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Abstract

In a finite projective plane PG(2, q), a set of k points
is called (k,n)-arc if the following two properties hold:
Every line intersects in at most n points. There exists a
line which intersects in exactly n point. We are interested
in determining for each g and each n, the largest value
of k for which a (k, n)-arc exists in PG(2, ). If possible,
we would like to classify those arcs up to isomorphism.
We look at the problem for ¢ = 11.
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1 Introduction

In a finite projective plane PG(2, q), a set of k points is called
(k,n)-arc if the following two properties hold:

(a) Every line intersects in at most n points.
(b) There exists a line which intersects in exactly n point.

Examples arise from algebraic curves of degree n. For this reason,
the parameter n is called the degree of the arc. We are interested
in large arcs. The largest value of k for which a (k,n)-arc in
PG(s, q) exists is denoted

7”71.(33 '?)'

Let S be a (k, n)-arc. Then S is complete if there is no larger arc
containing S. Thus, m,(2, q) is the size of the largest complete
arc in PG(2, ¢). The known values of m,(2, ¢) for small ¢ and n
are summarized in Table 1. If a value of m,(2, q) is not known, an
interval is shown which contains it. Yet another related concept
is that of a maximal arc. A (k,n)-arc K is maximal of degree n
in PG(2,q) if £ = (¢+1)(n—1)+ 1. If K is a maximal (k,n)—arc
in PG(2, ¢) then each line meets K in either 0 or n points. It is
known that maximal arcs exist only when ¢ is even. This paper
is not about maximal arcs.

A collineation of PG(s, ¢) (s > 2) is a bijective mapping from
the points to the points with the property that the image of three
points is collinear if and only if the points are collinear. The
collineation group of PG(s, q) is the projective semilinear group
PT'L(s,q). An important subgroup of PT'L(s, ¢) is the group of
projectivities PGL(s, q). These are the collineations which are
induced by linear maps of the underlying vector space (for s = 2,
we assume that the projective plane is Desarguesian).

Two sets S5 and Sz in PG(2, ¢) are equivalent if there exists
a collineation a such that ST = S;. The classification problem
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is the problem of determining the distinct objects of a kind in
a space. For us, the classification problem is determining the
distinct arcs up to equivalence.

Large arcs have been constructed by various authors. For
q = 11, there is one example of a (43, 5)-arc in PG(2,11) due to
Ball [1]. In that same paper, the bounds 43 < ms(2,11) < 45
are shown. Cook [5| studies m,(2,11) for n < 4, and finds
four isomorphism types of (32, 4)-arcs in PG(2,11). Cook also
classifies the (21, 3)-arcs in PG(2,11) : Up to isomorphism there
are exactly two such ares.

A line £ with |£N K| = ¢ is called an i-secant. It is easy to
see that a (k,n)-arc K in PG(2,q) is complete if and only if its
n-secants cover the whole plane PG(2, q).

For a (k,n)-arc K in PG(2,q), let 7; denotes the number of
i-secants of K. The secant distribution or line type of K is

[T Tty =~ s T2y 1] -

Let p; denote the number of i-secants of K through a point P in
K. The point type of P w.r.t. K is the vector

[Prs Pr—1,- -+, P2, p1) -

Lemma 1.1. For a (k,n)—arc K in PG(2, ) the following equa-
tions hold:

don=q+q+1, (1)
i={)
> im =k(g+1), (2)
i=1
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Table 1: m,(2,q), ¢ <13

21325789 1 13
T

3 |4]4]6]6]810]10] 12 14

3 (7] 9|9 |11]15/15]|17| 21 23

4| [13[16]16]22(28[28] 32 38 — 40

5 21 25[29(33(37| 3—45 | 49-53

6 313642 48| 56 64— 66

7 19[49 (55| 67 79

8 57|64]65| 78 9

9 7381 89—90 | 105
10 91 [ 100 — 102 | 118 — 119
11 191 | 132 — 133
D) 133 | 145 — 147
13 169
14 183

S @+1-dn=(F+q+1-k)g+1), (3)

=0

()= () ®

i(ﬂ%;—i)ﬁ___(qzi-q;l—k), )

=0

zﬂ:i(q+1—3’)ﬁ=k(q2+q+1-k). (6)
i=0

Table 1 shows the values of m,(2, q) for ¢ < 13, or upper and
lower bounds for it if the exact value is unknown. Regarding the
problem of classification, much less is known. Table 2 shows the
cases for which the largest arcs are classified. For n = 2, the
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Table 2: Classification of largest arcs in PG(2, q)

ql 2 3 4 5 7 8
m
2 [4[18][4[18][6 [8] | 6 [18] | 8 [18] | 10 [§]
3 7 9 9 |11 [20] [ 15 [12]] 15 [11]
4 13 16 16 22 |10 28
5 21 25 29 33
6 31 36 42 [4]

al 9 11 13

10 [18] [ 12 [18] [ 14 [18
17 [11] | 21 [5] | 23 [13]
28 32 [38—40
37 [43—45[/49—53
48[14]| 56 |64—66

FHEI RN EDNE

result of Segre (18] shows that every ¢ + 1 arc in PG(2,¢), is a
conic, for g. For ¢ even, the situation is more complicated. In
this case, the largest arcs are hyperovals, which consist of qg+2
points. For ¢ = 2,4, 8, all hyperovals have the form conic plus
nucleus and are unique (this fact is left as an exercise to the
reader in [8]).

