [14] had the consequence that a lot more careful argument is now
needed to establish Theorem 7 than was needed to prove the corresponding
(incorrect) theorem of Hilton and Rajkumar [15].

Section 3 is very long and so we have divided it into sub-sections. Some
of the results needed for Theorem 7 are common to more than one of the
cases (2), (3) and (4), but some are particular to just one of the cases.
Section 3.2 includes all the results needed for Case (2) of Theorem 7, which
is given separately as Lemma 24. Sections 3.2 and 3.3 include all the results
needed for Case (3) of Theorem 7, which is given separately as Theorem
26. Sections 3.2, 3.3 and 3.4 include all the results needed for Case (4) of
Theorem 7, which is given separately as Lemma 29.

Section 3.5 contains evaluations of n(r, 5,0,t), 7(r, s, 1,£) and 7 (r, 5,2, t),
cases which are not covered by Theorem 7.

3.2 Everything related to the case r and a both odd.

We start by lowering the upper bound on = (r, s, a, t) in the case (r + 1)t +
s = 1(mod a — 1) in Theorem 13, raising the lower bound in the case
rt+ s = 1(mod a —~ 1) in Theorem 16 and lowering the upper bound in the
case (r + 1)t + s = 1(mod a — 2) in Theorem 19.
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Lemma 20. Let r,s,a and t be integers with r,t positive, a > 3 and s
non-negative.

1. If both a and r are odd and (r + 1)t + s = 1(mod a — 1) then
N(r+1,s,a—1,t) -1 < n(r,s,a,t) < N(r+1,s,a—1,¢).

2. Ifr is odd and a is even and (r + 1)t + s = 1(mod a — 2) then
N(r+1,s,a—2,t) -1 < n(r,s,a,t) < N(r+1,8,a — 2,1).

3. Ifr is even and a is odd and rt + s = 1(mod a — 1) then
N(r,s,a —1,t) — 1 < w(r,s,a,t) < N(r,s,a —1,1).

Proof. The proofs of (1), (2) and (3) are very similar.

Proof of (1). By Lemma 2, if p <7 < r+a < p+ o then 7(r, s,a,t) >
n(p, s, a,t). Sincer <r+1<(r+1)+ (a— 1) <7+ a, it follows that

w(r,s,a,t) < w(r+1,s,a— 1,t).

In the case when r and a are both odd and (r + 1)t + s = 1(mod a — 1), it
follows from Theorem 13 that

m(r+1,s—1,a—1,t)— 1< n(r,s,a,t).
By Theorem 6, since r + 1 and a — 1 are both even,

a(r+1,s—1l,a—1,t)=N(r+1,s—1,a—1,¢).

Also
Nir+1s—1a—1,¢=(+1) [(’"“)t:_(sl” ), '1] +(E—1)(r+1).
But

(r+1)t+(s—1)—1" _ [(1‘+1)t+(s—2)‘l _ [(r+1)t+s-1]

{ a—1 - a—1 a—1

since a — 1 divides (r + 1)t + s — 1. Therefore
a(r+1,s—1l,a—1,t) =N(r+1,s,a—1,t) =7(r+1,s,a —1,),

S0
a{r+1,s,a —1,t) — 1 < w(r,s,a,t).

Consequently

N(r+1,s,a—1,t) ~1=n(r+1,s,a—1,t) — 1 < w(r,s,0,1)
<m(r+1,s,a—1,t)=N(r+1,s,a—1,t).
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The proofs in cases (2) and (3) are both similar to this.

Proof of (2). Let r be odd and a > 2 be even. Using Lemma. 2 again, we
have that since
r<r+1<(r+1)+(a-2)=r+(a—1) <r+a, we have in general
that
n(r,s,a,t) < w(r+1,s,a — 2,¢t).

In the present case, when (r+1)t+s = 1(mod a—2) we have using Theorem
16 that

n(r+1,s—1,a—2,t)~ 1< n(rs,a,t).
But, as in (1),
N(r+1,s-1,a—2,t) =N(r+1,s,a — 2,%).
Then by Theorem 6, since r + 1 and a — 2 are both even,
N(r+1,s,a-2,t) — 1 < w(r, s,a,t) SN(r+1,s,a—2,¢).

Proof of (8). Let r be even and a be odd, and let rt+ s = 1(mod a — 1).
Using Lemma 2 again, we have
r<r+4+a—1<r+a, so that

7(r,s,a,t) < w(r,s,a— 1,¢t).
Using Theorem 19 we have in this case that
m(r,s—1,a—1,t) — 1 < n(r, s, a,t).

But,
N(r,s—1,a—2,t) = N(r,s,a — 2,t).

Then by Theorem 6, since r and a — 1 are both even,
N(r,s,a—1,t) —1 < m(r, s,a,t) < N(r,s,a—1,t).

O

Next we deal with the cases in Theorem 13, Theorem 19 and Theorem
16 when (r + 1)t + s = 2(mod a — 1), (r + 1)t + s = 2(mod a — 2) and
rt+ s = 2(mod a — 1) respectively, making similar improvements. However
in these cases the arguments are more difficult.

Lemma 21. Let r,s,a and t be integers with r,t positive, a > 3 and s
non-negative.
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1. If both a and r are odd and (r + 1)t + s = 2 (mod a — 1) then
N(r+1,s=2,a—1,t) -1 < 7(r,s,a,t) < N{r+1,s—2a—11).

2. Ifr is odd and a is even and (r + 1)t + s = 2(mod a — 2) then
N(r+1,s—2,a—-2,t)——1$1r(r,s,a,t)§N(r+1,s—2,a—2,t).

8. Ifr is even and a is odd and rt + s = 2(mod a — 1) then
N(r,s—2,a—1,t) — 1< n(r,s,a,t) < N(r,s—2,a—1,t).

Remark: In Case 1, since (r + 1)t + s = 2(mod a - 1),

t(r -2)—1
Nir+1s~2a-11t) = @+¢)t(+”:fi ) 1+@—n@+1)
=(r+n%“+2ff“m]+u—n@+n

= N{r+1ls—1a—11¢)

_ “+¢)}w+1y+f:fy+w—1ﬂ_4r+n
+Et-1)(r+1)
[tr+1)+s—1

= (r+1) a—1

= N(r+1l,s,a-1,t)—(r+1).

Similar equalities are true in cases 2 and 3.
In Case 2, since (r + 1)t + s = 2(mod a — 2),

"t(r -2)-1
Nr+ls—2a-21t) = w+4)t(+”:f2 ) ]+@—nw+1)
— 1) 't(”“a)ff‘z)] -1+ D)

= N{r+1l,s—1,a—2,)

(tr+ 1) +(s—2)+(a—2)
a—2

= (r+1)

[tr+1)+s—1 i
7—2—] (r+1),

= N(r+1l,sa—-1,t)—(+1).

= (r+1)
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]——('r+1)+(t—1)(r+1)

~(r+1)
+(t—-1)(r+1)

and in Case 3, since rt + s = 2(mod a — 1),

F‘t"'_"l‘%:_i%)—_l" + (t — 1)7.

