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Abstract
The study of the generalized Fermat variety

J+_ 5+ j+ +y+z) .
¢ = TG +§‘§(yiz§} defined over a finite field L = F,,

q = 2" for some positive integer n, plays an important role
in the study of APN functions and exceptional APN func-
tions. This study arouse after a characterization by Rodier
that relates these functions with the number of rational points
of ¢;(z,y,2). The more studied cases are when j = 2% + 1
and 7 = 22% — 2¥ 11, the Gold and Kasami-Welch numbers.
In this article we make a claim about the decomposition of ¢;
into absolutely irreducible components. We show that if these
components intersect transversally at a particular point, then
the corresponding Kasami-Welch polynomial is absolutely ir-
reducible. Furthermore, this implies that the function is not
exceptional APN, thus helping us make progress on the stated
conjecture.
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1 Imntroduction

Definition 1. Let L = [F,, with ¢ = 2" for some positive integer n.
A function f : L — L is said to be almost perfect nonlinear (APN)
on L if for all a,b € L, a # 0, the equation

flz+a) - f(x)="b (1)
have at most 2 solutions.

APN functions have direct implications in Coding Theory and
Cryptography. For a coding approach see [4, 16, 17]. For a cryp-
tographic approach see [18, 19]. The best known examples of APN
functions are the Gold functions f(z) = z2°+! and the Kasami-Welch
functions f(z) = 2% ~2*+1, whose names are due to its exponents
names, the Gold and Kasami-Welch numbers respectively. These
functions are APN on any field Fo» where k,n are relatively prime
integers. A special class of APN functions are called exceptional APN
functions.

Definition 2. Let L = F,, ¢ = 2" for some positive integer n. A
function f : L — L is called exceptional APN if f is APN on L and
also on infinitely many extensions of L.

Aubry, McGuire and Rodier [1] conjectured that, up to equiva-
lence, the Gold and Kasami-Welch functions are the only exceptional
APN functions. Many articles have been published since then by
many authors, among them [1, 20, 21, 5, 6, 7, 10, 15, 13, 11]. Rodier
characterized APN functions as follows [20].

Proposition 1. A function f : L — L is APN if and only if the
rational points of the affine surface

f@+ )+ +flz+y+2)=0

are contained in the surface (z + y)(z + 2)(y + 2) = 0.

Given a polynomial function f € Lfz,y, 2], deg(f) = d. We
define:

f@)+ fy) + f(2)+ flz+y+2) @)
(z +y)(x + 2)(y + 2)

&z, y,2) =
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2 The Gold and the Kasami-Welch General-
ized Fermat Varieties

Janwa and Wilson [16] studied the surface ¢;(x,y, 2) related to the
Gold and Kasami-Welch numbers.

For a Gold number j = 2% 4 1, the authors proved that ¢; de-
compose into a product of linear factors as:

$i@y,2)= [ (@+ey+(a+1)?) (5)
aEsz-—Fg

For a Kasami-Welch number t = 22 — 2% 4 1, they proved that
¢; decompose into a product of absolutely irreducible factors as:

t(z,y,2)= ] Palz92) (6)

a€F,, —F2

where P,(z,v, z) is absolutely irreducible of degree 2k + 1 over Fa.
Furthermore, P, satisfies P,(z,0,1) = (z + )2+,

ttAs can be seen in (5), ¢; factors as a product of different linear
factors. Using this fact, several results were found towards the reso-
lution of the conjecture of exceptional APN functions (see [0, &, 9]).
On the other hand, for the factorization in (6), there is not much in-
formation about the factors P, except degrees. We have made some
experimentation using MAGMA for the first Kasam1-Welch numbers
and the following results were obtained.

For j=13, ¢; factors into 2 absolutely irreducible factors of degree
5, for j=57, ¢; factors into 6 absolutely irreducible factors of degree
9, for =241, ¢, factors into 14 absolutely irreducible factors of degree
17, and for j=993, ¢; factors into 30 absolutely irreducible factors of
degree 33. This results and some additional evidence we got make us
to claim the P, in (6) intersects transversally at a point and, in the
case the claim is true, consequences on the conjecture of exceptional
APN functions will be provided in section 4. The main result of
this article (theorem 11) implies that this fact help us to establish
absolute irreducibility criterion and thus leading to non-exceptional
APN results.
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3 On the conjecture of exceptional APN func-
tions

The following results towards the conjecture of exceptional APN func-
tions (stated in the introduction) are based mainly on proving that
the surface X in (2) is absolutely irreducible, or it has an absolutely
irreducible factor, as justified in theorem 1.