2 Isomorph Classification

A graph I is a pair (V, E) where V is a set of elements that
called verticies, and E is a set of pairs of V. If I'; = (1, Ey)
and I'y = (V, E3) are two graphs, an isomorphism from I'; to
s is a bijection ¢ : Vi — V4 such that E{ = E,. Here, E¥ =
{{z*,y*} | (z,y) € E}. If I'; and T; are isomorphic, we write
[’y =~ Tg. The set of isomorphisms of a graph I to itself forms
a group with respect to composition. This group is known as
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the automorphism group of I. Let = = (Cy,...,Ck) be a set-

partition of V. A m-isomorphism of I'y = (V| E;) and 'y = (V, E)
is an isomorphism ¢ € Sym(V') which preserves the partition .
This means that C¥ = C for all parts C of the partition 7. We
write I'y ~, I's if I'; and I'; are isomorphic under a n-preserving
isomorphism.

A bipartite graph is a graph whose vertex set can be parti-
tioned into two disjoint cocliques (sets whose elements are pair-
wise non-adjacent). Let ¢ = (P, £,T) be an incidence structure.
We can associate to ¢ a graph I',, called the Levi graph associ-
ated to ¢. I', is the bipartite graph (V, E) where V =P UL and
E is the set of all (P, /) where P € £ holds in ¢. Given a set of
points § with S C P, the extended Levi graph I', 5 is defined
as

L.a=V"%E"),

where

V* = pU:C U{p*,fx},

with incidences of the form
1. (p,f) where pe P,fe L,pel,
2. (p,£,) wherepe S,

3. (ps, 4).

Let G(V') be the set of graphs whose vertex set is V. A map
C:G(V) = Sym(V) is called a canonical labeling map if the
following property holds:

PyTy &= TT =1 WPuaeg(v). (O

Let m = (C}y,...,Ct) be a set-partition of V. A m-preserving
canonical labeling map on G(V') is a map C : G(V') — Sym(V; n)
such that

Iy, Ty = IS =) yvpymeg(v). (8)
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Here, Sym(V;m) is the stabilizer of the partition 7 in Sym(V/).
That is, f € Sym(V;m) if f € Sym(V) and C/ = C for each class
C € m. For Levi graphs, the partition © = (V, £) is important.
For extended Levi graphs, the partition

m=(P,L,{p.},{€:}) (9)

is important. We have the following results:

Theorem 2.1. 1. Let vy = (P,L,Ty) and 1o = (P, L,T,) be
two incidence structures. Then

e(r. e
oy e To0a) _ pela)

2. Let S and T be to subsets of P. Let w be the partition of
the Levi graph from (9). Let C, be a m-preserving canonical
labeling map. Then

T e PCE(F'"S) - F‘z}(rf..r)

by

A few remarks on canonical labeling mappings are in order.
It is very simple to define a canonical labeling mapping. For in-
stance, the labeling which takes the graph to the lex-least form
of the adjacency matrix is one such mapping. However, the real
difficulty is to make an algorithmic procedure which computes
the canonical labeling of a graph in reasonable time. In order to
be able to do this, the lex-least form is often not the best choice.
For instance, the program Nauty [16] computes a canonical la-
beling of graphs which is different from the lex-least mapping.
Using Theorem 2.1, it is possible to use Nauty to classify ob-
jects in finite projective spaces: Simply consider the incidence
structure ¢ given by the points and lines of the projective space.
This also works well for other incidence structures, such as non-
desarguesian projective planes. However, the order of the geom-
etry is restricted, as computing the canonical labeling is slow,
even for efficient implementations such as Nauty.
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3 Poset Classification

A large number of combinatorial problems involving classifica-
tion can be reduced to classifying orbits of groups acting on par-
tially ordered sets. The partially ordered set that we consider
is the set of points in the plane which satisfy the condition that
each line intersects in at most n points.

There are many different ways in which such a classification
can be performed. First, there is the technique of canonical
augmentation, developed by McKay [15]. It relies on the no-
tion of canonical labelings. At present, the only implementation
available is McKay’s own Nauty (16].