- —tr+(s—2)'l D

N(r,s——2,a—1,t) = r

a—1
[tr+(s~2)+(a—1)
a—1
[tr+s—1

=ar —ail—]-—r+(t—1)r

= N(r,s,a—1,t) —r.

]—r+a—1y

Proof of Lemma 21

Proof of (1) In all cases it follows that s is even. By Lemma 12, and
Theorem 6, since r + 1 and a — 1 are even,

N(r+1l,s—2,a~1,t) -1 < n(r,s,a,t).

We need to show here that
m(r,s,a,t) < N(r+1,s—2,a— 1,¢).

Let G be a (d,d + s) - pseudograph with d = d(G) = N(r+1,s,a —
Lty-(r+1)+y=N@r+1,s-2,a— 1,t) 4+ y, where y is a non-negative
integer(using the Remark before the proof). By Theorem 10, it is enough
to show that the inequality f—i’f <z< ri—l is satisfied by at least t integer
values of ¢. For then G will have an (r+1, (r+1) + (a — D)=(r+1,7+a)
- factorization with x factors for ¢ different values of .

Since
d=N(T+17sya_ l,t)* (’I‘+1)+y
it follows that

d = (r+1) [?(l-—%lii-_—l]+(t—l)(r+l)—(r+l)+y

1
t 1 +a—3
- (r+1)((r+ )a+_31 - )+(t—2)(f+1)+y
so that J 1) 4ot .
r s+a— y
= t— —
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Also

d+s = (r+1) [t(r_—f-a%#] + -+ -+ +y+s

= r+‘1’(t(r+1)+s+a—3)+(t—2)(r+1)+y+s“t(’"+1)
-

—s—a+3
= T+(;(t('r+1)+$+a"3)"2(r+l)_'a+3+y
a_
- ’"+‘1‘(t(r+1)+s+a—3)-—(r+a)—(T—y)+1~
a—
Consequently
d+s _tr+1)+st+a-8  r—y-1
r+a a—1 rta
The inequality
t(r+1)+s+a—3_1_r—y"1<w<t(r+1)+s+a—3+(t—2)+—y—1-
a—1 r+a T T a—1 Tt

is satisfied by at least ¢ integer values of zx if 0 <y < r —1, in particular
the following integer values of x:

tr+1)+s+a—3

+1
a—1

fori=-1,0,1,2,...,t - 2.
We def7er ,the argument for the case y = r. Suppose now that y > r+ 1.
Let y = (r +1)2 4+ w, where z > 0 and 0 < w < r. Then

r—y-1 _ | (+h-2-(+lz—w
T r+a
_ _1+(r+1)(z—-1)+’w+2
r+a
< —14(z=-1)+1
= z-—1

d ~L >(t-2)+
—_ zZ,
(t 2)+r 1__(

so that it suffices to show that there are at least ¢ integers x satisfying

-3
tr+l)+s+ta=8  , _ tHr+l+s+ta

+{E-2)+=
a—1 a—1

But the following integers satisfy this:

tr+1)+s+a—3
a—1

+i

fori=z-1,2,24+1,..,2+ (t — 2), so there are ¢ integers altogether, as
required. Thusif d=N(r+1,s,a—1,t) ~ (r+ 1)+ 4,y >0,y #r, G
has an (r, r+a)-factorization with z factors for at least ¢ integer values of z.

Now consider the case wheny = r. In this case d = N(r+1, s, a—1,t)~1.
If there is an odd number of vertices of minimum degree d in G, take a
disjoint further copy of G, and denote the two copies of G by 2G. Now
pair off the vertices of minimum degree in G (or in 2G if there is an odd
number of such vertices in G). Let G* denote G (or 2G) with these extra
edges added. Then G* is a (d + 1,d + s)-pseudograph, where d + 1 =
N(r+1,s,a—1,t). By Theorem 6,

7r(r+1,s,a—1,t)=N(r+1,s,a~l,t),

so G* has an (r+ 1,7 + a)-factorization with z factors for ¢ different values

of z. Removing the extra edges to revert to G, we see that G has an

(r,r + a)-factorization with z factors for ¢ different values of G.
Consequently m(r,s,a,t) < N(r+1,s —2,a ~ 1,), as asserted. I

Proof of (2): The proof of (2) is very similar to the proof of (1). We have
that r is odd and a is even, and also that (r + 1)t + s = 2(mod a — 2). By
Lemma 17 and Theorem 6, since (7 + 1) and (a — 2) are even,

N(r+1,s—2,a—2,t) -1 < n(r,s,a,t).
We need to show here that
m(r,s,a,t) < N(r+ 1,5—-2,a—2,¢).

Let G be a (d, d+ s)-pseudograph with d = d(G) = N(r+1,s,a~2,t)~
(r+1)+y=N(r+1,s—2a—2¢t)+y, where Yy is a non-negative integer.
By Theorem 10, it is enough to show that the inequality (rTfﬂ_(gm <z<
-Ti—l is satisfied by at least ¢ integer values of z. For then G will have an
(r+1,(r+1)+(a—2)) = (r+1,r 4 a— 1)-factorization with z factors for ¢
different values of . Clearly an (r+1,7+a—1)-factor is an (r,r+a)-factor.

Since

d=N(r+1,5a—-2,t)—(r+1)+y
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it follows that

-1
d = (r+1)[%-’+(t—l)(r+l)—(r+l)+y
-4
= (r+1)(t(r+1)a+_sz+a ) f =2 +1)+y
so that d _t(r+1)+s+a_4+(t—2)+—lj—-
r+1" a—2 r+1
Also

tr+1)+s—1

-’+(t—1)(r+1)—(r+1)+y+s
a—2

d+s = (r+1)[

= ”'—“;i(t(r+1)+s+a—4)+(t—2)(r+1)+y+s
“ —t(r+1)—s—a+4
r+

= _—“;1(t(r+1)+s+a—4)—2(7"+1)~“+4+y
a-—

= %(t(r+l)+s+a——4)—(r+a+l)-—(r—y)+1.
a_

Consequently

d+s _t(ry+1)+$+a—4_1_7"‘y“1_
r+a—1" a—2 r+a-—1

The inequality
tr+1)+s+a—4 1_r~y-—1 <

tr+1)+s+a— y
z < —
a—2 r+a—17" — a—2 r+1
is satisfied by at least ¢ integer values of x if 0 < y < r — 1, in particular
the following integer values of x:
tr+1)+s+a—4 4
a—2

4+(t-—2)+

for i =-1,0,1,2,...,t — 2.
We defer the argument for the case y = r. Suppose now that y > r+1.
Let y = (r + 1)z + w, where z > 0 and 0 <w < r. Then

r—y—1 r+1)—-2—(r+1z—w

_1~r+a—1 = —1-( r4+a—1 )
r+D)E-1)+w+2
= -1+ r4+a-—1
—1+(z~-1)+1
= z—1,
4?2

and y
- - > (t—
-2+ > -2+

so that it suffices to show that there are at least ¢ integers x satisfying

—4 t 1 —4
tr+1)+s+a tzol<z< (r+1)+s+a F-2) +2.
a—2 a—2
But the following integers satisfy this:
tr+1)+s+a—4 +i
a—2
for 1 = ~1,0,1,2,...,(t — 2), so there are t integers altogether, as required.