Aubry, McGuire and Rodier established that a polynomial func-
tion of odd degree is not exceptional APN provided the degree is not
a Gold number (2* + 1) or a Kasami-Welch number (2% — 2k 1 1),
Then, the only open cases for odd degree polynomials are the Gold
and Kasami-Welch degree polynomial functions. Next we will state
the main results obtained on these two cases.

3.1 On the Gold case
Aubry, McGuire and Rodier proved [1):

Theorem 2. Suppose f(z) = 22*+! 4 g(z) € L[z] where deg(g) <
- 5

21 + 1. Let g(z) = 3=01+1 a;r’. Suppose that there exists a

nonzero coefficient a; of g such that ¢;(z,y,2) is absolutely irre-

ducible. Then ¢(z,vy, 2) is absolutely irreducible and so f is not ex-
ceptional APN.

They extended the previous theorem with:

Theorem 3. Suppose f(x) = 22+ + g(z) € L(z] and deg(g) =
25=1 4+ 2. Let k be odd and relatively prime to n. If g(z) does not

have the form az® ™' +2 + o223 then ¢ is absolutely irreducible, while
if g(x) does have this form, then either ¢ is absolutely irreducible or

¢ splits into two absolutely irreducible factors that are both defined
over L.

In [6, 8] we extended these results with the following:

Theorem 4. For k > 2, let f(z) = 22+ + h(x) € L[z], where
deg(h) < 2¥ + 1, and deg(h) = 3 (mod 4). Then, ¢(z,y, 2) is abso-
lutely irreducible.

For the case 1 (mod 4), in [6, &] we also proved:
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Theorem 5. For k > 2, let f(z) = 22! + h(z) € Liz] where
d = deg(h)=1 (mod 4) and d < 28 +1. If ¢ox,, ¢4 are relatively
prime, then ¢(z,y, 2) is absolutely irreducible.

Additional complementary results were proven by us in [9, 1]
that almost complete the proof of the conjecture for the Gold degree
case with the following theorems.

Theorem 6. For k > 2, let f(z) = 22! + h(z) € L|z] where
deg(h) = 2! +1 < 2% + 1. Then, If (k,1) # 1 and h contains a term
of degree m such that (Por 1, 0m) = 1, then ¢(x,y, z) is absolutely
irreducible and f is not exceptional APN.

Theorem 7. For k1 > 2, let f(x) = 22" +1 4 h(z) € Liz] where
deg(h) = 2% + 1 < 2%t 4 1. Then ¢ is absolutely irreducible when
h(z) = Z§-=20j$2kj+1, is such that aj # 0 for 2 < j < t, and
(k1, -+ ,kt) = 1 and f is not an exceptional APN function. Under
the same conditions, if (k1, -+ ,kt) = q > 1, then ¢ is divisible by
¢2at1 and ¢ is not absolutely irreducible.

In this last theorem, we go further for the case when ¢ is divis-
ible by ¢2¢+1, by showing that it could happen that ¢ contains an
absolutely irreducible factor in this case, consequently f could not be
exceptional APN.

3.2 On the Kasami-Welch case
For this case, Rodier proved the following [21]:

Theorem 8. Suppose that f(z) = 22 ~2"+1 1 g(x) € Llz| where

k—1 k-1 ;
deg(g) < 2%-1 —2k=1 4+ 1. Let g(x) = 2322:0 2 lgiwd. Sup-
pose moreover that there exist a nonzero coefficient a; of g such that
¢i(z,y, 2) is absolutely irreducible. Then ¢(z,y, 2) is absolutely irre-
ducible.

Rodier also studied the case when deg(g) = 22¢—1 — 2k-1 4 2,
Very recently, Ferard [L4] and Delgado and Janwa [10] simultane-
ously, independently and using very different methods, improved
these Kasami-Welch results. Both articles proved the following;:
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Theorem 9. Let r be an integer > 2, k, = 22" — 2" +1 be a Kasami
exponent, d be an integer, 1 < d < k, and f(x) = z* + g(z) where
g(z) is a polynomial of degree d. If d = 3( mod 4), then ¢s(z,y, 2)
s absolutely irreducible.