The scarcity of canonical form algorithms and implemen-
tations leads us to look for different approaches. One alter-
native is an algorithm for poset-classification originally due to
Schmalz [17]. For a modernized version, see [3]. The algorithm
is available for many different posets, and an implementation in
the software package Orbiter [2] can be used.

4 Arcs of degree 3 in PG(2,11)

Cook [5] classifies the arcs of degree 3 in PG(2, 11). Because we
are interested in n-arcs in PG(2,11) with n > 3, this result will
be important for our work. We start by verifying this result using
different techniques. Using Orbiter [2], we confirm the numbers
in the third column of Table 3. This table was first established
in [5]. In the table, Aut stands for the order of the automorphism
group, Line type is the vector

(8P 2% 1%, 0N,
and point types are of the form

37,272, 17] .
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Table 3: Number of (k,3)-arcs in PG(2, 11) up to isomorphism

k | complete | incomplete total
12 0| 15,291,641 | 15291641
13 9 | 44,020,755 | 44,020,760
14 146 | 76,935,881 | 76,936,027

15 | 715,84,677 | 73086254 | 73,157 838
16 | 1,573,677 | 31,342,655 | 32,916,332
17 | 2,082,781 | 3801624 | 5,884,405
18 | 259585 742,73 | 333,858

19 4,176 291 4,467
20 15 2 17
21 2 0 2

Table 4: Classification of (21, 3)-arcs in PG(2,11)

# of Arcs |  Aut Line types Point types
2 Cr 1 G | [3%,2%,1%,0%] | 21 [3%, 22, 1]

Cook finds exactly two isomorphism types of (21, 3)-arcs in
PG(2, 11). These are the largest arcs of degree 3 in this plane.
For more information on these arcs, see Table 4. Interestingly,
the largest 3-arcs that we get from curves are elliptic curves
whose number of points reaches the Hasse-Weil upper bound:

#pts. over F < g+1+2,/7

Up to isomorphism, there are exactly two curves for which the
number of points is 18, which is the value of the Hasse-Weil
bound for ¢ = 11 (cf. Table 5). The equation of the first curve
is

5XEX: + 10X2 X, + 6Xo X2+ (10)
10XF X5 + Xo X3 42X, X2 + 10X X, Xz = 0.
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Table 5: Elliptic curves in PG(2, 11)

Equation | # of pts | Ago Line type

(10) 18 3 |38 219 196,003
(11) 18 6 3% 218 1% o

The equation of the second curve is

TXZX + 8X3 X, + 4 X X3+ (11)
8X12X2 —+ 3X0X22 + 4X1X§ + 10X X1 X2 =0.

The curves were found using a classification algorithm for cubic

curves in small projective planes developed by the authors. The
software package Orbiter [2] was used. The internet table Many-
points [7] can be used to query the largest algebraic curves over
small finite fields, and to find out references for the curves. For
instance, elliptic curves with 18 points in PG(2,11) have been
found by [19], and earlier work was done by Hasse [9] and Deur-
ing [6]. Soomro lists the curve with equation y? = z* + z + 3,
which is equivalent to the curve with automorphism group of
order 6 in Table 5.

5 Arcs of degree 4 in PG(2,11)

The largest arcs of degree 4 in PG(2, 11) have 32 points. Here is
the classification of these arcs:

Theorem 5.1. Up to isomorphism, there are exactly 210,692
largest complete (32,4)-arcs in PG(2,11). Information is given
in Table 6 and 7.

Cook [5] proves that to extend an (s,3)—arc to a (33,4)-
arc in PG(2,11), then s > 12. Cook [5] finds one arc in each
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Table 6: (32, 4)-arcs in PG(2,11)

# Arcs | Aut Line types ty | to | 3 | 14
26945 | Doo | [4%5,3%,2" 1200 [ 2 [0 |10 [ 10
34517 | Do | [47°,3,216,122 019 [ 12 (10 | 10| ©
70078 | Cyo | [47,3%0,26,12 011 | 12 | 10| 10| ©
79152 | Dg | [471,3%,219120 02| | 8 (12| 0 | 12

=2 T~ g

Table 7: Point types

Notation | Point types
t [ 3% 08 4%
to [4%, 32,90 11
ts 47,31 22 19
ta [42,8% 2L 17]
ts (47,3520 9]

line of Table 6. Our result is based on lifting all isomorphism
types of (s,3)-arcs (complete and incomplete) from Table 3 for
12 < s < 21. Parallel computing was used to perform this
computation. The lifting of each arc is done by solving systems
of Diophantine equations. The isomorph classification is done
using Orbiter, which in turn relies on Nauty. The method of
Levi graphs described in Section 2 is used.