Thus if d = N(r+1,s,a = 2,t) — (r + 1) + y,4 > 0,y # 7, G has an
(r,r + a)-factorization with z factors for at least ¢ integer values of z.

Now consider the case when y = r. In this case, d = N(r+1,s,a —
2,t) — 1. If there is an odd number of vertices of minimum degree d in G,
take a disjoint further copy of G, and denote the two copies of G by 2G.
Now pair off the vertices of minimum degree in G (or in 2G if there is an
odd number of such vertices in G). Let G* denote G (or 2G) with these
extra edges added. Then G* is a (d + 1, d + s)-pseudograph, where d+ 1 =
N(r+1,s,a—2,t),50 G* hasan (r+1,r+a—1) = (r+1, (r+1)+(a—2))-
factorization with z factors for ¢ different values of . Removing the extra
edges to revert to G, we find that G has an (r,r + a)-factorization with z
factors for ¢ different values of G.

Consequently 7(r, s, a,t) < N(r + 1,8 — 2, a — 2,1), as asserted. O

Proof of (8) The proof of (3) is like that of (1) and (2), but simpler.
We have that r is even and a is odd, and also that rt+s = 2(mod a— 1).
By Lemma 18 and Theorem 6, since r and (a — 1) are even,

N(rys ~2,a—1,t) —1 < m(r, s,a,t).
We need to show here that
n(r,s,a,t) < N(r,s — 2,a — 1,1).

Let G be a (d, d+s) - pseudograph with d = d(G) = N(r,s,a—1, ) —r+4
y = N(r,s—2,a—1,t)+y, where y is a non-negative integer. By Theorem 10,
it is enough to show that the inequality ﬁ'ﬁ_n <z < £ is satisfied by at
least ¢ integer values of z. For then G will have an (r, 7+ (a—1)-factorization
with z factors for ¢ different values of z. Clearly an (r, r+a— 1)-factorization
is an (r,7 + a)-factorization.

Since

d=N(r,s,a—1,t)—(r+1) +y
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it follows that

d = rlrw:—l1+(t—l)r—r+y
a—1
- lrtsta=2) oty
a—1
so that
§=.t1""_s+._“_—_2+(t_2)+2_
r a—1 r
Also
r+a—1
= 71(tr+s+a—2)+(t—2)7’+y+s—tr—s—a+2
a——
= #(tr+s+a—2)—2r—a+2+y
@ —
- ”—“‘-i"—l(tT+s+a—2)—(r+a—1)—(r—y)+1.
a—
Consequently
d+s _tr+s+a—2_ __'r—y—l
r+a—1 a—1 r+a—1
The inequality

—~ ~y- ~2
tr+s+a-2 ., r—y-1_  tr+sta-2 +(t—2)+%

a—1 T rta-1""7 a—1
is satisfied by at least ¢ integer values of z if 0 < y. For if y = rz + w,
where z > 0 and 0 < w <7 —1. Then
Tyt rorz-w-—l
a—1 r+a—1
(z-1r+w+l
r+a-—1

< ~14(z-1)+1

= z-1,
and "
(t—2)+§f—=t—2+z+7 > (t—2) + 2z,
so that the integer values of x include the ¢ integers:

tr+s+a—2

a—1 +e

fori=2—1,2,241,...,z2 4+ (t — 2), so there are ¢ integers altogether, as
required.

Thusifd = N(r,s,a—1,t)—r+y,y > 0, G has an (r, 7+ a)-factorization
with z factors for at least ¢ integer values of z, as required.

This concludes the proof of Lemma 21. (W}

Finally we need to deal with the cases in Theorem 13, Theorem 19 and
Theorem 16 when (r + 1)t +s = 3(mod a — 1), (r + 1)t + s = 3(mod a — 2)
and rt + s = 3(mod a — 1), respectively, making similar improvements.

Lemma 22. Let r,s,a and t be integers with r,t positive, a > 3 and s
non-negative.

1. If both a and r are odd and (r + 1)t + s = 3 (mod a — 1) then
N(r+1,s,a~1,t) - 1< w(r,s,0,t) < N(r+41,s,a— 1,%).

2. Ifr is odd and a is even and (r + 1)t + s =3 (mod a — 2) then
Nr+1,s,a-2t)-1<7(r,s,a,8) <N(r+1,s,a—2,t).

8. Ifr is even and a is odd and rt + s = 3 (mod a — 1) then
N(r,s,a—1,t) -1 < n(r,s,a,t) < N(r,s,a — 1,1).

Remark 1: In the case when both r and a are odd, between the bounding
numbers in the case when (r 4+ 1)t + s = 2 (mod a — 1) and in the case
when (r + 1)t + s = 3(mod a — 1), there is a gap, or jump, of r 4 1. For if
(r+ 1)t + s = 2(mod a— 1) then

N(r+l,s,a—1t)~N(r+1,s—2,a~-1,t)

“*”Vﬁ%?iii]—@+nr“+ﬂ+@-w—ﬂ

(r+1){[t(r+z)1+s— 1‘| B [t(’r+1)+s—a3‘]-;

a-—-1 a—1

= r+1

There is a similar gap in the other cases.

Remark 2: Lemma 22(2) is subsumed by Theorem 26 and Lemma 22(3)
is subsumed by Theorem 30.

In each case in Lemma, 22, s is odd. (The possibility that s is even in other
cases was considered in Lemma 11.) We prove next Lemma 22(1).

Lemma 23. Let r,s,a,t be integers with r,¢ positive, a > 3 and s non-
negative. Let a and r be odd and (r + 1)t + s = 3(mod a — 1). Then

N(r+1,sa—-1,t) -1 < n(r,s,a,t) SN{r+1,s,a~1,¢).
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Proof. Recall that in Theorem 13 we showed that
m(r,s+1,a,t) < N(r+1,s,a—1,t).
But since n(r, s, a,t) < 7(r,s + 1, a,t) it follows that
7(r,s,a,t) < N(r+1,s,a — 1,t).

We need to show that N(r+1,s,a—1,¢) — 1 < 7(r,s,a,t). We do this
by exhibiting a (d, d + s)-graph G of degree d = N(r + 1,s,a — 1,1) — 2
which does not have an (r, r + a)-factorization with x factors for ¢ values of
z. Note that d is even and d + s is odd. We let G have two components,
one, (31, has one vertex and % loops. The other, G2, has two vertices, vy
and vg, between which there is an edge, and each of v1 and vs is incident
with -‘i—i‘%‘-‘—l- loops. In any (r,r + a)- factorization of G, all but at most
two of the factors must be (r + 1,7 + a — 1)-factors, but the remaining
factors must be (r + 1, r + a)-factors. If there are x factors altogether in an
(r, 7+ a)-factorization of G, then (r+a—1)+(x—1)(r+a) > d(v1) =d+s
so that

z(r+a)>d+s+1
o> dtstl
-~ r+4a
Similarly all but one of the factors would have minimum degree » + 1 and
one might have minimum degree r. Therefore (x — 1)(r + 1) + r < d, so
that z(r + 1) < d+ 1, so ¢ < 4. Therefore « must satisfies the double
inequality
d+s+1 _ o< d+1
r+a