Theorem 10. Let r be an integer > 2, k, = 22 —2" +1 be a Kasami
exponent, d an odd integer, 5 < d < k, and f(z) = z* + g(z) where
g(z) is a polynomial of degree d. Assume that d = 1( mod 4). We
write d = 1+ 271 with | an odd integer and j an integer > 2. If 2" —1
does not divide I, then ¢s(z,y, 2) is absolutely irreducible.

Ferard also studied the case when d = 2% with ¢ = 1( mod 4).
Qur results will be discussed in the next section.

4 'Transversal intersection on the Kasami-Welch
variety

The next theorem provides an infinite family of absolutely irreducible
polynomials of Kasami-Welch degree k, provided a especial decom-
position exists of ¢, in equation (6). To state the result we recall
that two or more curves f; are said to intersect transversally at a
point p if p is a simple point of each f; and if the tangent lines to f;
at p are pairwise distinct.

Theorem 11. Let r be an integer > 2, k, = 2% — 2" +1 be a Kasami
exponent, and f(z) = z* + g(x) where g(z) is a polynomial of degree
d, 1 <d < kr. If ¢r, intersects transversally at a point p that is not
n ¢q, then ¢(x,y, 2) is absolutely irreducible.

Proof. Supposing, by the way of contradiction (we follow the argu-
ment as in [6, 8]), that ¢(z,y, z) factor as P(z,y, 2)Q(x, y, z), where
P and @ are non constant polynomials. As sums of homogeneous
terms, P=P,+ P 1+...+ Py, Q = Q¢ + Q¢—1 + ... + Qo. Then, we
have

2%r—2r 41
Y. aibi=(P+Piit .. +P) Qe+ Q1 +..+Q0) (7)
J=3

where s 4t = 2% — 2" — 2. We can assume that s > t. Then

22— —2>5> L2515 0. Let e=2% — 2" +1—d.
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From equations (6) and (7):

Pth'-':HPa(:B’yaz): aEF?‘-F? (8)

Because P, and Q; are different absolutely irreducible factors, P,
and @; are relatively prime.

By the assumed degree of g(z), the homogeneous terms of degree
I, ford —3 <1 < 2% — 2" —2, are equal to zero. Equating the terms
of degree s +t — 1, we get P,Q:—1 + Ps—1Q: = 0, which implies that
P,_1 = Q-1 = 0 (since P,, Q; are relatively prime and Ps|Ps-1Q%).
In the same fashion, equating the terms of degree s+t —2,84+1 —
3,.,d—2weget P,_1=Q;1=0,P 2=Qt2=0,Ps3=Q3=
0,... Ps—(e—l) = Qt—(e—l) = 0.

The equation of degree d — 3 is:

Pth-—e + Po_eQt = ad¢d($, Y, Z) (9)

By hypothesis on transversal intersection at p, p € Py(z,y, 2) for
all o € Fox —F3. Then, by the absolute irreducible factorization in
(8), p € Ps,p € Q:. Then p € ¢y4(z,y, 2) by equation (8). Which is a
contradiction. O

As commented at the end of section 2, by using MAGMA, we
proved that the components of ¢, in equation (6) intersects transver-
sally at p = (1,1,1) for the cases k, = 13,57,241,993. Using these
results and previous results on rational points of ¢4(z,vy, %), we con-
clude:

Corollary 2. For k = 993,241,57,13, let f(z) = 2* + g(z) where
g(z) is a polynomial of degree d, 1 < d < k, d = 3( mod 4). Then ¢
is absolutely irreducible.

Proof. p does not belong to ¢4(z,y, z) for d = 3( mod 4), as demon-
strated by Janwa and Wilson in [10]. O

Using theoretical arguments on transversal intersection, and anal-
ysis of intersection multiplicities, we prove in a future Designs, Codes
and Cryptography article (submission in process) the following gen-
eral result [12]:
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Theorem 12. Let r be an integer > 2, k, = 2% —27 +-1 be a Kasami
exponent, and f(x) = z* + g(x) where g(z) is a polynomial of degree
d, 1 <d<k. Ifd=3( modd), then ¢(z,y,2) is absolutely
irreducible.

We also include in [12] an analogous result for d = 5( mod 8).
An important remark is that these results on the Kasami-Welch case
were obtained independently by us in [10] and independently and
simultaneously, and using completely different methods from Ferard’s
results in [14]. For more details about this see [10].
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