6 Arcs of degree 5 in PG(2,11)

It is possible to increase the degree of an arc by adding points.
The conditions for adding points can be expressed using Dio-
phantine equations and inequalities. Suppose we want to extend
the degree d of an arc by one. A d-secant can accept at most on
new point. In general, a d—i secant can accept ¢ + 1 new points.
For each line in the plane, one inequality is formed. Suppose we
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start from a (k, d)-arc and we wish to construct an (s,d+ 1)-arc
for some s > k. The variables in the system are the points off
the (k, d)-arc. One additional equation captures the fact that we
want to add s — k points. Consider an example. To construct a
(43, 5)-arc we try extending one of the (32, 4)-arcs from Table 6.
The first of these arcs (due to Cook) can indeed be extended.
The Diophantine system is shown in Table 8. The new (43, 5)-arc
has a stabiliser group of order 10. Table 9 summarizes the known
(43,5)-arcs in PG(2,11). So far, no (44, 5)-arc or (45,4)-arc in
known, but they have not been ruled out either. The following
theorem gives information about a putative (45, 5)-arc:

Theorem 6.1. In PG(2,11), the number of 5-secants of a (45,5)-
arc satisfies the following bound:

s = 12,

Proof: We consider the column-tactical decomposition scheme
of the incidence matrix of PG(2,11) :

lms|ma|lm|r|n]|

4515143210
88 7(819|10(11]12
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Table 8: The system for extending to (43, 5)-arcs

Table 9: Known (43, 5)-arcs in PG(2, 11)

Ago Lines type
Ballarc | 12 | [5%, 4%, 37 217 o]
New arc | 10 | [6%, 4% 310 23 9]
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The equations from Lemma 1.1 are:

=0
5
Y j12—j)r; = 45-88 Ji,
j=0
5
Y in = 4512 R

12-)r; = 88.12 B
I

3
Yo = 18 @
j=0

So,
Ts T4 T3 To T1 To|= RHS
10 6 3 1 0 0 990
21 28 36 45 55 66| 3828
35 32 27 20 11 0 | 3928
5 4 3 2 1 0| 540
7 8 9 10 11 12| 1056
.. 1 1 1 1 1% 133

To show that 75 > 72, we assume 75 < 71 and show that the
system has no solution. Considering the second row, we deduce
that T3 < 106, s 85, < 69, and To < 58. Elementa.ry row
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operations lead to

s T4 T3 T2 T1 To | =RHS
10 6 3 1 0 0 990

0 1 6 15 28 45 765

0 10 15 15 10 O 450
5 4 3 2 1 0 540
0 2 4 6 8 10| 250
i 3+ I I 1 1 133

Considering the second row, we deduce that 79 < 17. This leaves
18 cases to consider for 79. We perform a case-by-case analysis.
Each case is similar, so we only look at one of the cases: 7, = 0
(the hardest case). The general idea is to make lower and upper
bounds for 7; say
tj o i < U .
Let a;; be the (i, 7) entry in the reduced coefficient matrix. If
at some point
5

Z a; ju; < RHS;

=0
for some equation %, then we know the system has no solution

(the stopping rule). It remains to tighten the bounds I; and uj.
The following to observations are helpful:

1. For all (¢, j) we have

lnﬂsi ~ oo th

u; <
! @i, 5

2. For all (i, 7) we have

RHS; — 3 5-0 aipus
E_f 2 h#d

Qi 5
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Table 10: Sharpening of bounds in the proof of Theorem 6.1

Eqn Ts T4 T3 To T1 To

0—-71 0-—123 0—-106 0—85 0—69 O
1 0—-71 0-123 0—106 0—51 0-27 O
2 0-71 0-—45 0-30 0-—-30 0-~-27 O
3 37—71 2—-45 0—-30 0-30 0—27 O
0 60—71 27—45 0—-30 0—-30 0—-27 O
1 60—71 27—45 0—30 0—30 4—-26 O
2 60—T71 27—41 0-9 0-9 4-18 O
3 63—71 31—41 0-9 0-9 4-18 0O
4 63-71 31—-41 0-9 0-9 10-18 0
0 71-71 41-41 9-9 T7-9 10-18 0

We consider all pairs (¢,7) and tighten the bounds using the
two observations. If an improvement is made, all pairs (i, j) are
tested again. This is repeated until either there are no more
improvements, or for one equation ¢ the stopping rule is reached.
For 19 = 0, this leads to the bounds shown in Table 10. Recall:

l7s 74 ™8 T2 T To|=RHS
a; |0 1 6 15 28 45| 765

and
75 T4 T3 T2 T1 To
71-71 41—41 9—-9 7—9 10—18 0

At this point, the stopping rule is reached in equation i = 1:

5
Y aiju; =0-71+1-41+6-9+15-9+28-18+45-0 = 734 < 765

J=0

This means that the case 75 < 71 and 75 = 0 is ruled out. The
other cases of 7y are dealt with in a similar fashion. This shows
that 75 > 72.
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