“ T T 41

Since r+1 and a— 1 are even and d = N(r+1,s,a — 1,t) — 2 it follows
that

d=(w+D[@ii¥%i:i1+@—JXr+D—2
so that
d+1=(w+n[@i%%;Fli1+@-4xr+n-4

so that, as (r + 1)t + s = 3(mod a — 1)

4 1
+E-1) - =

d+1 (r+lt+s+a-
r+1 a—1

Also

(r+D)({(r+1)t+s+a—4)

d+s+1 = p— +(t-1)(r+1)—1+s
r+1}+(a—1
= i_g" )(t(r+1)+s+a—4)+(t—1)(r+1)-—1
+s—(t(r+1)+s+(a—1)—4)
r+
e a_(;(t(r+1)+s+a—4)—(r+l)——1-—a+4
= Zt‘;(t(r+1)+s+a—-4)——r-a,+2
> dts+1 1
s+1 2
== —a—1((r+1)t+s+a—4)_l+r+a'
Therefore if G has  (r,r + a)-factors then z satisfies
1 2 1 1

((r+1)t+s+0—4)~14+——— <z <
r+a

a—1 a—1

The positive integers = which satisfy this double inequality are

—((r+ Dt +s+a—4) +i

for ¢ =0,1,2,....,t — 2 so there are t — 1 integers. So G does not have an
(7,7 + a)- factorization with « factors for ¢ values of z. Therefore

N(r+1,s,a—1,t) -1 < n(r,s,a,t).

O

We next determine the value of n(r, s, a,t) when r is odd, a > 3, pro-
vided that (r + 1)t + s # 3(mod a — 1) when a is odd, or (r + 1)t + s #
3(mod a — 2) when a is even.

Lemma 24. Let r,s,a and t be integers with r,t positive, a > 3 and s
non-negative.

1. Ifr and a are both odd, then

Nr+1,s,a—1,t) -1 if(r+1)t+s#£2

or 3(mod a — 1),

N(r+1l,s,a—1,t)—(r+1)~1 if (r+1)t+s=2
(mod a — 1).

w(r, 8, a,t) =
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2. Ifr is odd and a i3 even, then

N(r+1,8a—2)-1 if (r+ 1)t +s#2

or 3(mod a — 2),

N(@r+1,5,a=2,t)—(r+1)=1 if (r+1)t+s=2
(mod a — 2).

w(r,s,a,t) =

Proof. First suppose that 7 and a are both odd. Then by Theorem 13 (and
the Remark after Lemma 21, and Theorem 6),

N +1,s,a—1,t) ~ 1< n(r,5,a,8) < N(r+1,s,a—1,t)

if (r+1)t+s # 1,2, 3(mod a—1); by Lemma 20 this also holds if (r+1)t+s =
1(mod a — 1). By Lemma 21 (and the Remark following Lemma 21), if
(r+ 1)t + s =2(mod a — 1),

N{r+1,s,a—1,t)—(r+1)—1 < n(r,s,a,t) < N(r+1,s,a—1,t) = (r+1).

To prove Lemma 24(1), it suffices to show that every (d, d + s)- pseudo-
graph of degree d = N(r+1,s,a—1,t)—1if (r+ 1)t +s # 2,3(mod a — 1),
or every (d, d+s)-psuedograph of degree d = N(r+1,s, a— L,)—(r+1)—1
if (r + 1)t + s = 2(mod a — 1), has an (r,r + a)-factorization with z fac-
tors for at least ¢t values of . So let G be a (d,d + s)- pseudograph of
degree N(r +1,s,a—1,t) — 1 if (r + 1)t + s # 2,3(mod a — 1) or of degree
N(r+1,s,a—1,t)— (r+1)—1if (r+1)t+ s = 2(mod a — 1). In each case
d is odd. , / )

Take two copies of G, say ¢ and G, and if a vertex v € V(G')
has minimum degree d, join it by an edge to the corresponding vertex
v’ € V(G"). Let the pseudograph so formed be denoted by G*.

If (r + 1)t + s £ 2,3 (mod a — 1) we note that G* has minimum degree
N(r+1,s,a—1,t), and is a (d,d + s) pseudograph. Therefore G* has an
((r+1),r+1)+(a—1)) =(r+1,r +a) factorization with x factors for
at least ¢t different values of z. Therefore G has an (r,7 + a) factorization
with z factors for ¢ values of z.

If (r +1)t+ s = 2(mod a— 1) then we note that G* isa (d+1,(d+ 1)+
(s—1))-pseudograph, so, putting d* = d+1s* =s—1, G* isa (d*,d" +s%)-
pseudograph with (r + 1)t + s* = 1{mod a — 1). Then

Ner+Lsa-18~-(+1) = (r+1)[4rthi=t]y
t—1)r+1)—(r+1)

= (1) [HBEEDSA -1y 4 1)

= N@F+1,s,a—12)

so G* has an (r + 1, r+ a)-factorization with = factors for ¢ values of z, and
so G has an (r,r + a)-factorization with x factors for ¢ values of z.

The argument if r is odd and a is even is more or less the same. Through-
out a — 1 is replaced by e — 2 and instead of Theorem 13 we use Theorem
19. In detail it is as follows:

Suppose that r is odd and a is even. Then by Theorem 19

N(r+l,s,a—2,t)—1gw(r,s,a,t)SN(T+1,s,a—2,t)

if (r+1)t+s # 1,2,3(mod a — 2). By Lemma 20(2) this also holds if
(r+ 1)t +s = 1(mod a — 2), By Lemma 21, if (r + 1)t + s = 2(mod a — 2),
then

N(r+1,s,a~2,8)=(r+1)—1 < 7(r,s,a,¢8) < N(r+1,s,a—2,¢) — (r+ 1)

(using the Remark after Lemma 21).

To prove Lemma 24(2), it suffices to show that every (d,d+ s)- pseudo-
graph of degree d = N(r+1,s,a—1,t)— 1 if (r+1)¢t+s % 2 or (mod a—2),
or every (d, d+s)-pseudograph of degree d = N(r+1,s,a—1, t)—(r+1)—1
if (r+ 1)t + s = 2(mod a — 2), has an (r,r + a)-factorization with z fac-
tors for at least ¢ values of z. So let G be a (d,d + s)-pseudograph of
degree N(r+1,s,a~2,t) — 1if (r + 1)t +s # 2, 3(mod a — 2) or of degree
N(r+1,s,a—1,¢) = (r+1)—1if (r+ 1)t + s = 2(mod a — 2). In each case
d is odd.

Take two copies of G, say G and G", and if a vertex v € V(G’)
has minimum degree d, join it by an edge to the corresponding vertex
v" € V(G”). Let the pseudograph so formed be denoted by G*.

If (r + 1)t + s # 2,3(mod a — 2) we note that G* has minimum degree
N(r+1,s,a—2,t), and so is a (d,d +s) pseudograph. Since r + 1 and
a—2 are both even, G* has an ((r+1), (r+ 1) +(a—2)) = (r+ L,r+a-1)
factorization with « factors for at least ¢ different values of z. Therefore G
has an (r,r +a — 1) factorization with z factors for ¢ values of z.

If (r + 1)t + s = 2(mod a — 2) then we note that G* is a (d+1,(d+
1) + (s — 1))-pseudograph, so, putting d* = d+ 1 and s* = s — 1,G*is a
(d*,d* + s*)-pseudograph with (r + 1)t + s* = 1 (mod a — 2). Then

n(r+1,8,a—2,t)~(r+1) = (r+1) [tgr-kal_z-gs—l-l

+ (t-1(r+1)—~(r+1)
= (r1) [HEEEL] 1)t 1)

= N(r+1,s*,a~2,t)

so G* has an (r + 1, r + a — 1)-factorization with z factors for ¢ values of z,
and so G has an (r,r + a)-factorization with « factors for ¢ values of z.

O
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Now we determine the value of 7(r, s, a, t) in every case with a > 3 when
r and a are both odd.

Lemma 25. Let r,s,a and t be integers with r,t positive, a > 3 and s
non-negative. If r and a are both odd, then

N(r+1,s,a—1,t)—1 if r+1)t+s#£2

) (mod a — 1),

w(r,s,a,t) =

( Nir+l,s,a—1Lt)—(r+1)—1 if (r4+Dt+s=2
(mod a—1).

Proof. If (r+ 1)t + s # 3(mod a— 1), this is part of Lemma 24. So we need
only consider the case when (r + 1)t + s = 3(mod e — 1). By Lemma 23,

N(r+1,s,a—1,t) 1< n(r,sat) <N(@r+1,s5a-11).

The argument given in the proof of Lemma 24(1) for the case when (r +
1)t + s # 2,3(mod a — 1) applies verbatim (except that now we no longer
disallow the case when (r + 1)t + s = 3(mod a — 1). O

3.3 Everything related to the case r odd and a even
that is not in Section 3.2

Theorem 26. Let r,s,a and t be integers with r,t positive, a > 3 and s
non-negative. Letr be odd and a be even, and let (r+1)t+s = 3(mod a—2).
Then

n(r,s,a,t) = N(r+1,s,a—2,t)— (r+1)— 1.

Proof. We first show that

n(r,s,a,t) > N(r+1,s,a—2,t) — (r+1) - L
We do this by exhibiting a (d, d + s)-graph G of degree d = N(r +1,s,a —
2,t) — (r + 1) — 2 which does not have an (r,r + a)-factorization with z
factors for t integer values of z. Note that d is even and d + s is odd.

Let G consist of two components G; and G2, where G; has one vertex
w on which are placed 2 loops, and Gy has two vertices, vy and v;, which
are joined by a single edge, and on each of which are placed 2(al +s—1)
loops.

In any (r,r + a) - factorization of G into z factors, since the vertex w
of minimum degree d has 4 ¢ loops on it, and since r is odd, it must be that
z(r + 1) < d. Similarly s1nce the vertex v; of maximum degree d + s has

one edge and 3(d + s — 1) loops on it, and since r + a is odd, it must be
that (r+a)+ (¢ —1)(r+a—1)>d+s,sothat z(r+a—1) >d+s— 1.
Consequently z satisfies

d+s—1 d
<z < .
r4+a—1 “r+1

Since r+1 and a—2 are both even, and d = N(r+1,s,a~2,t)—(r+1)—2
it follows that ,

d=(r+1) [(’—ti)i_ﬂ] FE-DE+1)—(r+1) -2

2
so that
r+1
d=——(r+1)t+s+a-5)+@t-2)(r+1)-2
% d 1
- 2
Also
r+1
dts—1 = ——((r+1t+s+a=5)+({t—-2)(r+1)+s-3
(r+1)+(a—2
= a2 )((7'+1)t+s+a—5)+(t——2)(r+1)
+s—3~(r+1)t~s—a+5
r+a—
= —a——((r+1)t+s+a—5) 2(r+1)—a+2
r+a—
= ((r+1)t+s+a—5) 2(r+a—-1)+a—2
so that
d+S—1 1 a—2
7.+a__1*a_2((7'+1)t+s+a—5)—2+7:—a—__1,

Therefore if G has an (r, r + a) - factorization with z factors, then

t(r+l)+s+a—5_2+ a—2 <p<
a—2 r+a-1_‘z—a

The integer values of z satisfying this double inequality are

2((r+1)t+s+a—5)+z'
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for i = —1,0,1,...,t — 3, so altogether the double inequality is satisfied by
exactly ¢ — 1 integers. Consequently

d>N(r+1,5,a—2,t)—(r+1) -1
Next we shall show that
d<N{r+1l,sa—2t)—(r+1)—1
Let G be a (d, d + s)-pseudograph with
d=N(r+1,s,a—-2,t)—(r+1)—-1+y

for some y > 0. Take two copies, G1 and Ga, of G and join each vertex of
lowest degree d in G; to the corresponding vertex in Ga. Call the graph
so formed G*. Then G* has minimum degree d + 1 and maximum degree
d+s. An (r+ 1,7 + a — 1) factor in G* corresponds (by leaving 'oqt the
extra edges joining G; to G2) to an (r,r+a— 1)-factor in G. The minimum
degree of G* is d+ 1 and we have

d+1 = (r+1) [ML“I] F =D+ - +1)+y

a—2

= Zt;((r-*_1)t+s+a‘5)+(t—2)(‘r+1)+y

since (r + 1)t + s = 3(mod a — 2). Consequently

d+1 (r+1)t+a+s—
r4+1 a—2

v

5
+(t——2)+r+1'

We also have that

tr+1)+s+a—
a—2
- (7"+1)+(2“‘2)((1~+1)t+s+a-5)+(t—2)(r+1)
@ —
—14+y+s—(r+1l)t—s—a+b

S -+ —1+y+s

d+s = (r+1)

= (—T+a—;1)((r+1)t+s+a—-5)—2(T+1)+y—a+4
P
- __—("+“'2'1)((r+1)t+s+a—5)~2(r+a~1)+y+a
.
so that d+s _ (r+ltt+s+a=5 , y+a
r+a—1_ a—2 r+a—1
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Since (r+1) and (r+a—1) are even, G* has an (r+1,7+a—1)-factorization
with z factors if z satisfies the double inequality

Hr+l+sta=5 , y+a (’"+1)t+s+“_5+(t—2)+;y——‘

a—2 r+a—-1—" 7 a—2 +1
ForO0<y<r-—1, the integer values of z satisfying this inequality include

(r+1)t+s+a—5
a—2

+1

for i = —1,0,1,...,t — 2, so there are ¢ such values of z, so G* does have an
(r+1,r + a — 1)-factorization with x factors for ¢ values of z.

For y = r we cannot make this deduction without a special argument,
which we make later below.

For r +1 <y < 2r+ 1 we have
r+1l+4+a

2> ———>1
r+a-—1

d
an 2r+1

r+1
so the integer values of z satisfying the equality above include

1<

<2

(r+1)t+s+a—5+z
a—2

fori=0,1,...,t — 2, — 1 so there are ¢ such values of z.
Now let y = p(r + 1) + z where p > 2 and 0 < z < r. We have

pr+1) +a
r+a—-1
and
pir+1)+r
, r+1
so the integer values of « satisfying the inequality include

p< <p+1,

(r+1)t+s+a-5
a—2

+¢

fori=p~2,p—1,..,p+ (t — 2), so there are at least ¢ such values of z..

Now let us consider the case when y = r. First select an independent
set 51 of edges of Gy such that each vertex of G of maximum degree d+s
is incident with exactly one edge (and each edge of $; is incident with a
vertex of degree d 4+ s). Let Sy be the corresponding set of edges in Go



and let S = S; U S,. Let S} be the set of edges of S; which are incident
with a vertex of degree d + 1, and let S5 be the set of corresponding edges
in Go. Let §* = ST US5. Let G** = G\S. Then the maximum degree
of G** is at most d + s — 1 and the minimum degree is at least d; each
vertex of degree d is incident with an edge of S*. We join each vertex in
G4 which has degree d in G** to the corresponding vertex in G. Let G***
be G** with this further set of edges added in. Then the maximum degree
of G*** is d+ s — 1 and the minimum degree is d + 1. For G*** to have an
(r+1,r+ a— 1)-factorization with x factors for ¢ different values of z, it is
necessary that :

d+s—1 << d+1

rra—1-"S7 0
ie.,
(r+1)t+3+a—5_2+ <z<

a—2 r+a—1 a—2
In the case when y = r, the integers = which satisfy this double inequality
include

—1 t =
y+a <Jv<(r+1) +s+a 5+(t_2)+_y_

(r+)t+s+a—>5
a—2
for i = —1,0,1,2,....,t — 2 so there are at least ¢ such values of z, so G***
does indeed have an (r+1, r+a~1)-factorization with x factors for ¢ different
values of 2. For each such z, choose an (r + 1, r + a — 1)-factorization with
x factors. Assign the edges of S to one of the (r + 1,7 + a — 1)-factors;
then we obtain an (r + 1,7 + a)-factor F. The vertices of S; U S5 now have
degree at least 7+ 2 in F. Remove all the extra edges joining vertices in
G| to vertices in Gy. This produces an (7,7 + a)-factorization of G with «
factors. Thus in the case y = r, G also has an (r,r + a)-factorization with
x factors, for t values of z.
This completes the proof that when r is odd and a is even,

#(r,s,a,t) =N(r+1,8,a-2,t) —(r+1)—-1.

+1

O

Now we determine the value of 7(r, s, a,t) in every case with a > 3, a
even and r odd.
Theorem 27. Let 7,s,a,t be integers with r,t positive, a > 3, a even, r
odd and s non-negative. Then

N@Fr+1,s,a—2,t)—1 if(r+1t+s#£20r3

(mod a — 2),
w(r,s,a,t) =
( ) N{r+1,5,a—-2,8)—(r+1)~1 if (r4+1)t+s=2
(mod a — 2).

r4+1

Proof. If (r+1)t+s # 2 or 3(mod a — 2) then this is part of Lemma 24(2).
If (r+ 1)t + s = 2(mod a — 2) this is also part of Lemma 24(2). If
(r+ 1)t + s = 3(mod a — 2) this is Theorem 26. O

3.4 Everything related to the case r even and ¢ odd
that is not in Sections 3.2 or 3.3.

It remains to consider the case when 7 is even and a is odd. First we con-
sider the case when rt + s # 3 and s is even.

Lemma 28. Letr,s,a andt be integers withr even and positive, t positive,
a >3 and odd and s > 1 even. Then

7(r,s,a,t) = N(r,s,a—1,¢) if rt+s#2(moda—1),
o N(rs,a=1,t)~r if rt+s=2(moda—1).

Proof. First suppose that rt+s % 2(mod a—1). Let d = N(r,s,a—1,t)~1,
so that d is odd. Let F be the (d, d+s) - pseudograph with two components,
G consisting of an edge uv with -‘1;—1 loops on u and 4;—1 loops on v, and
G, consisting of an edge wz with %(d +s— 1) loops on w and %(d +s—1)
loops on x. Recall that a loop contributes two to the degree of the vertex
it is on. In any (r,r + a) - factorization of F, all but at most two of the
factors consist entirely of loops and so are (r,r +a— 1)-factors. If there are
z factors in an (r,r + a)-factorization of F, then all but one of the factors
would have maximum degree at most (r+a—1), and one might have degree
as high as r + a. Therefore (r +a) + (z — 1)(r + (a — 1)) > d(w) =d+ s,
so that
x> -——d +s—1 .
“r4+a-1
Similarly all but one of the factors would have minimum degree at least
7, and one would have minimum degree at least » + 1. Therefore 7 + 1 +
(z — 1)r < d so that
z < d- 1.
r
Since r and a — 1 are even, and d = N(r,s,a — 1,t) — 1 it follows that

dzr!"rt—i-s——l

P ]+(t—1)r—1,
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so that

d—1 tr4+s—1 2
= e ——— t"‘l—‘"

=1 - [ ve-n-2
tr+s—1+4c¢ 2

= — (-1 -~
a—1 o ) r

for some odd ¢, 1 < c<a-—2 Butifc=a—2then (a—1) | (rt+s—
14+a—2)=rt+s+a—3, sothat rt + s = 2(mod a — 1), which is not
allowed in this case. Thus the odd number c satisfies 0 < ¢ < a — 4, and
(a~1)|(rt+s—1+¢).

We also have that

t -1
d+s=r[fjf?]+r(t—l)+s—l
so that
-1
dts—1 = rtii';s—T—tf+r(t—1)+s—2
= M(tr+s~—1+c)—r—c—-l.
a—1
Therefore

d+s—1 _tr+s—1+c r4c+1

r+a—1 a—1 T r+a-—-1
Therefore if F' has an (r,r + a)-factorization with x factors, then

tr+s—1+c_ r+c+1 <z< rt+s—1+c+(t__1)_2.
a—1 r+a—1 a—1 r
This inequality is satisfied by the following integer values of z:

tr+s—1+4¢
a—1

+1
for¢=0,1,....,t—2. As there are only ¢ — 1 such values of z, it follows that
w(r, s,a,t) > N(r,s,a~ 1,1).
But by Lemma 2 if rt 4+ s # 2(mod a — 1) it follows that
m(r, s, a,t) < N(r,s,a ~ 1,t).

Therefore
w(r,s,a,t) = N(r,s,a — 1,1).

Now suppose that vt + s = 2(mod;a — 1). We let d = N(r,s,a —
1,t) —r — 1. With this value of d we proceed as in the case above when

7t +s # 2(mod a — 1) and note that if F is the (d, d + s)-pseudograph with
the two components G; and G as above, and if there are x factors in an
(7,7 + a)-factorization of F', then

d+s—1 < d—1 '

<
r+a—1—x— r

Since r and a — 1 are even and d = N(r,s,a,t) — r — 1 it follows that

t -
d=r[——r+s 1] +rt—1)—r—1

a—1
so that
tr+s—1 2
a-1 _ LA B, S, _9n..2
T [ a—1 ]+(t 2) T
tr+s+a—3 2
= +(t—2)—;.

We also have that

tr+s+a—3
d+s=—si—r+(t—2)r—1+s,
a-1
so that
r+a-—1
d+s~1 = ﬁ(rt-i-s—(—a—3)+(t—-2)r—2+s——t'r—s—a+3,
r4+a-—-1
= —a_-.—1--+('rt+s+a—3)—-2r+1,
Therefore
d+s—-1 tr+s+a—3 2r41
r4+a—1 a—1 T r4+a-—1
tr+s+a—3 1 r—a
a—1 r+a—1

So if F' has an (r,r + a)-factorization with x factors, then

tr+s+a-—3 r+a tr+a—3 2
—_— e < T —_-=
a-1 rta—1-%S -5 tE-2-o
This double inequality is satisfied by the following integer values of x:
tr+s+a-—3
—.._._+1'
a—1

fori=-1,0,1,2,...,t — 3. As there are only at most ¢ — 1 such integers, it
follows that

7(r,s,a,t) > N(r,s,a,t) —r.



But by Lemma 21(3)

w(r,s,a,t) < N(r,s—2,a-1,%)
= N(r,s,a—1,t)—r.

Therefore
7(r,s,a,t) = N(r,s,a—1,t) —r.

O

The result corresponding to Lemma 28 but for the case when s is odd
is:
Lemma 29. Letr, s, a andt be integers with r even and positive, t positive,
a> 3 and odd, and s > 1 odd. Then

w(r, s,a,t) = N(r,s,a—1,t).

Proof. By Theorem 16
n(r, s, a,t) < m(r,s,a—1,1)

when 7t + s # 1,3(mod a — 1) (s is odd here in Lemma 29). By Lemma
20(3) and Theorem 6 this is also true when rt + s = 1(mod;a — 1). In the
case when rt + s = 3(mod a — 1) we showed in Theorem 16 that

m(r,s+1,a,t) < n(r,s,a —1,1).

But since
w(r,s,a,t) < w(r,s+1,a—1,1)

by Lemma 4, it follows that
n(r,s,a,t) < w(r,s,a — 1,t).

Thus this holds in every case when r > 2 even, a > 3 o0dd, t >1and s > 1
odd.

We need to show that w(r,s,a — 1,t) < m(r,s,a,t). To this end let
d = N(r,s,a—1,t)—1, so that d is odd. Let F be the (d, d4s)-pseudograph
with two components, G consisting of an edge wv with d—;l loops on u and
d—;-l loops on v, and G2 consisting of single vertex w on which are placed
%(d + ) loops. Since a loop contributes two to the degree of the vertex
it is on, u and v have degree d, and w has degree d +s. Thus F is a
(d, d + s)-pseudograph.

Since a and d are odd and r is even, and since all but one of the edges
of F are loops, in any (r, r + a)-factorization of F, all but one of the factors

would be (r,r + (a — 1))-factors. If there are z factors in an (r,r + a)-
factorization of F, then all but one of the factors would have maximum
degree at most (r + a — 1), and one might have degree as high as r + a.
Therefore (r +a) 4+ (x —1)(r+a—1) > d(w) = d + s so that z(r+a—1)>
d+s—1 Butd+s—1lisoddandr+a—1iseven, so z(r+a—1) > d+s,
and so -
d+s
z> —,
“r+a-1

Each (r,7 + a)-factor has minimum degree at least r, so zr < d. But since
r is even and d is odd, we have zr < d — 1, so that

Since r and a — 1 are even, and d = N(r,s,a — 1, t) — 1 it follows that

tr+s—1
d= —— —-1) —
r[ — ]+r(t -1
so that 4
-1 tr+s—1 2
r - [ a—1 ]+(t_1)_;
_ tr+s—1+4c 2
a—1 +(t—1)—;
for some even ¢, 0 < c<a—3.
We also have that
12 -1
d+s=r[r—+jl—-—'+r(t——1)+s——1
so that
tr+s—1
dts = rZF572FC L 1) 4s—1
a—1
r+a—1
= —ﬁ-(tr+s-—1+c)+r(t—1)+s—(tr+s——1+c)
= Heditris_14¢)~r—c
Therefore

d+s—1 tr+s—1+c r+c
r+a-—1" a—1 T r+a—1
If F has an (r,r + a)-factorization with z factors, then

tr+s—14c¢ r4c tr+s—1+4c 2
— < L C L
a—1 rta-1-°5" -1 TE-V-3
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This double inequality is satisfied by the following integer values of =

tr+s—1+4c¢
a—1

+14

fori=0,1,...,t — 2. As there are only ¢ — 1 such integers, it follows that
n(r,s,a,t) > n(r,s,a — 1,t).

Therefore in this case
n(r,s,a,t) = n(r,s,a — 1,1).

O

We now have the evaluation of 7(r, s, a,t) when r is even and a is odd.

Theorem 30. Let 7, s,a and t be integers with r even and positive, t pos-
itive, a > 2 and odd and s non-negative. Then

N(r,s,a—1,t) if rt+s#2(moda—1),
w(r,s,a,t) = N(r,s,a—1,t)—r if rt+s=2(mod a—1).

Proof. This follows from Lemma 28 if s is even and from Lemma 29 if s is
odd.

O
Proof of Theorem 7.
(1) If r and a are both even, this is Theorem 6.
(2) If r and a are both odd, this is Lemma 25.
(3) If » is odd and a is even, this is Theorem 27.
(4) If r is even and a is odd, this is Theorem 30. (]

3.5 Determination of #(r, s, a,%) in the cases when a =0
or 1, or when a = 2 and r is odd.

Theorem 7 settles the value of the pseudograph threshold number #(r, s, a,t)
when @ > 3 or a = 2 and r is even. Recall that we noted earlier that
7(r,s,0,t) = 0o means that for no integer dy is it true that whenever.d 2' dy
then any pseudograph of minimum degree d has an (r, r + 1) - factorization
with z (r,7 + 1) - factors for t different values of = (if t > 0 and s > 0).
With two exceptions, it is generally true that n(r, s,a,t) = oo ifa=0or 1.

Proof of Theorem 8

Case 1: Suppose a = 0.

Clearly we cannot r-factorize any irregular graph. Therefore 7(r, s,0,t) =
oo if s # 0 and t > 1. For the case when s = 0, if r > 2 we note that we
cannot r-factorize any graph of degree pr + 1 for any positve integer p.
Therefore 7(r,0,0,t) = co. For the case when r = 1, it is well-known
that there are regular graphs of degree d > 2 which cannot be 1-factorized.
Therefore, again, 7(r,0,0,t) = oo; in particular 7(1,0,0,1) = cc.

Case 2: Suppose a == 1.

Suppose that 7 > 3. If d is even and d = 2 (mod r + 1) if r is odd, or
d = 2 (mod r) if r is even, and if a pseudograph G contains a component
with one vertex on which are placed g loops, then clearly G has no (r,r +
1)-factorization. Therefore x(r,s,1,t) = oo when » > 3; in particular
m(r,0,1,1) = oo for r > 3.

Now suppose that r = 2. If G has a component consisting of one vertex
and % loops when d is even, then G has an (r,r + 1)factorization with z
factors only if z = %. Therefore 7(2, s, 1,t) = 0o unless t = 1; in particular
7(2,0,1,2) = oo.

So now suppose that a = 1, r = 2, s odd and ¢t = 1. Consider the case
when d is odd and G contains two components, C;, with two vertices » and
v joined by an edge and with 5’-‘5'—1— loops on each vertex, and Cy with one
vertex and 4:2'3 loops. Then G has no (r, r+1)factorization (since any (r, r+
1)factorization of C; has 4t > 21 factors). Therefore m(2, s, 1, 1) = o0 if
sisodd. In particular 7(2,1,1,1) = co. Since n(r, s+1,a,t) > n(r, s, a, t) it
follows now that (2, s,1,1) = oo for each s > 1. Therefore 7(2,8,1,t) > oo
whenever s > 1.

We now show that 7(2,0,1,1) = 2. Let G be a regular pseudograph
of degree d > 2. If d is even, then, by Petersen’s Theorem, G has a 2-
factorization, i.e. in this case an (r, r + 1)factorization with r = 2.

So we need to consider the case when d is odd. We may pair off the
vertices of G, and join each such pair by an edge. Call the graph obtained
by adding these extra edges G*. Each component of G* is Eulerian, and
so contains an Eulerian circuit. Going one way round each such circuit,
we may orient the edges of that circuit. If the vertices of G are uy, ..., u,
construct a bipartite graph B on vertices v, ..., v, and wy, ..., w, and join
vertex v; to vertex w; for each edge u;u; of G when the direction goes from
u; to u; in the Eulerian circuit of Gt.

Notice that in G a vertex u; has degree d, and in B the corresponding
vertices v; and w; have degrees 4—%‘—1 and d—;—l in some order. By a theorem
of de Werra [23], we may colour the edges of B with g—;—l colours in'such a
way that each colour occurs on exactly one edge incident with a vertex of
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degree -‘%—1-, but at a vertex of degree 4521, some colour will occur on two
edges and the rest on one edge each. Colouring the edges of G with the
colours of the corresponding edges of B yields a (2, 3)factorization of G.

Thus every regular pseudograph of degree at least two has a (2, 3) fac-
torization. Therefore m(2,0,1,1) = 2. (I believe this to be a new result).

Now suppose that r = 1. If G is a pseudograph consisting of one vertex
and d/2 loops, then any (r,r + 1) - factorization of G in the case r = 1
must in fact be an (r + 1)factorization. By the same argument as in the
case above when r = 2, we have 7(1, s, 1,£) = oo unless ¢ = 1. In particular
m(1,1,1,2) = oo.

Now suppose that a = 1, r = 1 and t = 1. If G contains C; with one
vertex u and ‘—;- loops on it, if d is even, and Oy with two vertices joined
by one edge with ﬂ’g—‘l- loops on each vertex if d is even and s is odd,
then G has no (r,r 4 1)-factorization since any (r, r + 1)-factorization of C;
has % factors, and of Cy has i*—;i +1= ﬁ'%il > % factors. Therefore
m(1,s,1,1) = oo unless s =0.

Finally, we show that 7(1,0,1,1) = 1. Let G be a regular pseudograph
of degree d > 1. If d = 1 then G is a regular pseudograph of degree 1, so is
its own (r,r + 1)factorization. If d is even, then by Theorem 1.7 (Petersen
[32]), G can be 2 -factorized and thus G has an (r,r + 1)factorization. If
d is odd, d > 3, then we may pair off the vertices, and join each pair of
vertices by an edge. The graph G obtained this way is regular of degree
d+1, which is even. Now 2-factorize G , and then remove the extra edges.
What remains is an (r,r + 1)factorization of G. Thus 7(1,0,1,1) = 1.

It remains to consider the case when r = 0. However it is clear that
no pseudograph containing at least one loop can have a (0, 1)factorization.
Thus #(0,0,1,1) = oo.

Case 3: Suppose a = 2.

Recall that the case when r is even is covered by Theorem 6. We need
to consider the case when r is odd. Let G be a graph with one vertex, v,
and %x(r + 1) + 1 loops incident with v. Any (r,r + 2)-factor consists of
%(r-{- 1) loops on v, and so z (r, r+2)-factors utilize %a:(fr+ 1) loops, leaving
one loop over not in any factor. Therefore, provided r4+1 > 1,ie. r >3
(as r is odd), G has no (r,r -+ 2)-factorization. Therefore (r,s,2,t) = oo if
r is odd and r > 3. So we may suppose that r = 1, so we are investigating
(1, 3)-factorizations.

Let G be a pseudograph with two components, G of degree d and G2
of degree d + s. Suppose s is even. If d is even, let Gy consist of one vertex
with % loops on it, and let G, consist of one vertex with d—'z,ﬁ loops on it.
Any (1, 3)-factor of G contains exactly one loop from G; and one loop from
G,. Therefore G cannot have a (1, 3)-factorization unless s =0 or ¢ = 1.
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Now suppose that 7 = 1, s = 0 and ¢t = 1. We showed above that
7(2,0,1,1) = 2. Therefore every regular pseudograph of degree at least 2
has a (2, 3)-factorization, and so has a (1, 3)-factorization. But a regular
graph of degree 1 has a 1-factorization, and so has a (1, 3)-factorization.
Therefore 7(1,0,2,1) = 1.

Next suppose that r = 1 and s is odd. Let G now be a 2-component
graph, one component being G; with one vertex and -‘% loops (d being even),
and G2 containing an edge vsvy with d—‘%‘—l loops on each of v and vy .
Any (1, 3)-factorization of G; has exactly % factors (each being a loop),
so any (1,3)-factorization of G has exactly ¢ factors (so ¢ = 1). In any
(1, 3)-factorization of G, each factor has a loop from G4, and one factor
contains the edge v3v4 and a loop on each of v3 and vy, the other factors
containing a loop on G} and two loops from Gy, one on v5 the other on vy.
Therefore s =1 and t = 1.

Now let G be an arbitrary (d, d + s)-pseudograph. Pair off the vertices
odd degree in G, and join each such pair with an edge. Call the graph so
formed G*. Then form a bipartite graph B, and subsequently a bipartite
graph B as described in the proof above that 7(2,0,1,1) = 2.

Suppose that d is even. Then each extra edge u;v; joined two vertices
which had degree d+2 in G*. In B one of v;, w; has degree -g-, the other has
degree -‘24+1. Give the edges of B an equitable edge colouring with % colours,
and let each edge of G be coloured with the colour of the corresponding
edge in B. In G, each vertex will be incident with two or three edges of
the same colour. Then G will have a (2, 3)-factorization, and so will have
a (1, 3)-factorization.

Next suppose that d is odd. Then in G* each extra edge u;u; joined
two vertices of degree d 4 1. In B, one of v;, w; has degree d—;—l—, the other
d—“gl. Vertices u; of G* not incident with an extra edge have degree d + 1,
and in B both v; and w; have degree %i. Give the edges of B an equitable
edge-colouring with 412‘:1 colours. Then the corresponding edge-colouring of
G is a (1,2)-factorization, and so is a (1, 3)-factorization.

Bearing in mind that a regular graph of degree 1 has a 1-factorization
and hence a (1, 3)-factorization, it follows that =(1;1, 2, )=1. ,

(]
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